Devoir Surveillé n° 6 : corrigé

MPSI Lycée Camille Jullian

3 février 2024

Exercice 1

1. Les matrices A et I_3 étant toutes les deux triangulaires inférieures, on peut se contenter de chercher P et Q sous la même forme, ce qui va (un peu) limiter le nombre de variables et

d'inconnues à écrire. Posons donc
$$P = \begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{pmatrix}$$
 et $Q = \begin{pmatrix} \alpha & 0 & 0 \\ \beta & \gamma & 0 \\ \delta & \varepsilon & \zeta \end{pmatrix}$ (vivent les lettres

grecques). En regardant indépendamment chacun des six coefficients correspondants dans les deux égalités imposées, on obtient six systèmes de deux équations à deux inconnues qui se résovent facilement. Commençons en haut à gauche : $a+\alpha=1$ et $4a+9\alpha=4$ donne a=1 et $\alpha=0$ (je ne détaille pas tous les systèmes sinon ça va prendre des pages). Le système est le même en bas à droite, on aura donc f=1 et $\zeta=0$. Achevons la diagonale avec le coefficient central : $c+\gamma=1$ et $4c+9\gamma=9$ est vérifié pour c=0 et $\gamma=1$. Passons aux deux derniers coefficients de la première colonne, qui vérifient les mêmes systèmes : $b+\beta=0$ et $4b+9\beta=-5$ implique b=1 et $\beta=-1$, donc on a aussi d=1 et $\delta=-1$. Enfin, on obtient les valeurs opposées pour le dernier système : e=-1 et $\varepsilon=1$. Bref, on peut enfin conclure :

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}.$$

2. Détaillons au moins un calcul pour faire croire au correcteur qu'on a tout vérifié intégralement :

$$PQ = \begin{pmatrix} 0+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+0 \\ 0+1-1 & 0-1+1 & 0+0+0 \end{pmatrix} = 0. \text{ On obtient de même } QP = 0, \text{ et sans plus de difficulté } P^2 = P \text{ et } Q^2 = Q.$$

- 3. On va bien sûr procéder par récurrence, en exploitant les calculs de la question précédente pour simplifier le développement dans l'hérédité : pour k=0, $4^0P+9^0Q=P+Q=I_3$. Au rang 1 (utile pour l'hérédité), 4P+9Q=A par construction. Supposons la formule vraie au rang k, alors $A^{k+1}=A\times A^k=(4P+9Q)(4^kP+9^kQ)=4^{k+1}P^2+4\times 9^kPQ+9\times 4^kQP+9^{k+1}Q^2=4^{k+1}P+9^{k+1}Q$, ce qui prouve l'hérédité.
- 4. Résolvons un système, il sera directement triangulaire, ça va aller vite :

$$\begin{cases} 4x & = a \\ -5x + 9y & = b \end{cases}. \text{ On obtient directement } x = \frac{1}{4}a, \text{ puis } 9y = b + 5x = \frac{5}{4}a + b, \\ -5x + 5y + 4z & = c \end{cases}$$
 donc $y = \frac{5}{36}a + \frac{1}{9}b$, et enfin $4z = c + 5x - 5y = c + \frac{5}{4}a - \frac{25}{36}a - \frac{5}{9}b = \frac{5}{9}a - \frac{5}{9}b + c,$ donc $z = \frac{5}{36}a - \frac{5}{36}b + \frac{1}{4}c$. La matrice A est donc inversible (on le savait depuis le départ puisqu'elle ne contenait pas de 0 sur la diagonale), et $A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ \frac{5}{36} & \frac{1}{9} & 0 \\ \frac{5}{36} & -\frac{5}{36} & \frac{1}{4} \end{pmatrix}$. La formule

