Exercice à travailler n°8: corrigé

PTSI B Lycée Eiffel

23 novembre 2020

Une équation différentielle, avec tracé de courbe intégrale.

- 1. La normalisation de l'équation impose d'éliminer la valeur x = 0 (le facteur $1 + \ln^2(x)$ ne pose pas de problème puisqu'il est strictement positif). De plus, la présence de ln dans l'équation limite déjà la résolution à \mathbb{R}^+ . On va donc résoudre notre équation sur l'intervalle $]0, +\infty[$.
- 2. Après normalisation, on cherche à résoudre l'équation $y' + \frac{2\ln(x)}{x(1+\ln^2(x))} = \frac{1}{x(1+\ln^2(x))}$. La fonction $x \mapsto \frac{2\ln(x)}{x(1+\ln^2(x))}$ étant continue sur $]0, +\infty[$, elle y admet nécessairement des primitives. Comme elle de la forme $\frac{f'}{f}$, avec $f(x) = 1 + \ln^2(x)$ (qui a bien pour dérivée $f'(x) = \frac{2\ln(x)}{x}$), on peut prendre comme primitive la fonction $x \mapsto \ln(1+\ln^2(x))$. Les solutions de l'équation homogène sont alors toutes les fonctions de la forme $y_h : x \mapsto Ke^{-\ln(1+\ln^2(x))} = \frac{K}{1+\ln^2(x)}$, avec $K \in \mathbb{R}$.
- 3. On va donc cherche une solution particulière de (E) sous la forme $y_p(x) = \frac{K(x)}{1 + \ln^2(x)}$, ce qui implique $y_p'(x) = \frac{K'(x)(1 + \ln^2(x)) \frac{2K(x)\ln(x)}{x}}{(1 + \ln^2(x))^2}$. La fonction est donc solution de (E) (en reprenant la forme initiale de l'équation) si $xK'(x) \frac{2K(x)\ln(x)}{1 + \ln^2(x)} + \frac{2\ln(x)K(x)}{1 + \ln^2(x)} = 1$, donc si $K'(x) = \frac{1}{x}$. On peut choisir $K(x) = \ln(x)$, ce qui revient à dire que $y_p(x) = \frac{\ln(x)}{1 + \ln^2(x)}$.
- 4. Les solutions de (E) sont les fonctions de la forme $y(x) = \frac{\ln(x) + K}{1 + \ln^2(x)}$, avec $K \in \mathbb{R}$.
- 5. En factorisant numérateur et dénominateur par $\ln(x)$, on peut écrire $y(x) = \frac{1 + \frac{K}{\ln(x)}}{\ln(x) + \frac{1}{\ln(x)}}$ et il n'y a plus de forme indéterminée : indépendamment de la valeur de K, on a toujours $\lim_{x\to 0} y(x) = 0$ et $\lim_{x\to +\infty} y(x) = 0$.
- 6. La condition initiale impose K = 1, donc $y(x) = \frac{\ln(x) + 1}{1 + \ln^2(x)}$. On notera f cette fonction pour l'étude de la dernière question.
- 7. Les limites de f ont déjà été calculée plus haut. De plus, f est dérivable sur $]0, +\infty[$, de dérivée $f'(x) = \frac{\frac{1+\ln^2(x)}{x} \frac{2\ln^2(x)}{x} + \frac{2\ln(x)}{x}}{(1+\ln^2(x))^2} = \frac{1-2\ln(x) \ln^2(x)}{x(1+\ln^2(x))^2}$. Cette dérivée est du signe de $1-2\ln(x) \ln^2(x)$. En posant $X = \ln(x)$, on obtient une équation du second degré de discriminant $\Delta = 8$, admettant pour racines $X_1 = \frac{2-\sqrt{8}}{-2} = \sqrt{2} 1$ et $X_2 = \frac{2+\sqrt{8}}{-2} = \sqrt{2}$

 $-1-\sqrt{2}$. La dérivée s'annule donc lorsque $x=e^{\sqrt{2}-1}$ et $x=e^{-1-\sqrt{2}}$, et sera positive entre ces deux valeurs. On peut calculer $f(e^{\sqrt{2}-1})=\frac{\sqrt{2}-1+1}{1+(\sqrt{2}-1)^2}=\frac{\sqrt{2}}{4-2\sqrt{2}}=\frac{1}{2\sqrt{2}-2}=\frac{\sqrt{2}+1}{2}$. De même, $f(e^{-\sqrt{2}-1})=\frac{-\sqrt{2}}{4+2\sqrt{2}}=\frac{1-\sqrt{2}}{2}$. On peut aussi calculer facilements les valeurs $f(e)=\frac{1+1}{1+1}=1, \ f\left(\frac{1}{e}\right)=0$ et f(1)=1 si on le souhaite. Voici le tableau de variations de la fonction :

x	0	$e^{-\sqrt{2}-1}$	($e^{\sqrt{2}-1}$		$+\infty$
f'(x)	_	ф	+	ф	_	
f	0	$\frac{1-\sqrt{2}}{2}$, T	$\frac{\sqrt{2}+1}{2}$		0

Une allure de courbe, en bleu sur la figure. On a tracé dans d'autres couleurs les allures d'autres courbes intégrales associées à cette équation, ce qui n'était pas demandé dans l'énoncé $(K=0\ \text{en}\ \text{rouge},\ K=-2\ \text{en}\ \text{orange},\ K=2\ \text{en}\ \text{violet}\ \text{et}\ K=4\ \text{en}\ \text{marron})$:

