Feuille d'exercices n° 19 : Applications linéaires

MPSI Lycée Camille Jullian

21 mars 2022

Exercice 0 (*)

On note $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, déterminer pour chacune des applications $\varphi : E \to E$ définies par $\varphi(f) = g$ si elles sont linéaires ou non :

- $g(x) = \int_0^x f(t) dt$ $g(x) = \int_0^{x^2} f(t) dt$ $g(x) = \int_0^x f(t^2) dt$ $g(x) = \int_0^x f^2(t) dt$ $g(x) = \int_0^x t^2 f(t) dt$ $g(x) = x^2 \int_0^x f(t) dt$ g(x) = f''(x) $g(x) = f''(x^2)$ $g(x) = f''(x)^2$ $g(x) = f''(0)x^2$ $g(x) = f''(x) + x \int_0^x f'(t) dt$ $g(x) = \int_0^x f(t) dt f'(t)$

Exercice 1 (*)

Soit u l'endomorphisme de \mathbb{R}^3 tel que les images des vecteurs de la base canonique soient (1,-1,2), (-3, 2, -1) et (-7, 4, 1).

- 1. Déterminer une expression explicite de u.
- 2. Déterminer les antécédents par u de (-1,1,8) et de (-2,1,3).
- 3. u est-elle injective? Surjective?

Exercice 2 (**)

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. On suppose que $u^2 = 0$. Montrer que $\operatorname{Im}(u) \subset \ker(u)$, et que $id_E + u$ est un automorphisme.
- 2. Dans le cas général, montrer que $\operatorname{Im}(u) \cap \ker(u) = \{0\} \Leftrightarrow \ker(u^2) = \ker(u)$; et que $\ker(u) + \operatorname{Im}(u) = \{0\}$ $E \Leftrightarrow \operatorname{Im}(u^2) = \operatorname{Im}(u).$

Exercice 3 (**)

On considère $\mathbb C$ comme un $\mathbb R$ -espace vectoriel, et on définit l'application $f:\mathbb C\to\mathbb C$ par $f(z)=z+a\overline z$, où a est un nombre complexe fixé. Montrer que f est linéaire, Déterminer son noyau, et donner une condition nécessaire et suffisante sur a pour que f soit bijective.

Exercice 4 (**)

On se place dans \mathbb{R}^3 et on note F = Vect((1,1,1)) et $G = \{(x,y,z) \mid 2x+y-z=0\}$. Montrer que $F \oplus G = \mathbb{R}^3$ et déterminer l'expression analytique de la projection sur F parallèlement à G et de la symétrie par rapport à G parallèlement à F.

1

Exercice 5 (***)

Soient f et g deux endomorphismes d'un même espace vectoriel E.

1. Montrer que $\ker(f) = \ker(f^2)$ si et seulement si $\ker(f) \cap \operatorname{Im}(f) = \{0\}$.

- 2. Montrer que $\operatorname{Im}(f) = \operatorname{Im}(f^2)$ si et seulement si $\ker(f) + \operatorname{Im}(f) = E$.
- 3. En déduire une condition nécessaire et suffisante pour avoir $\ker(f)$ et $\operatorname{Im}(f)$ supplémentaires dans E.
- 4. Montrer que $f \circ g$ est un automorphisme si et seulement si f est surjective, g injective et $\ker(f) \oplus \operatorname{Im}(g) = E$.

Exercice 6 (*)

On considère l'application $f: \mathbb{R}^3$ dans \mathbb{R}^3 définie par $f(x,y,z) = \left(\frac{2}{3}x + \frac{1}{3}y + \frac{1}{3}z, \frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z, \frac{1}{3}x - \frac{1}{3}y + \frac{1}{3}z, \frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z, \frac{1}{3}x - \frac{1}{3}y + \frac{2}{3}z\right)$. Montrer que f est un projecteur et déterminer ses éléments caractéristiques (noyau et image)

Exercice 7 (**)

On note E l'espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues, et F le sev de E constitué des fonctions (continues) s'annulant en 0. Montrer que la droite vectorielle engendrée par la fonction exponentielle est supplémentaire de F dans E, et déterminer l'expression de la projection sur F parallèlement à cette droite.