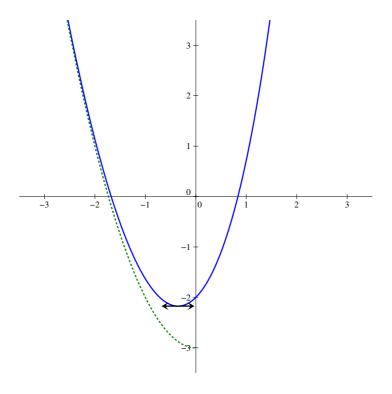
prétend que cette inverse devrait être égale à $\frac{1}{4}P + \frac{1}{9}Q$. C'est bien le cas : c'est clair pour les

coefficients de la diagonale (et encore plus ceux au-dessus de la diagonale), et pour les autres on a $\frac{1}{4} - \frac{1}{9} = \frac{9}{36} - \frac{4}{36} = \frac{5}{36}$, ce qui donne les valeurs souhaitées pour les trois coefficients restants.

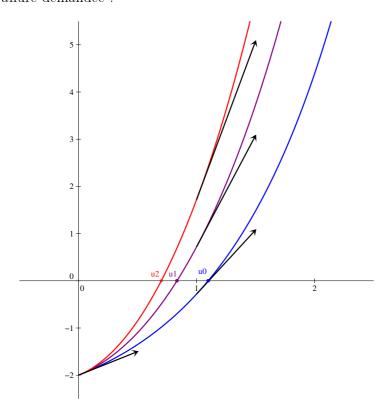
- 5. Inutile de faire des calculs compliqués, il suffit de constater que $(4^{-k}P + 9^{-k}Q)(4^kP + 9^kQ) = P^2 + \left(\frac{9}{4}\right)^k PQ + \left(\frac{4}{9}\right)^k QP + Q^2 = P + Q = I_3$ pour montrer que $A^k = 4^kP + 9^kQ$ est une matrice inversible, et que son inverse A^{-k} peut s'écrire sous la forme $A^{-k} = 4^{-k}P + 9^{-k}Q$.
- 6. Puisqu'il s'agit de trouver une racine carrée, on a bien envie de tenter la formule précédente avec $k=\frac{1}{2}$. Calculons donc $B=2P+3Q=\begin{pmatrix}2&0&0\\-1&3&0\\-1&1&2\end{pmatrix}$, et on constate alors que $B^2\begin{pmatrix}4&0&0\\-5&9&0\\-5&5&4\end{pmatrix}=A.$
- 7. Il est évident que -B = -2P 3Q va aussi fonctionner puisque $(-B)^2 = B^2 = A$. Mais on peut aussi s'en sortir avec la matrice C = 2P 3Q, qui a bien pour carré $(2P 3Q)^2 = 4P^2 + 9Q^2 = 4P + 9Q = A$ en exploitant les calculs de la deuxième question, et bien sûr son opposé -C = -2P + 3Q.

Exercice 2

1. On pose donc $f_1(x) = e^x + x^2 - 3$. La fonction f_1 est dérivable autant de fois qu'on le souhaite sur \mathbb{R} , et $f_1'(x) = e^x + 2x$, puis $f_1''(x) = e^x + 2$. Cette dérivée seconde est manifestement strictement positive sur \mathbb{R} , ce qui prouve que f_1' est croissante sur \mathbb{R} . Comme $\lim_{x \to -\infty} f_1'(x) = -\infty$ et $\lim_{x \to +\infty} f_1'(x) = +\infty$ (aucune forme indéterminée), la fonction f_1' est bijective de \mathbb{R} dans \mathbb{R} et s'annule exactement une fois. On constate facilement que $f_1'(0) = 1 > 0$, alors que $f_1'(-1) = \frac{1}{e} - 2 < 0$, la valeur d'annulation se trouve donc entre -1 et 0. Soyons plus précis : $f_1'\left(-\frac{1}{2}\right) = e^{-\frac{1}{2}} - 1 = \frac{1}{\sqrt{e}} - 1 < 0$, donc f_1' s'annule sur $\left[-\frac{1}{2}, 0\right]$. En notant β cetta valeur d'annulation, f_1 est décroissante sur $]-\infty,\beta]$ et croissante sur $[\beta,+\infty[$. De plus, $\lim_{x \to \pm \infty} f_1(x) = +\infty$ (toujours aucune forme indéterminée), et il n'y a bien sûr pas de droite asymptote oblique en $-\infty$ contrairement à ce que sous-entendait l'énoncé. On peut simplement dire que $\lim_{x \to -\infty} f_1(x) - (x^2 - 3) = \lim_{x \to -\infty} e^x = 0$, donc la courbe de f_1 se rapproche de celle de la parabole d'équation $y = x^2 - 3$ du côté de $-\infty$. Sur la courbe ci-dessous, on a indiqué cette parabole en pointillés. Pour l'ordonnée du minimum, on le place légèrement en-dessous de $f_1(0) = -2$:



