Devoir Surveillé nº 10 : corrigé

MPSI Lycée Camille Jullian

8 juin 2024

Exercice 1

demandée vaut $\frac{4}{6} = \frac{2}{3}$

- 1. On est ici en présence d'un schéma de Bernoulli (déplacements indépendants, probabilité p constante d'aller vers la droite, et on répète n fois l'expérience en comptant le nombre de déplacements vers la droite), donc $X_n \sim \mathcal{B}(n,p)$. En particulier, $\mathbb{E}(X_n) = np$ et $\mathbb{V}(X_n) = npq$. Puisque la particule part de la position n_0 et qu'elle effectue en moyenne np déplacements vers la droite et nq déplacements vers la gauche, elle sera en moyenne après ces déplacements en position $n_0 + n(p-q)$. Par exemple, si $p = q = \frac{1}{2}$, la position moyenne après les déplacements sera la même que la position initiale, ce qui est logique.
- 2. Dans ce cas, $X_4 \sim \mathcal{B}\left(4,\frac{2}{3}\right)$, et la particule se retrouve en position 0 après quatre déplacements si et seulement si elle a effectué deux déplacements vers la droite et deux vers la gauche. Autrement dit, la probabilité recherchée vaut $\mathbb{P}(X_4=2) = \binom{4}{2} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 = 6 \times \frac{4}{9} \times \frac{1}{9} = \frac{8}{27}$. Sur les six possiblités formées de deux déplacements à droite et deux à gauche, il y en a quatre qui font passer la particule par la position -1: GGDD (deux pas à gauche puis deux pas à droite), GDGD, GDDG, DGGD (les deux derniers, DDGG et DGDG, ne conviennent
- 3. (a) Par hypothèse, si la particule démarre en position 0, elle ne bougera jamais et s'arrêtera donc en position 0 avec probabilité 1, sans faire le moindre déplacement. De même, si elle part de la position N, elle ne bougera pas non plus, et ne rejoindra donc jamais la position 0

pas). Chacune des six possibilités ayant la même probabilité, la probabilité conditionnelle

- (b) Puisqu'on a supposé $k \neq 0$ et $k \neq N$, la particule fera au moins un déplacement. Distinguons deux cas selon le premier déplacement effectué : si elle part initialement vers la droite (probabilité p), elle se retrouve en position k+1 et a désormais une probabilité a_{k+1} de finir sa course en position 0 (on peut « oublier » le premier déplacement puisque tout est indépendant). On a donc une probabilité pa_{k+1} que la particule termine en position 0 en ayant fait un premier pas à droite. De même, on aura une probabilité qa_{k-1} de finir en 0 en faisant un permier pas vers la gauche. Les deux cas traités étant les seuls possibles (et incompatibles), $a_k = pa_{k+1} + qa_{k-1}$.
- (c) La suite (a_k) est récurrente linéaire d'ordre 2 (le fait qu'elle ne soit pas définie pour k>N ne change rien), d'équation caractéristique $\frac{1}{2}x^2-x+\frac{1}{2}=0$ dans le cas où $p=q=\frac{1}{2}$ (attention à ne pas se laisser piéger par les indices k+1 et k-1 utilisés dans l'énoncé). Cette équation a pour discriminant $\Delta=1-1=0$, et admet pour racine double $r_0=1$ (à un facteur $\frac{1}{2}$ près, c'est en fait une identité remarquable bien connue). Il existe donc deux réels A et B tels que $a_k=A+Bk$. Or, $a_0=1$, donc A=1, et $a_N=0$, donc

0=1+BN, soit $B=-\frac{1}{N}$. Finalement, $a_k=1-\frac{k}{N}$ pour tout entier $k\in\{0,\ldots,N\}$. Par exemple, pour N=4, on obtient $a_0=1$, $a_1=\frac{3}{4}$, $a_2=\frac{1}{2}$, $a_3=\frac{1}{4}$ et $a_4=0$, soit une suite arithmétique. La probabilité de en position 0 est alors directement proportionnelle à la distance initiale de la particule de la case 4. Le fait que la suite soit décroissante est logique, tout comme le fait qu'elle soit « symétrique » (a_1 et a_3 sont complémentaires par rapport à 1), puisque par exemple la probabilité de finir en position 0 en partant de la position 1 est la même que celle de finir en position 4 en partant de la position 3.

