Devoir Surveillé n° 3

MPSI Lycée Camille Jullian

9 novembre 2023

Exercice 1

On cherche dans cet exercice à résoudre l'équation différentielle $(E): x^2y'' + 3xy' + y = 0$ sur l'intervalle $[0, +\infty[$.

- 1. Vérifier que la fonction $x \mapsto x^k$ est solution de l'équation (E) pour une unique valeur de la constante réelle k (que l'on déterminera, bien entendu).
- 2. Dans cette question, on va résoudre l'équation par une première méthode, en posant z(x) = xy(x).
 - (a) Montrer que y est solution de (E) si et seulement si z' est solution d'une équation différentielle d'ordre 1.
 - (b) Résoudre l'équation obtenue à la question précédente sur l'intervalle $]0, +\infty[$.
 - (c) En déduire toutes les solutions de l'équation (E).
 - (d) Existe-t-il des solutions de l'équation (E) (autres que la solution nulle) prolongeables par continuité en 0?
- 3. Dans cette question, on résout à nouveau l'équation (E) par une autre méthode (il est donc bien sûr interdit d'utiliser ici les résultats de la question 2), en posant cette fois-ci $y(x) = w(\ln(x)) = w(t)$ (autrement dit, on effectue le changement de variable $t = \ln(x)$).
 - (a) Montrer que la fonction w est solution d'une équation différentielle d'ordre 2 à coefficients constants.
 - (b) Résoudre cette équation et conclure.
- 4. Déterminer l'unique solution du problème de Cauchy constitué de l'équation (E) et des conditions initiales y(1) = y'(1) = 1. On notera cette solution g.
- 5. Effectuer une étude complète de la fonction g obtenue à la question précédente (y compris l'étude de convexité), et tracer une allure soignée de la courbe intégrale correspondante.

Exercice 2

On définit dans cet exercice trois suites (u_n) , (v_n) et (w_n) vérifiant les relations de récurrence suivantes : $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{\frac{1+u_n}{2}}$, $v_{n+1} = \frac{v_n}{u_{n+1}}$ et $w_{n+1} = \frac{v_{n+1}}{u_{n+1}}$. On suppose par ailleurs que $0 \le v_0 < w_0$, et $u_0 = \frac{v_0}{w_0}$.

- 1. On suppose uniquement dans cette question que $v_0 = 1$ et $w_0 = 2$. Calculer les valeurs de u_0 , u_1, u_2, v_1, v_2, w_1 et w_2 . Que valent $\arccos(u_0)$ et $\arccos(u_1)$?
- 2. Dans le cas général, on pose $\theta = \arccos(u_0)$. Justifier que θ est bien défini et que $\theta \in \left]0, \frac{\pi}{2}\right]$.

- 3. Montrer par récurrence que $u_n = \cos\left(\frac{\theta}{2^n}\right)$. Déduire des calculs de la question 2 une formule pour $\cos\left(\frac{\pi}{12}\right)$.
- 4. Montrer que $v_1 = \frac{2v_0}{\sin(\theta)} \sin\left(\frac{\theta}{2}\right)$ et $v_2 = \frac{4v_0}{\sin(\theta)} \sin\left(\frac{\theta}{4}\right)$.
- 5. Conjecturer une formule pour v_n (qu'on ne demande **pas** de démontrer), en déduire une formule pour w_n .
- 6. Montrer que les suites (v_n) et (w_n) convergent vers $\frac{v_0 \arccos(u_0)}{\sqrt{1-u_0^2}}$.
- 7. On pose dans cette dernière question $z_n = u_0 \times u_1 \times \cdots \times u_n$.
 - (a) Montrer que $z_n = \frac{v_0}{v_n}$ (une rédaction peu rigoureuse sera exceptionnellement tolérée).
 - (b) En déduire que la suite (z_n) converge vers une limite à préciser.
 - (c) En choisissant une valeur de u_0 intelligente, en déduire la belle formule suivante, due à François VIÈTE :

$$\frac{2}{\pi} = \sqrt{\frac{1}{2}} \times \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \times \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}}} \times \dots$$

Problème.