- 2. La fonction f_n est une somme de fonctions croissantes, donc croissante sur \mathbb{R}^+ .
- 3. Puisque $f_n(0) = -2$, et $f'_n(x) = e^x + 2nx$ vérifie $f'_n(0) = 1$, la tangente en 0 a pour équation y = x 2 (elle est commune à toutes les courbes f_n). De même, on calcule $f_n(1) = e + n 3$, et $f'_n(1) = e + 2n$, donc la tangente en 1 a pour équation y = (e + 2n)(x 1) + e + n 3 = (e + 2n)x 3 n.
- 4. Les tangentes en 1 ont respectivement pour équations y = ex 3, y = (e + 2)x 4 et y = (e + 4)x 5, elles sont bien sûr de plus en plus pentues, mais celle de f_0 a déjà une pente $e \simeq 2.7$. Voici l'allure demandée :



- 5. Puisque $f_n(0) = -2$ et $\lim_{x \to +\infty} f_n(x) = +\infty$, les fonctions f_n sont toutes bijectives de $[0, +\infty[$ vers $[-2, +\infty[$ et s'annulent donc exactement une fois sur \mathbb{R}^+ . Le graphique semble suggérer que la suite (u_n) est décroissante (et peut-être qu'elle tend vers 0, mais c'est moins clair).
- 6. Le terme u_0 est solution de l'équation $e^x = 3$, on a donc $u_0 = \ln(3)$. Le fait que u_n soit strictement positif est trivial. De plus, $f_n(1) = e + n 3$ devient strictement positif dès que $n \ge 1$, ce qui prouve que $u_n < 1$ en exploitant la croissance de la fonction f_n .
- 7. Par définition, $f_{n+1}(u_{n+1}) = 0$, donc $e^{u_{n+1}} = 3 (n+1)u_{n+1}^2$. On en déduit que $f_n(u_{n+1}) = e^{u_{n+1}} + nu_{n+1}^2 3 = -u_{n+1}^2 < 0$. Comme $f_n(u_n) = 0$, on a donc $f_n(u_{n+1}) < f_n(u_n)$, ce qui implique, toujours par croissance de la fonction f_n , que $u_{n+1} < u_n$. Autrement dit, la suite est décroissante comme prévu. Étant minorée par 0, elle converge donc.
- 8. Notons l la limite de la suite, qui est nécessairement positive. Si $l \neq 0$, alors $\underset{n \to +\infty}{n} u_n^2 = +\infty$. Or, $e^{u_n} = 3 nu_n^2$ aurait alors une limite égale à $-\infty$, ce qui est très embêtant pour une exponentielle. C'est absurde, donc l = 0.
- 9. Toujours en reprenant l'équation définissant u_n , on a $nu_n^2 = 3 e^{u_n}$. Comme on sait désormais que (u_n) converge vers 0, on a donc $\lim_{n \to +\infty} \frac{nu_n^2}{2} = \frac{3 e^0}{2} = 1$. Tout étant positif, on peut tranquillement prendre la racine carrée pour en déduire la limite demandée.