- (d) On a toujours une suite récurrente linéaire d'ordre 2, donc l'équation caractéristique est $px^2-x+q=0$. Son discriminant vaut $\Delta=1-4pq=1-4p(1-p)=1-4p+4p^2=(1-2p)^2$, et il y a donc deux racines distinctes (puisque $p\neq \frac{1}{2}$) $r_1=\frac{1+1-2p}{2p}=\frac{1}{p}-1=\frac{q}{p}$ et $r_2=\frac{1-1+2p}{2p}=1$. Il existe donc deux constantes A et B telles que $a_k=A+B\left(\frac{q}{p}\right)^k$. La condition $a_0=1$ impose A+B=1, la condition $a_N=0$ impose $A+B\times\frac{q^N}{p^N}=0$. En soustrayant les deux équations, $B\left(1-\frac{q^N}{p^N}\right)=1$, donc $B=\frac{p^N}{p^N-q^N}$, puis $A=1-B=-\frac{q^N}{p^N-q^N}$. Finalement, $a_k=\frac{-q^N+p^{N-k}q^k}{p^N-q^N}=\frac{q^k(p^{N-k}-q^{N-k})}{p^N-q^N}$.
- (e) Pas vraiment besoin de refaire les calculs, si on échange les valeurs de p et de q, la probabilité b_k sera la même que la probabilité a_{N-k} calculée à la question précédente (la situation est identique par symétrie du problème). Autrement dit, on calcule b_n en remplaçant p par q et k par N-k dans le calcul précédent : $b_k = \frac{p^{N-k}(q^k-p^k)}{q^N-p^N}$.
- (f) Calculons: $a_k + b_k = \frac{q^k(p^{N-k} q^{N-k})}{p^N q^N} + \frac{p^{N-k}(q^k p^k)}{q^N p^N} = \frac{q^kp^{N-k} q^N p^{N-k}q^k + p^N}{p^N q^N} = 1$. On en déduit que la probabilité que la particule continue à se déplacer sans jamais atteindre la position ou la position N pour se stabiliser est nulle, quelle que soit sa position initiale.

Exercice 2

A. Étude d'un endomorphisme.

- 1. Commençons par prouver que f est une application linéaire : si P_1 et P_2 sont deux polynômes de E, et $\lambda \in \mathbb{R}$, alors $f(\lambda P_1 + P_2) = (2X+1)(\lambda P_1 + P_2) (X^2-1)(\lambda P_1 + P_2)' = \lambda(2X+1)P_1 + (2X+1)P_2 \lambda(X^2-1)P_1 (X^2-1)P_2 = \lambda f(P_1) + f(P_2)$ en exploitant la linéarité de la dérivation, ce qui prouve que f est linéaire. De plus, si $P = aX^2 + bX + c$, alors $f(P) = (2X+1)(aX^2+bX+c) (X^2-1)(2aX+b) = 2aX^3 + 2bX^2 + 2cX + aX^2 + bX + c 2aX^3 bX^2 + 2aX + b = (a+b)X^2 + (2a+b+2c)X + b + c \in E$, ce qui prouve que f est bien un endomorphisme.
- 2. Le calcul général effectué à la question précédente permet d'obtenir les images suivantes pour les polynômes de la base canonique : f(1) = 2X + 1, $f(X) = X^2 + X + 1$ et $f(X^2) = X^2 + 2X$. On en déduit directement la matrice demandée (en faisant attention à bien respecter l'ordre $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$

des polynômes) :
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
.

3. Histoire de ne pas trop se fatiguer ici, on peut directement développer par rapport à la première ligne : $\det(A) = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - \begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} = -1 - 2 = -3$. Puisque ce déterminant est non

nul, la matrice A est inversible, et l'application f est donc bijective (c'est un automorphisme de E).