Exercice 8 (***)

Soient p et q deux projecteurs dans un même espace vectoriel E, vérifiant $p \circ q = q \circ p$.

- 1. Montrer que $p \circ q$ est aussi un projecteur.
- 2. Montrer que $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Montrer que $\ker(p \circ q) = \ker(p) + \ker(q)$.
- 4. On suppose de plus que $p \circ q = 0$ (et donc $q \circ p = 0$ également). Montrer alors que p + q est aussi un projecteur, de mêmes noyau et image que $p \circ q$.

Exercice 9 (**)

Soit $f \in \mathcal{L}(E)$, où E est un espace vectoriel de dimension finie. On pose, pour tout entier naturel n, $N_k = \ker(f^k)$ et $I_k = \operatorname{Im}(f^k)$.

- 1. Montrer que la suite (N_k) est croissante et la suite (I_k) décroissante (au sens de l'inclusion des ensembles).
- 2. Montrer qu'il existe un entier p pour lequel $N_p = N_{p+1}$, puis que la suite (N_k) stationne à partir du rang p.
- 3. Montrer que la suite (I_k) stationne à partir du même rang p.
- 4. Montrer que $E = N_p \oplus I_p$.

Exercice 10 (***)

On se place dans $\mathbb{C}_3[X]$, et on note $A = X^4 - 1$ et $B = X^4 - X$. On désigne par f l'application qui, à un polynôme P, associe le reste de la division de AP par B.

- 1. Montrer que f est un endomorphisme de $\mathbb{C}_3[X]$.
- 2. Déterminer le noyau de f.
- 3. Quelle est la dimension de $\operatorname{Im}(f)$? Montrer que $\operatorname{Im}(f) = (X-1)\mathbb{C}_2[X]$.
- 4. Déterminer les quatre racines z_1 , z_2 , z_3 et z_4 de B.
- 5. Montrer qu'en posant $P_k = \frac{B}{X z_k}$, la famille (P_1, P_2, P_3, P_4) est une base de $\mathbb{C}_3[X]$.
- 6. Montrer que $f(P_k) = (z_k 1)P_k$.

Exercice 11 (**)

Soient f, g et h trois endomorphismes d'un même espace vectoriel E vérifiant $f \circ g = h$, $g \circ h = f$ et $h \circ f = g$.

- 1. Montrer que f, g et h ont le même noyau et la même image.
- 2. Montrer que $f^5 = f$.
- 3. Montrer que $E = \ker(f) \oplus \operatorname{Im}(f)$.

Exercice 12 (**)

Soit $f \in \mathcal{E}$ un endomorphisme nilpotent, où E est de dimension finie n.

- 1. Montrer que $\ker(f) \neq \{0\}$, et que $\operatorname{rg}(f) \leqslant n-1$.
- 2. Soit p le plus petit entier pour lequel $f^p = 0$. Prouver qu'il existe un $x \in E$ tel que $f^{p-1}(x) \neq 0$, et montrer que $(x, f(x), \dots, f^{q-1}(x))$ est une famille libre.
- 3. En déduire que $p \leqslant n$ et que $f^n = 0$.
- 4. On suppose que p = n. Déterminer toutes les applications linéaires commutant avec f.

Exercice 13 (**)

On note $E = \mathbb{R}_2[X]$ et φ l'application définie par : $\forall P \in E, \ \varphi(P) = 2P - (X - 1)P'$.

- 1. Montrer que φ est un endomorphisme de E.
- 2. Montrer que $\ker(\varphi)$ est une droite vectorielle dont on précisera une base. L'endomorphisme φ est-il injectif?
- 3. Montrer que $\operatorname{Im}(\varphi) = \operatorname{Vect}(1, X)$.
- 4. Montrer que $\ker(\varphi) \oplus \operatorname{Im}(\varphi) = E$.
- 5. Soit p la projection vectorielle sur $\ker(\varphi)$ de direction $\operatorname{Im}(\varphi)$. Que valent $\varphi \circ p$ et $p \circ \varphi$?