Exercice 3

- 1. On calcule donc $A^2 = \begin{pmatrix} 12 & -11 & -8 \\ 8 & -7 & -8 \\ -5 & 5 & 9 \end{pmatrix}$. Si on avait une relation de la forme $A^2 = aA + bI_3$, les coefficients en-dehors de la diagonale de la matrice A^2 seraient proportionnels à ceux de A, ce qui n'est pas le cas (les deux derniers de a première ligne sont déjà incohérents puisqu'ils imposent $a = \frac{11}{3}$ et a = 4). Une telle relation n'existe donc pas.
- 2. Calculons: $B = (A I_3)(A 2I_3) = \begin{pmatrix} 3 & -3 & -2 \\ 2 & -2 & -2 \\ -1 & 1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -3 & -2 \\ 2 & -3 & -2 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -2 \\ 2 & -2 & -2 \\ -2 & 2 & 2 \end{pmatrix},$ $puis \ B(A 3I_3) = \begin{pmatrix} 2 & -2 & -2 \\ 2 & -2 & -2 \\ -2 & 2 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -3 & -2 \\ 2 & -4 & -2 \\ -1 & 1 & 0 \end{pmatrix} = 0.$
- 3. En développant brutalement le calcul précédent, on a prouvé que $A^3 6A^2 + 11A 6I_3 = 0$, soit $A\left(\frac{1}{6}A^2 A + \frac{11}{6}I_3\right) = I_3$. La matrice A est donc inversible, et $A^{-1} = \frac{1}{6}A^2 A + \frac{11}{6}I_3$.
- 4. On va procéder à l'aide d'une résolution de système : $\begin{cases} x + y + z = a \\ x + z = b \end{cases}$ La différence des deux premières équations donne y = a b, il suffit de remplacer dans la dernière équation pour trouver z = y c = a b c, puis dans la première pour avoir x = a y z = -a + 2b + c. Finalement, la matrice P est inversible, et $P^{-1} = \begin{pmatrix} -1 & 2 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & -1 \end{pmatrix}$.
- 5. Pour changer, calculons $AP = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 2 & -3 \end{pmatrix}$, puis $D = P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Ouf, la matrice est diagonale, je ne suis pas obligé de recommencer mon calcul.
- 6. Par définition, $D = P^{-1}AP$. En multipliant cette égalité à gauche par P et à droite par P^{-1} , on en déduit que $A = PDP^{-1}$. On prouve ensuite par récurrence que, $\forall n \in \mathbb{N}, A^n = P^{-1}D^nP$.

C'est vrai au rang 0 puisque $P^{-1}D^0P = P^{-1}P = I_3 = A^0$, et si on suppose la formule vérifiée pour un certain entier n, alors $A^{n+1} = A \times A^n = PDP^{-1}PD^nP^{-1} = PD^{n+1}P^{-1}$, exactement ce qu'on voulait prouver.

7. On a bien sûr $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$, donc $PD^n = \begin{pmatrix} 1 & 2^n & 3^n \\ 1 & 0 & 3^n \\ 0 & 2^n & -3^n \end{pmatrix}$, et enfin $A^n = PD^nP^{-1} = \begin{pmatrix} 2^n + 3^n - 1 & 2 - 2^n - 3^n & 1 - 3^n \\ 3^n - 1 & 2 - 3^n & 1 - 3^n \\ 2^n - 3^n & 3^n - 2^n & 3^n \end{pmatrix}$. Si on a peur de s'être égaré en cours

$$PD^nP^{-1} = \begin{pmatrix} 2^n + 3^n - 1 & 2 - 2^n - 3^n & 1 - 3^n \\ 3^n - 1 & 2 - 3^n & 1 - 3^n \\ 2^n - 3^n & 3^n - 2^n & 3^n \end{pmatrix}$$
. Si on a peur de s'être égaré en cours