- 4. L'équation proposée n'est autre que l'équation f(P) = 0 écrite légèrement différemment. Non seulement cette équation n'a qu'une seule solution d'après la bijectivité de f, mais on sait même que cette unique solution est le polynôme nul.
- 5. (a) On peut exploiter la matrice $A-I_3$ de l'endomorphisme g ou directement poser $P=aX^2+bX+c$ pour obtenir que $P\in\ker(g)$ si (a,b,c) sont solutions du système

$$aX^2 + bX + c$$
 pour obtenir que $P \in \ker(g)$ si (a, b, c) sont solutions du système
$$\begin{cases} a + b &= a \\ 2a + b + 2c &= b \end{cases}$$
 Un système particulièrement difficile à résoudre ici : $b = 0$ $b + c = c$

et c = -a, donc $\ker(g) = \operatorname{Vect}(X^2 - 1)$ est un sous-espace vectoriel de dimension 1 de l'espace E. Le théorème du rang nous assure alors que $\dim(\operatorname{Im}(g)) = 2$. Or, g(1) = 2X et $g(X) = X^2 + 1$ ne sont pas proportionnels, ils suffisent donc à engendrer l'image, et $\operatorname{Im}(g) = \operatorname{Vect}(X, X^2 + 1)$ (tant qu'à faire, on peut se débarasser de l'inutile facteur 2 dans l'image de 1).

- (b) Puisque les dimensions des deux espaces ont une somme égale à 3, il suffit de prouver que leur intersection est réduite au polynôme nul. Or, X^2-1 , qui engendre $\ker(g)$, n'appartient pas à $\operatorname{Im}(g)$ (c'est complètement évident vu la base qu'on vient d'en donner), donc $\ker(g) \cap \operatorname{Im}(g) = \{0\}$ et $E = \ker(g) \oplus \operatorname{Im}(g)$.
- (c) On calcule par exemple $(A I_3)^2 = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix} \neq A I_3$. On a donc $g^2 \neq g$, et g n'est absolument pas un projecteur.

B. Diagonalisation de f par une méthode originale.

- 1. Un réel λ est valeur propre de l'endomorphisme f s'il existe un vecteur non nul $u \in E$ tel que $f(u) = \lambda u$. Ce vecteur est alors appelé vecteur propre associé à la valeur propre λ . Ici, un vecteur propre est donc un polynôme vérifiant $f(P) = \lambda P$, soit $(2X+1)P (X^2-1)P' = \lambda P$, ou encore $(2X+1-\lambda)P = (X^2-1)P'$, ce qui est bien l'équation différentielle (E_{λ}) .
- 2. Il s'agit d'une équation linéaire homogène du premier ordre, qu'on peut linéariser sous la forme $y' \frac{2x+1-\lambda}{x^2-1}y = 0 \text{ (équation bien définie sur tout l'intervalle }]1, +\infty[). Il reste donc à trouver une primitive de la fonction continue <math display="block">x \mapsto \frac{2x+1-\lambda}{x^2-1} = \frac{2x}{x^2-1} + \frac{1-\lambda}{x^2-1}. \text{ Il faut effectuer une décomposition en éléments simples de la deuxième fraction, qu'on peut écrire sous la forme } \frac{1-\lambda}{x^2-1} = \frac{a}{x+1} + \frac{b}{x-1}. \text{ Par la méthode classique (on multiplie puis on remplace),}$ on trouve $a = \frac{\lambda-1}{2} \text{ et } b = \frac{1-\lambda}{2}. \text{ Autrement dit, il faut intégrer la fonction } x \mapsto \frac{2x}{x^2-1} + \frac{1-\lambda}{2}\left(\frac{1}{x-1} \frac{1}{x+1}\right). \text{ Une primitive en est } x \mapsto \ln(x^2-1) + \frac{1-\lambda}{2}(\ln(x-1) \ln(x+1)),$ donc les solutions de (E_{λ}) sont les fonctions $y : x \mapsto Ke^{\ln(x^2-1) + \frac{1-\lambda}{2}(\ln(x-1) + \ln(x+1))} = K(x^2-1) \left(\frac{x-1}{x+1}\right)^{\frac{1-\lambda}{2}} = K(x+1)^{\frac{1+\lambda}{2}}(x-1)^{\frac{3-\lambda}{2}}, \text{ avec } K \in \mathbb{R}.$
- 3. Pour que λ soit valeur propre, il faut que les solutions obtenues à la question précédente soient des polynômes de degré au maximum 2. Pour cela, il faut déjà que les deux exposants $\frac{1+\lambda}{2}$ et $\frac{3-\lambda}{2}$ soient des entiers naturels (positifs donc), ce qui impose que λ soit un entier impair compris entre -1 (sinon le premier exposant est négatif) et 3 (sinon c'est le deuxième qui devient négatif). Il y a donc trois candidats, reste à vérifier que ça donne bien un degré correct