Exercice 14 (*)

On considère $\mathbb C$ comme un espace vectoriel réel, et on note φ l'application définie sur $\mathbb C$ par $\varphi(z)=\frac12z+\frac{i}2\bar z.$

- 1. Montrer que φ est un endomorphisme de \mathbb{C} .
- 2. Montrer que φ est un projecteur.
- 3. Déterminer l'image et le noyau de φ , ainsi que leurs dimensions.

Exercice 15 (**)

On pose E = R[X] et, pour tout $P \in E$, f(P) = P - XP'.

- 1. Résoudre l'équation différentielle y xy' = 1. Possède-t-elle des solutions sur R?
- 2. Prouver que f est un endomorphisme de E.
- 3. Déterminer son noyau. L'application f est-elle injective?
- 4. L'application f est-elle surjective?
- 5. L'application $f \circ f$ est-elle injective? Surjective? Déterminer $\ker(f \circ f)$.

Exercice 16 (**)

On considère l'application $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (2y-2z,x+y-2z,x-y) \end{array} \right.$

- 1. Montrer que f est une application linéaire (en revenant vraiment à la définition).
- 2. Déterminer l'image et le noyau de f. L'application f est-elle injective? Surjective? Bijective?
- 3. Montrer que ker(f) et Im(f) sont supplémentaires.
- 4. Soit p la projection sur Im(f) parallèlement à $\ker(f)$, donner l'expression de p(x, y, z).
- 5. Calculer $f^2(x, y, z)$ et $f^3(x, y, z)$, et vérifier que $f^3 f^2 2f = 0$.
- 6. On pose $r = \frac{1}{6}(f^2 + f)$ et $s = \frac{1}{3}(f^2 2f)$, montrer que r et s sont des projecteurs, et que $f \circ r = 2r$ et $f \circ s = -s$.
- 7. Montrer que, $\forall n \ge 1$, $f^n = 2^n r + (-1)^n s$. En déduire l'expression de $f^n(x, y, z)$.

Exercice 17 (**)

Un endomorphisme f est nilpotent s'il existe un entier naturel $n \ge 1$ tel que $f^n = 0$ (f^n étant la composée de f n fois par elle-même, comme d'habitude).

- 1. On pose dans cette question $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (z-x,3x+y-2z,x+y) \end{array} \right.$ On admet que cette application est un endomorphisme de \mathbb{R}^3 .
 - (a) Déterminer le noyau de f (on précisera sa dimension).
 - (b) Déterminer l'image de f (on donnera aussi sa dimension).
 - (c) Calculer l'expression explicite de $f^2(x, y, z)$.
 - (d) Déterminer le noyau de f^2 , puis vérifier que $\ker(f^2) = \operatorname{Im}(f)$.
 - (e) En déduire que $f^3 = 0$, et donc que f est nilpotent.
- 2. On pose dans cette question $f: \left\{ \begin{array}{ccc} \mathbb{R}^4 & \to & \mathbb{R}^4 \\ (x,y,z,t) & \mapsto & (0,x,y,z) \end{array} \right.$
 - (a) Vérifier que f est un endomorphisme nilpotent de \mathbb{R}^4 (sans faire des millions de calcul).
 - (b) Définir un endomorphisme nilpotent de \mathbb{R}^n en prenant f pour exemple.
- 3. On pose dans cette question $f: \left\{ \begin{array}{ll} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P(X) & \mapsto & Q(X) = P(X+1) P(X) \end{array} \right.$
 - (a) Justifier que f est un endomorphisme de $\mathbb{R}_2[X]$.
 - (b) Déterminer le noyau et l'image de f. Sont-ils supplémentaires?
 - (c) Montrer que f est nilpotent.
 - (d) L'endomorphisme de $\mathbb{R}_n([X])$ défini de la même façon que f est-il toujours nilpotent? Expliquer rapidement pourquoi.