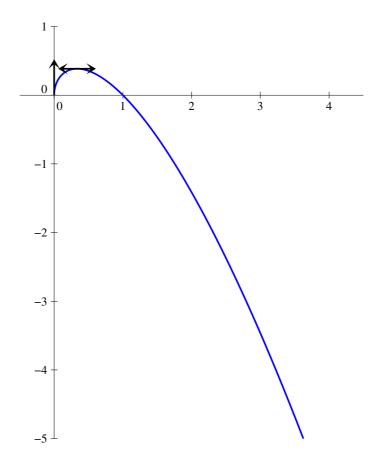
8. La formule donne un inverse qui serait égal à $\begin{pmatrix} \frac{1}{2} + \frac{1}{3} - 1 & 2 - \frac{1}{2} - \frac{1}{3} & 1 - \frac{1}{3} \\ \frac{1}{3} - 1 & 2 - \frac{1}{3} & 1 - \frac{1}{3} \\ \frac{1}{2} - \frac{1}{3} & \frac{1}{3} - \frac{1}{2} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} & \frac{7}{6} & \frac{2}{3} \\ -\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\ \frac{1}{6} & -\frac{1}{6} & \frac{1}{3} \end{pmatrix}$ Eh bien, quand on multiplie cette matrice par la matrice A, on obtient bel et bien l'identité. Alternativement, on calcule $A^2 - 6A + 11I_3 = \begin{pmatrix} -1 & 7 & 4 \\ -4 & 10 & 4 \\ 1 & -1 & 2 \end{pmatrix}$ et on exploite le résultat de la question 3. Dans les deux cas, on constate que la formule fonctionne bel et bien.

Exercice 4

1. Commençons par la fonction f, qui est définie et continue sur $[0, +\infty[$ mais dérivable (et deux fois dérivable) a priori seulement sur $]0,+\infty[$. Sur cet intervalle, $f'(x)=-\sqrt{x}+\frac{1-x}{2\sqrt{x}}=$ $\frac{1-3x}{2\sqrt{x}}, \text{ qui s'annule en } \frac{1}{3}, \text{ et } f''(x) = \frac{-6\sqrt{x} - \frac{1-3x}{\sqrt{x}}}{4x} = \frac{-1-3x}{4x\sqrt{x}}, \text{ qui est négative sur }]0, +\infty[.$ Reste à étudier ce qui se passe aux bords de l'intervalle de définition : $\lim_{x \to +\infty} f(x) = -\infty,$ f(0) = 0 et $\lim_{x \to 0} f'(x) = +\infty$, ce qui prouve la présence d'une tangente verticale à la courbe à l'origine. On résume toutes ces informations dans le tableau suivant :

\boldsymbol{x}	$0 \frac{1}{3}$	$+\infty$
f'(x)	+ 0	_
f	$0 \frac{\frac{2}{3\sqrt{3}}}{\sqrt{3}}$	$-\infty$
f''(x)	_	_

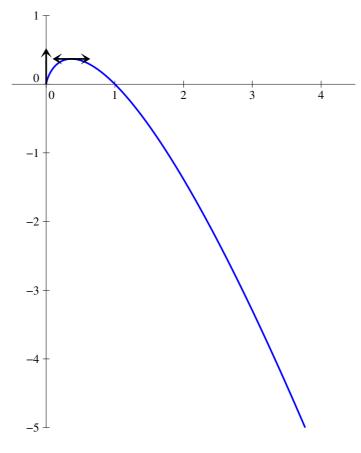
Et la courbe correspondante (on note bien sûr que f s'annule pour x = 1):



Passons à l'étude de la fonction g, qui est définie et de classe \mathcal{C}^{∞} sur $]0,+\infty[$. On a $\lim_{x\to +\infty}g(x)=-\infty$ et $\lim_{x\to 0}g(x)=0$ (croissance comparée). On peut donc prolonger g en une fonction continue sur \mathbb{R}^+ en posant g(0)=0. On peut alors calculer $\tau_{0,g}(h)=\frac{g(h)}{h}=-\ln(h)$, qui tend vers $+\infty$ quand h tend vers 0. Il y aura donc une tangente verticale à la courbe représentative de g à l'origine du repère. Passons aux variations et à la convexité : $g'(x)=-\ln(x)-1$, qui s'annule pour $x=\frac{1}{e}$, et $g''(x)=-\frac{1}{x}$ est toujours négative. On calcule $g\left(\frac{1}{e}\right)=-\frac{1}{e}\times(-1)=\frac{1}{e}$ et on peut dresser le tableau suivant :

x	$0 \qquad \frac{1}{e} \qquad +\infty$
g'(x)	+ 0 -
g	$0 \qquad \frac{1}{e}$ $-\infty$
f''(x)	