pour les polyômes : pour $\lambda = -1$, on trouve (au facteur K près) $(x+1)^0(x-1)^2 = (x-1)^2$, on valide. Pour $\lambda = 1$, on trouve $(x-1)^1(x+1)^1 = x^2 - 1$, on valide aussi, surtout que ça correspond à ce qu'on a obtenu dans la première partie (calcul du noyau de g). Enfin, pour $\lambda = 3$, on a $(x+1)^2(x-1)^0 = (x+1)^2$, on valide à nouveau.

4. En fait, on les connait déjà si on a fait correctement les calculs de la question précédente. Véfifions quand même en revenant au calcul explicite de f(P) effectué en début d'exercice : on a f(P) = -P si $(a+b)X^2 + (2a+b+2c)X + b + c = -aX^2 - bX - c$, ce qui donne le système 2a + b = 0 2a + 2b + 2c = 0. Les deux équations extrêments imposent b = -2a = -2c, et

donc c=a. En reportant dans la deuxième équation, 2a-4a+2a=0 est toujours vrai, donc $\ker(f+id) = \operatorname{Vect}(X^2 - 2X + 1) = \operatorname{Vect}((X-1)^2)$ comme prévu. De même, f(P) = 3P si les

coefficients a, b et c sont solutions du système $\begin{cases} -2a & + & b & = & 0 \\ 2a & - & 2b & + & 2c & = & 0 \\ & b & - & 2c & = & 0 \end{cases}$ La résolution

est presque identique à la précédente : b=2a=2c donc c=a, et la dernière équation est toujours vraie, donc $\ker(f-3id) = \operatorname{Vect}(X^2+2X+1) = \operatorname{Vect}((X+1)^2)$, là encore c'est

- 5. On note donc $\mathcal{B} = (X^2 1, X^2 2X + 1, X^2 + 2X + 1)$. Puisqu'elle est constituée de trois polynômes dans un espace E de dimension 3, il suffit de vérifier qu'elle est libre pour prouver que c'est une base. Supposons $a(X^2-1)+b(X^2-2X+1)+c(X^2+2X+1)=0$, cela donne le système a+b+c=2c-2b=b+c-a=0. La deuxième équation donne c=b, en remplaçant on trouve a + 2b = -a + 2b = 0, ce qui induit b = a = c = 0. La famille est bien libre, c'est une base de E.
- 6. Avec notre choix de base $\mathcal{B},\,Q=\left(\begin{array}{ccc}-1&1&1\\0&-2&2\\1&1&1\end{array}\right)$. On va inverser la matrice en résolvant

 $-\frac{1}{2}x+\frac{1}{2}z$, l'opération $2L_3+L_2$ permet alors de trouver 2a+4c=2z+y, donc $c=-\frac{1}{2}a+1$ $\frac{1}{4}y + \frac{1}{2}z = \frac{1}{4}x + \frac{1}{4}y + \frac{1}{4}z$, et enfin $b = z - a - c = \frac{1}{4}x - \frac{1}{4}y + \frac{1}{4}z$. La matrice Q est donc

inversible et $Q^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 0 & 2 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 7. Les trois vecteurs étant des vecteurs propres, on a simplement $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. On sait par ailleurs que $D = Q^{-1}AQ$.
- 8. Récurrence classique pour la première partie : pour n=0, $QD^0Q^{-1}=QQ^{-1}=I_3=A^0$. De plus, $A=QDQ^{-1}$, donc en supposant la formule vraie au rang n, alors $A^{n+1}=A\times A^n=A^n$

 $QDQ^{-1}QD^{n}Q^{-1} = QD^{n+1}Q^{-1}. \text{ Il ne reste plus qu'à calculer}: D^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix},$