Exercice 18 (**)

On se place dans l'espace vectoriel $E = \mathcal{M}_2(\mathbb{R})$, où on note I la matrice identité et $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. On note f l'application qui, à une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, associe la matrice $f(M) = \frac{a+d}{2}I + \frac{b+c}{2}J$.

- 1. Vérifier que f est un endomorphisme de l'espace E.
- 2. Déterminer une base du noyau et de l'image de f.
- 3. Démontrer que Im(f) = ker(f id).
- 4. Montrer que f est un projecteur.
- 5. Déterminer l'expression de la symétrie s par rapport à Im(f) et parallèlement à ker(f).

Exercice 19 (***)

On note f l'application définie sur \mathbb{R}^3 par f(x,y,z)=(x-y+z,-x+3y-2z,-2x+6y-4z)

- 1. Vérifier que f est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer le noyau de f (on en donnera une base).
- 3. En déduire la dimension de Im(f), et en donner une base.
- 4. Montrer que $\ker(f) \subset \operatorname{Im}(f)$. Cette inclusion est-elle une égalité?
- 5. On note u = (0, 1, 0), v = f(u) et w = f(v). Calculer v et w, et vérifier que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 .
- 6. Donner les coordonnées des vecteurs de la base canonique dans la base \mathcal{B} .
- 7. Montrer que $f^3 = 0$ (on pourra utiliser au choix la base \mathcal{B} , ou faire des calculs barbares).
- 8. On pose g = f + 3id. Exprimer g^2 , g^3 puis plus généralement g^k en fonction de f^2 , f et de id.
- 9. Montrer que g est un automorphisme de \mathbb{R}^3 et déterminer g^{-1} (quasiment aucun calcul nécessaire). La formule de la question précédente reste-t-elle valable pour des entiers k négatifs?

Problème (***)

Dans tout cet exercice, on s'intéresse aux propriétés d'un endomorphisme f sur un espace vectoriel réel E, vérifiant $f \circ f = \frac{1}{2}(f + id_E)$. On notera $f \circ f = f^2$ dans tout l'exercice.

I. Une somme directe intéressante.

On note p l'endormorphisme de E défini par $p = \frac{2}{3}f + \frac{1}{3}id_E$.

- 1. Montrer que p est un projecteur.
- 2. Vérifier que $Im(p) = \{x \in E \mid f(x) = x\}.$
- 3. On note q le projecteur sur $\ker(p)$ parallèlement à $\operatorname{Im}(p)$, exprimer q comme combinaison linéaire de f et de p.
- 4. En déduire que $E = \ker(f id_E) \oplus \ker\left(f + \frac{1}{2}id_E\right)$.

II. Expression des puissances de f.

- 1. Montrer, en utilisant les résultats de la première partie, que $\forall n \in \mathbb{N}, f^n = p + \left(-\frac{1}{2}\right)^n q$.
- 2. Montrer que f est un automorphisme de E.
- 3. La relation obtenue pour f^n reste-t-elle valable si n=-1? Plus généralement si $n\in\mathbb{Z}$?

III. Un exemple concret.

Soit f l'endomorphisme de \mathbb{R}^3 défini par $f(x,y,z)=\left(-2x+y+z,-\frac{3}{2}x+\frac{3}{2}y+\frac{1}{2}z,-3x+y+2z\right)$.

- 1. Prouver que $f^2 = \frac{1}{2}(f + id_{\mathbb{R}^3})$.
- 2. Déterminer $\ker(f-id)$ et $\ker\left(f+\frac{1}{2}id\right)$, et donner une base de chacun de ces deux noyaux.

5

- 3. Déterminer l'expression des projecteurs p et q tels que définis dans la première partie.
- 4. En déduire l'expression de f^n .