On achève avec la deuxième courbe (cette fonction aussi s'annule en x=1) :



- 2. La fonction h est dérivable, et $h(x) = \frac{1-x}{\sqrt{x}} + \ln(x)$, donc $h'(x) = \frac{-\sqrt{x} \frac{1-x}{2\sqrt{x}}}{x} + \frac{1}{x} = \frac{-1-x+2\sqrt{x}}{2x\sqrt{x}} = -\frac{(\sqrt{x}-1)^2}{2x\sqrt{x}}$.
- 3. La fonction h est décroissante sur tout l'intervalle $]0, +\infty[$. Comme h(1) = 0, elle est donc positive sur]0, 1] et négative sur $[1, +\infty[$. On en déduit que \mathcal{C}_f est au-dessus de \mathcal{C}_g sur]0, 1[, puis en-dessous sur $]1, +\infty[$.
- 4. L'équation ne peut pas avoir de solution sur [0,1], où g prend des valeurs positives. Sur $[1,+\infty[$, g est continue et décroissante, donc bijective vers l'intervalle $]-\infty,0]$. En particulier, elle prend exactement une fois la valeur -24.
- 5. Puisque g est décroissante, il suffit de calculer $g(9) = -9\ln(9) = -18\ln(3) > -24$ puisque $\ln(3) < \frac{4}{3}$, et $g(12) = -12\ln(12) = -12\ln(4\times3) = -24\ln(2) 12\ln(3) < -12 12 = -24$. La fonction g prend donc bien la valeur -24 sur l'intervalle [9,12] (théorème des valeurs intermédiaires si on tient à citer un résultat justificatif).
- 6. La fonction k est décroissante sur [9,12] puisque la fonction ln est croissante (et ne s'y annule pas). Or, $k(9) = \frac{24}{2\ln(3)} = \frac{12}{\ln(3)} < 12$, et $k(12) = \frac{24}{2\ln(2) + \ln(3)} > \frac{24}{2.5} > 9$. La dérivée k' est définie par $k'(x) = \frac{-24}{x\ln^2(x)}$, elle est négative et croissante sur [9,12] (son dénominateur étant positif et strictement croissant sur cet intervalle de façon évidente), donc $\forall x \in [9,12], |k'(x)| \le -k'(9) = \frac{24}{9\ln^2(9)} = \frac{24}{36\ln^2(3)} = \frac{2}{3\ln^2(3)}$.
- 7. (a) C'est la récurrence ultra classique vue quelques fois en cours cette semaine : au rang 0, il faut prouver que $|u_0-\alpha| \leq 9$, ce qui est vrai car $\alpha \in [9,12]$. Supposons ensuite l'inégalité correcte au rang n, alors en appliquant le résultat donné par l'énoncé puis l'hypothèse de récurrence, on effectue la majoration $|u_{n+1}-\alpha| \leq K|u_n-\alpha| \leq K \times 3K^n = 3K^{n+1}$.

- (b) Comme on a bien sûr $0 \le |u_n \alpha|$, et que par ailleurs $3 \ln^2(3) \simeq 3.6 > 2$, le thorème des gendarmes permet d'affirmer que $\lim_{n \to +\infty} |u_n \alpha| = 0$, et donc que $\lim_{n \to +\infty} u_n = \alpha$.
- (c) On aura avec certitude $|u_n-\alpha|\leqslant 10^{-3}$ si $3K^n\leqslant 10^{-3}$, donc si $\ln(3)+n\ln(K)\leqslant -3\ln(10)$, ou encore (en changeant le sens de l'inégalité car on divise par un facteur négatif) $n\geqslant \frac{-3\ln(10)-\ln(3)}{\ln(K)}=\frac{3\ln(10)+\ln(3)}{\ln(3)+\ln(\ln^2(3))-\ln(2)}$. Pour information, cela donne n=14 comme plus petite valeur entière convenable.