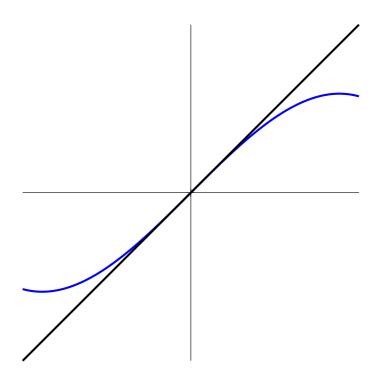
$$\text{puis } QD^n = \begin{pmatrix} -1 & (-1)^n & 3^n \\ 0 & 2(-1)^{n+1} & 2 \times 3^n \\ 1 & (-1)^n & 3^n \end{pmatrix} \text{ et enfin }$$

$$A^n = \frac{1}{4} \begin{pmatrix} 3^n + (-1)^n + 2 & 3^n + (-1)^{n+1} & 3^n + (-1)^n - 2 \\ 2.3^n + 2(-1)^{n+1} & 2.3^n + 2(-1)^n & 2.3^n + 2(-1)^{n+1} \\ 3^n + (-1)^n - 2 & 3^n + (-1)^{n+1} & 3^n + (-1)^n + 2 \end{pmatrix}.$$

Exercice 3

I. Généralités.

- 1. L'équation y' + 2xy = 0 admet pour solutions les fonctions de la forme $y_h : x \mapsto Ke^{-x^2}$, avec $K \in \mathbb{R}$. Tentons donc la variation de la constante en posant $y(x) = K(x)e^{-x^2}$. On calcule $y'(x) = K'(x)e^{-x^2} 2xK(x)e^{-x^2}$, et la fonction y est solution particulière de (E) si $K'(x)e^{-x^2} 2xK(x)e^{-x^2} + 2xK(x)e^{-x^2} = 1$, donc si $K'(x) = e^{x^2}$. Le gros problème, c'est qu'on ne connait pas de primitive simple de la fonction $x \mapsto e^{x^2}$, et pour cause, puisqu'il n'en existe aucune exprimable à l'aide des fonctions usuelles!
- 2. La fonction $x \mapsto \int_0^x e^{t^2}$ est une primitive de la fonction $x \mapsto e^{x^2}$, qui est elle-même de classe \mathcal{C}^{∞} sur \mathbb{R} , et elle est donc \mathcal{C}^{∞} . Son produit par une exponentielle qui est également de classe \mathcal{C}^{∞} restera de classe \mathcal{C}^{∞} . De plus, g est de la forme $K(x)e^{-x^2}$, avec K une primitive de la fonction $x \mapsto e^{x^2}$. Le calcul de variation de la constante de la question précédente montre que g est solution de (E).
- 3. Posons $h(x) = \int_0^x e^{t^2} dt$. Par parité de l'exponentielle intégrée, $\int_{-x}^0 e^{t^2} dt = \int_0^x e^{t^2} dt$, ce qui prouve que -h(-x) = h(x) (attention au mauvais sens des bornes côté négatif), et donc que h est impair. Son produit par une exponentielle paire donne donc une fonction g impaire.
- 4. On applique simplement le théorème classique du cours : les solutions sont les fonctions de la forme $y: x \mapsto g(x) + Ke^{-x^2}$, avec $K \in \mathbb{R}$.
- 5. On calcule facilement $e^{x^2} = 1 + x^2 + \frac{1}{2}x^4 + o(x^4)$. Puisque h est une primitive de cette fonction et qu'elle s'annule en 0, on peut intégrer le développement limité précédent : $h(x) = x + \frac{1}{3}x^3 + o(x^4)$ (même pas besoin du troisième terme finalement). Comme par ailleurs $e^{-x^2} = 1 x^2 + \frac{1}{2}x^4 + o(x^4)$, on effectue le produit pour obtenir $g(x) = \left(1 x^2 + \frac{1}{2}x^4\right)\left(x + \frac{1}{3}x^3\right) + o(x^4) = x + \frac{1}{3}x^3 x^3 + o(x^3) = x \frac{2}{3}x^3 + o(x^3)$. La fonction g admet une tangente en 0 d'équation g0 d'équation g1 et puisque g(g)2 et g3 et puisque g(g)3 d'équation g4 sera localement au-dessus de cette tangente à gauche de 0 et en-dessous à droite de 0. Une allure locale possible :



6. Si la fonction h est constamment nulle, elle admet un maximum égal à 0 atteint partout. Oublions donc ce cas et supposons que h prenne au moins une valeur strictement positive : $h(a) = \alpha > 0$. Puisque h tend vers 0 en $+\infty$, en revenant à la définition de la limite, il existe un réel $b \geqslant a$ tel que $-\frac{\alpha}{2} \leqslant f(x) \leqslant \frac{\alpha}{2}$ sur l'intervalle $[b, +\infty[$. De plus, h étant continue sur le segment [0, b], elle y admet un maximum (théorème du maximum) nécessairement supérieur ou égal à α puisque $a \in [0, b]$ et $h(a) = \alpha$. Ce maximum est donc un maximum pour h sur tout l'intervalle $[0, +\infty[$, ce qui prouve le résultat demandé.