Le but de ce problème est d'étudier un modèle classique d'évolution d'une population d'individus. On considère donc une fonction n de la variable t mesurant le nombre d'individus dans une population à l'instant t. On note $n_0 = n(0)$ la population initiale (à l'instant t = 0). Bien entendu, $n_0 > 0$. Dans le modèle étudié, la fonction n est supposée dérivable et solution de l'équation différentielle $(E): y' = ry \times \left(1 - \frac{1}{K}y\right)$, où r et K sont deux paramètres strictement positifs dont on essaiera de donner un sens physique dans la suite du problème.

Dans tout le problème, les résolutions d'équations différentielles se feront sur l'intervalle $[0, +\infty[$ sur lequel la fonction n est définie. Le fait que n prenne des valeurs **réelles** alors qu'une population est censée être à valeurs **entières** n'est absolument pas à prendre en compte.

- 1. Étude d'une première fonction intermédiaire.
 - (a) On pose dans cette question $f(t)=n(t)e^{-rt}$. Montrer que f est solution de l'équation différentielle $y'=-\frac{r}{K}n(t)y$.
 - (b) En déduire que f peut s'écrire sous la forme $f(t) = Ae^{g(t)}$, où g est une fonction à déterminer (on notera N une primitive de la fonction n), et A une constante à déterminer en fonction des données du problème.
- 2. Résolution de (E) à l'aide d'une deuxième fonction intermédiaire.
 - (a) Quelle caractéristique de l'équation (E) empêche de la résoudre avec les méthodes vues en cours ?
 - (b) On pose désormais $h(t) = \frac{1}{n(t)}$. Justifier que h est définie et dérivable sur $[0, +\infty[$.
 - (c) Montrer que h est solution de l'équation $(E_1): y' = -ry + \frac{r}{K}$.
 - (d) Résoudre l'équation différentielle (E_1) .

(e) En déduire que $n(t) = \frac{n_0 e^{rt}}{1 + \frac{n_0}{K} (e^{rt} - 1)}$.

On pourra reprendre cette formule pour la suite du problème même si on n'a pas réussi à l'obtenir rigoureusement.

- 3. Étude de la fonction n.
 - (a) Déterminer $\lim_{t\to +\infty} n(t)$. Justifier le nom de « capacité du milieu » donné par le créateur du modèle à la constante K
 - (b) Étudier les variations de n, en distinguant si besoin des cas selon les valeurs prises par les paramètres du problème.
 - (c) On suppose pour toute la fin du problème que $n_0 < \frac{1}{2}K$. Montrer que n est une fonction de classe C^2 (on essaiera d'être rigoureux) et que $n''(t) = r^2 n(t) \times \left(1 \frac{1}{K}n(t)\right) \left(1 \frac{2}{K}n(t)\right)$.
 - (d) Montrer qu'il existe un unique réel $t_0 > 0$ tel que $n''(t_0) = 0$.
 - (e) Étudier la convexité de la fonction n.
 - (f) Calculer $n(t_0)$ et justifier l'affirmation suivante : « dans ce modèle, la date à laquelle la croissance de la population commence à ralentir correspond au moment où elle atteint la moitié de sa valeur limite ».
 - (g) Tracer une allure crédible de la courbe représentative de n quand $n_0 = 1$, K = 4 et $t_0 = 3$. On tracera en même temps les tangentes à la courbe en t = 0 et en $t = t_0$.
- 4. Estimation du paramètre r.
 - (a) En conservant les notations de la question précédente, montrer que $e^{rt_0} = \frac{K}{n_0} 1$.
 - (b) Déterminer une primitive de la fonction n sur $[0, +\infty[$ (en vérifiant que cette fonction est bien définie, puisqu'elle devrait faire intervenir un ln).
 - (c) On appelle **valeur moyenne** prise par une fonction f sur l'intervalle [a, b] le nombre réel $\frac{1}{b-a} \int_a^b f(t) \ dt.$

Montrer que la valeur moyenne de la fonction n sur l'intervalle $[0, 2t_0]$ est égale à $\frac{K}{2}$.

- (d) En notant $n_1 = n(t_0)$, montrer que $r = \frac{1}{t_0} \ln \left(\frac{\frac{1}{n_0} \frac{1}{K}}{\frac{1}{n_1} \frac{1}{K}} \right)$.
- (e) En conservant les valeurs $n_0 = 1$ et K = 4, quelle influence aura une modification du paramètre r sur l'allure de la courbe de la fonction n?

3