Interrogation Écrite nº 4 : corrigé

MPSI Lycée Camille Jullian

25 janvier 2024

Énoncé modifié:

- 1. (a) On calcule donc $A^2 = \begin{pmatrix} -1 & 2 \\ -4 & 7 \end{pmatrix}$. Les coefficients hors diagonale de A^2 sont doubles de ceux de A, donc a=2, et on déduit b=1 en observant la diagonale. Autrement dit, $A^2=2A+I_2$.
 - (b) On peut écrire la relation précédente sous la forme $A(A-2I_2)=I_2$, ce qui prouve à la fois que A est inversible et que $A^{-1}=A-2I_2=\begin{pmatrix} -3 & 1 \\ -2 & 1 \end{pmatrix}$.
- 2. (a) Pour n=0, la formule donne $B^0=I_2$, ce qui est évidemment vrai. Supposons la formule correcte pour un certain entier n, alors $B^{n+1}=\begin{pmatrix} -3 & 4 \\ -4 & 5 \end{pmatrix} \times \begin{pmatrix} 1-4n & 4n \\ -4n & 1+4n \end{pmatrix}=\begin{pmatrix} -3+12n-16n & -12n+4+16n \\ -4+16n-20n & -16n+5+20n \end{pmatrix}=\begin{pmatrix} -3-4n & 4+4n \\ -4-4n & 5+4n \end{pmatrix}=\begin{pmatrix} 1-4(n+1) & 4(n+1) \\ -4(n+1) & 1+4(n+1) \end{pmatrix}$, ce qui prouve la formule au rang n+1 et achève la récurrence.
 - (b) La formule donne pour n=-1 la matrice $\begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$, dont on vérifie facilement qu'elle est bien l'inverse de la matrice B en la multipliant par B pour obtenir I_2 .
- 3. (a) En posant $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, un calcul trivial donne $JMJ = \begin{pmatrix} a+b+c+d & a+b+c+d \\ a+b+c+d & a+b+c+d \end{pmatrix} = (a+b+c+d)J$.
 - (b) Avec les mêmes notations que ci-dessus, $JM = \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix}$ et $MJ = \begin{pmatrix} a+b & a+b \\ c+d & c+d \end{pmatrix}$. Les deux matrices sont égales si b=c et a=d (deux paires d'équations identiques sur les quatre). Les matrices qui commutent avec J sont donc celles de la forme $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, avec $(a,b) \in \mathbb{R}^2$.
 - (c) Si $J=M^2+M$, en multipliant simplement par M à gauche ou à droite, on a $MJ=M(M^2+M)=M^3+M^2=(M^2+M)M=JM$, donc les matrices commutent.
 - (d) On cherche donc des solutions de la forme $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, pour lesquelles $M^2 = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix}$. Ces matrices sont solutions si elles vérifient les deux équations $a^2 + b^2 + a = 1$ et 2ab + b = 1 (les deux autres équations étant identiques). La somme des deux équations donne $a^2 + b^2 + 2ab + a + b = 2$, soit $(a + b)^2 + a + b = 2$. Autrement dit, a + b est solution de l'équation $x^2 + x 2 = 0$, qui a pour solutions évidentes 1 et -2. Si a + b = 1, alors a = 1 b, soit en reportant dans la deuxième équation du système initial 2b(1 b) + b = 1, donc $-2b^2 + 3b 1 = 0$. Cette équation a pour discriminant $\Delta = 9 8 = 1$ et pour solutions $b_1 = \frac{-3 1}{-4} = 1$ (qui donne a = 0) et $b_2 = \frac{-3 + 1}{-4} = \frac{1}{2}$ (qui donne $a = \frac{1}{2}$). Si a + b = -2, on a cette fois a = -2 b, donc 2b(-2 b) + b 1 = 0, soit $2b^2 + 3b + 1 = 0$,

qui a pour solutions $b_3=-1$ (qui donne a=-1) et $b_4=-\frac{1}{2}$ (qui donne $a=-\frac{3}{2}$). Finalement, quatre matrices sont solutions de l'équation : $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (ou si on préfère $J-I_2$), $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2}J, \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = -J,$ et $\begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{3}{2} \end{pmatrix} = -\frac{1}{2}J-I_2$.

4. Histoire de ne pas faire comme tout le monde résolvons le système $\begin{cases} x + iy + z = a \\ x + (1+i)y + (2+i)z = b \\ x + iy + 2z = c \end{cases}$ Les opérations $L_2 - L_1$ et $L_3 - L_1$ donnent les nouvelles équations y + (1+i)z = b - a et

Les opérations $L_2 - L_1$ et $L_3 - L_1$ donnent les nouvelles équations y + (1+i)z = b - a et z = c - a, dont on déduit directement (le système est maintenant triangulaire) z = c - a, y = b - a - (1+i)(c-a) = ia + b - (1+i)c, et x = a - i(ia + b - (1+i)c) - (c-a) = 3a - ib + (i-2)c.

La matrice est donc inversible, et son inverse est $\begin{pmatrix} 3 & -i & i-2 \\ i & 1 & -i-1 \\ -1 & 0 & 1 \end{pmatrix}$.