II. Développement limité des solutions de (E).

- 1. Une fonction solution de l'équation (E) est nécessairement au moins dérivable. Prouvons par récurrence qu'elle est en fait de classe \mathcal{D}^{n+1} pour tout entier n. C'est le cas pour n=0 comme on vient de le signaler. Supposons désormais f dérivable n+1 fois, et constatons que l'équation (E) peut se mettre sous la forme y'=1-2xy. Avec l'hypothèse que f est de classe D^{n+1} , le membre de droite de cette équation est D^{n+1} , ce qui prouve que f' est D^{n+1} et donc que f est en fait D^{n+2} . La fonction f est donc dérivable « à l'infini » et de classe \mathcal{C}^{∞} .
- 2. On remplace brillamment x par 0 dans l'équation : f'(0) = 1.
- 3. Une fonction C^{∞} admet des développements limités à tout ordre donnés par la formule de Taylor, donc $a_k = \frac{f^{(k)}(0)}{k!}$.
- 4. En dérivant n+1 fois l'équation (E) (ce qu'on a le droit de faire puisque tout est de classe \mathcal{C}^{∞} , et en appliquant la formule de Leibniz pour dériver le produit xy (la formule ne contiendra que deux termes puisque toutes les dérivées du facteur x à partir de la deuxième sont nulles), on obtient directement $y^{(n+2)} + 2xy^{(n+1)} + 2\binom{n+1}{1}y^{(n)} = 0$, c'està-dire exactement le relation demandée. En remplaçant x par 0 dans cette équation, et en exploitant la formule rappelée pour a_k à la question précédente, on a $(n+2)!a_{n+2} + 2(n+1) \times n!a_n = 0$, soit en factorisant le tout par (n+1)!, la relation $(n+2)a_{n+2} + 2a_n = 0$.
- 5. On va effectuer une récurrence. Au rang p = 0, la formule affirme que $a_1 = \frac{(-1)^0 4^0 0!}{1!} = 1$. Or, on sait que $a_1 = f'(0) = 1$, donc la formule est vérifiée. Supposons-là désormais au rang

p, et exploitons le fait que $(2p+3)a_{2p+3}=-2a_{2p+1}$ (relation de la question précédente pour n=2p+1) pour en déduire $a_{2p+3}=-\frac{2}{2p+3}\times\frac{(-1)^p4^pp!}{(2p+1)!}=\frac{(-1)^{p+1}2\times 4^p(2p+2)}{(2p+3)(2p+2)(2p+1)!}=\frac{(-1)^{p+1}4^{p+1}(p+1)!}{(2p+3)!}$, soit la formule souhaitée au rang suivant, ce qui achève notre récurrence.

6. Si f(0) = 1, on a donc $a_0 = 1$, puis $a_2 = \frac{-1 \times 4 \times 1}{2!} = -2$, et $a_1 = 1$ puis $a_3 = \frac{-4}{3!} = -\frac{2}{3}$. Autrement dit, $f(x) = 1 + x - 2x^2 - \frac{2}{3}x^3 + o(x^3)$. En particulier, la solution f admet alors une tanegente en 0 d'équation f admet alors sera en-dessous de cette tangente au voisinage de 0.

III. Étude de la fonction q.

- 1. La fonction $t\mapsto e^{t^2}$ étant croissante sur l'intervalle [0,x] (composée de fonctions croissantes), on peut écrire l'encadrement $e^{0^2}=1\leqslant e^{t^2}\leqslant e^{x^2}$, valable sur tout l'intervalle. Il suffit alors d'intégrer cet encadrement entre 0 et x pour en déduire que $x\leqslant \int_0^x e^{t^2}\,dt\leqslant xe^{x^2}$. Un simple produit par la quantité positive e^{-x^2} donne alors l'encadrement demandé par l'énoncé.
- 2. Une inspiration soudaine m'incite à faire une IPP en posant $u(t) = \frac{1}{t}$, et donc $u'(t) = -\frac{1}{t^2}$, et $v'(t) = te^{t^2}$ qui a le bon goût d'être la dérivée de $v(t) = \frac{1}{2}e^{t^2}$. Toutes ces fonctions sont de classe \mathcal{C}^1 sur tout intervalle ne contenant pas 0, donc $\int_1^x e^{t^2} dt = \left[\frac{e^{t^2}}{2t}\right]_1^x + \int_1^x \frac{e^{t^2}}{2t^2} dt = \frac{e^{x^2}}{2x} \frac{e}{2} + \frac{1}{2}\int_1^x \frac{e^{t^2}}{t^2} dt$.
- 3. On refait une IPP sur l'intégrale de droite, en posant cette fois-ci $u(t) = \frac{1}{t^3}$ et donc $u'(t) = -\frac{3}{t^4}$, et toujours $v'(t) = te^{t^2}$ et $v(t) = \frac{1}{2}e^{t^2}$. On obtient cette fois-ci $\int_1^x \frac{e^{t^2}}{t^2} dt = \left[\frac{e^{t^2}}{2t^3}\right]_1^x + \int_1^x \frac{3e^{t^2}}{2t^4} dt = \frac{e^{x^2}}{2x^3} \frac{e}{2} + \frac{3}{2} \int_1^x \frac{e^{t^2}}{t^4} dt$. Il n'y a plus qu'à multiplier par $\frac{1}{2}$ et réintroduire tout ça dans la relation précédente pour obtenir la formule de l'énoncé.
- 4. (a) La fonction h est dérivable sur $[1, +\infty[$ et $h'(t) = \frac{2t^3e^{t^2} 2te^{t^2}}{t^4} = \frac{2te^{t^2}(t^2 1)}{t^4}$, quantité positive sur l'intervalle considéré. La fonction h est donc croissante.
 - (b) On écrit simplement $\int_1^x \frac{e^{t^2}}{t^4} dt = \int_1^x h(t) \times \frac{1}{t^2} dt \leqslant \int_1^x h(x) \times \frac{1}{t^2} dt. \text{ Comme } \int_1^x \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_1^x = -\frac{1}{x} + 1 \underset{x \to +\infty}{\sim} 1, \int_1^x \frac{e^{t^2}}{t^4} dt \sim h(x). \text{ Or, } h(x) = \frac{1}{x} \times \frac{e^{x^2}}{x} = o\left(\frac{e^{x^2}}{x}\right), \text{ ce qui donne le résultat souhaité.}$
 - (c) Dans l'expression obtenue à la question 3, tous les termes sont négligeables par rapport au premier y compris le terme constant, bien sûr, puisque la croissance comparée assure que le premier terme a une limite infinie en $+\infty$). On a donc $\int_1^x e^{t^2} dt \sim \frac{e^{x^2}}{2x}$, et un simple produit permet de conclure : $g(x) \sim \frac{1}{2x}$.
- 5. C'est une application directe du résultat technique prouvé en fin de première partie : $\lim_{x\to +\infty} g(x) = 0$ d'après l'équivalent obtenu à la question précédente, g(0) = 0 et g est continue et positive sur $[0, +\infty[$, donc elle admet un maximum (non nul bien entendu, puisque g n'est pas la

fonction nulle). Comme on sait par ailleurs que g est solution de l'équation (E), tout point en lequel est atteint un maximum vérifie g'(b) + 2bg(b) = 1, donc $g(b) = \frac{1}{2b}$ puisque g'(b) = 0 (c'est un maximum!). Ceci prouve au passage que le maximum est unique (s'il était atteint à deux endroits différents, les images seraient différentes d'après le calcul qu'on vient de faire).

6. On n'oublie pas que la fonction est impaire et qu'on a étudié localement g au voisinage de 0 dans la première partie. On peut de plus faire figurer la courbe d'équation $y=\frac{1}{2x}$ (en pointillés verts sur mon schéma) qui sera asymptote à la courbe de g en $\pm\infty$ et sur laquelle se situe le maximum :

