Exercice à travailler n° 2 : corrigé

PTSI B Lycée Eiffel

21 septembre 2020

Étude d'une fonction faisant intervenir une valeur absolue.

- 1. Manifestement, $\mathcal{D}_f = \mathbb{R}\setminus\{2\}$. La fonction f n'est ni paire ni impaire. Par exemple $f(1) = \left|\frac{-2}{-1}\right| = 2$, et $f(-1) = \left|\frac{0}{-3}\right| = 0$. Ces deux valeurs n'étant ni égales ni opposées, la fonction ne peut être ni paire ni impaire.
- 2. On a déjà calculé f(-1)=0. Calculons les autres valeurs demandées : $f\left(\frac{1}{2}\right)=\left|\frac{-3}{-\frac{3}{2}}\right|=2$; puis $f(\sqrt{3})=\left|\frac{3-\sqrt{3}}{\sqrt{3}-2}\right|=\frac{(3-\sqrt{3})(2+\sqrt{3})}{|3-4|}=3+\sqrt{3}$.
- 3. On cherche donc à résoudre l'équation $|2x^2-x-3|=|x-2|$, qui se décompose en deux équations du second degré : soit on a $2x^2-x-3=x-2$, donc $2x^2-2x-1=0$, équation qui a pour discriminant $\Delta=4+8=12$, et admet donc deux racines réelles, $x_1=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}$, et $x_2=\frac{1+\sqrt{3}}{2}$; soit on a $2x^2-x-3=2-x$, donc $2x^2-5=0$, ce qui donne les deux derniers antécédents $x_3=\sqrt{\frac{5}{2}}$ et $x_4=-\sqrt{\frac{5}{2}}$.

Pour l'inéquation, même méthode, mais en résolvant des inéquations, donc en faisant un joli « tableau de signe » : on veut que $|x^2-x-3|-4|x-2| \ge 0$. Le trinôme dans la première valeur absolue a pour discriminant $\Delta=1+24=25$, et admet donc pour racines $x_5=\frac{1-5}{4}=-1$ (sans surprise vu le calcul de la question 2), et $x_6=\frac{1+5}{4}=\frac{3}{2}$. L'autre valeur absolue s'annule bien entendu lorsque x=2, d'où le tableau d'expressions suivant :

x	-1 $\frac{5}{2}$		$\frac{3}{2}$ 2	
$ 2x^2 - x - 3 $	$2x^2 - x - 3$ ($x + 3 - 2x^2$ ($2x^2 - x - 3$	$2x^2 - x - 3$
4 x-2	8-4x	8-4x	8-4x	4x-8
$ 2x^2 - x - 3 - 4 x - 2 $	$2x^2 + 3x - 11$ ($5x - 5 - 2x^2$ ($2x^2 + 3x - 11$	$2x^2 - 5x + 5$

On n'a en fait que deux inéquations différentes à résoudre :

- sur] $-\infty$, -1] et sur $\left[\frac{3}{2}, 2\right[$, $2x^2 + 3x 11$ a pour fort sympathique discriminant $\Delta = 9 + 88 = 97$, et admet comme racines $x_a = \frac{-3 \sqrt{97}}{4}$ et $x_b = \frac{-3 + \sqrt{97}}{4}$. Il n'est pas difficile de se convaincre que $x_a < -1$ et $\frac{3}{2} < x_b < 2$ (puisque $\sqrt{97}$ est compris entre 9 et 10), on conserve donc les solutions appartenant à] $-\infty$, x_a] et à $[x_b, 2]$.
- 10), on conserve donc les solutions appartenant à $]-\infty,x_a]$ et à $[x_b,2[$.

 sur les deux autres intervalles, le trinôme $2x^2-5x+5$ a pour discriminant $\Delta=25-40<0$, donc $2x^2-5x+5$ est toujours positif, et notre inégalité n'est jamais vérifiée sur $\left[-1,\frac{3}{2}\right]$, mais l'est toujours sur $]2,+\infty[$.

Conclusion de ces passionnants calculs : $S = \left| -\infty, \frac{-3 - \sqrt{97}}{4} \right| \cup \left| \frac{-3 + \sqrt{97}}{4}, +\infty \right| \setminus \{2\}.$

4. On va bien sûr faire un tableau de signes, en reprenant des calculs effectués à la question précédente :

x	-1		$\frac{3}{2}$ 2	
$2x^2 - x - 3$	+ () – () +	+
x-2	_	_	_) +
h(x)	- () + () –	+

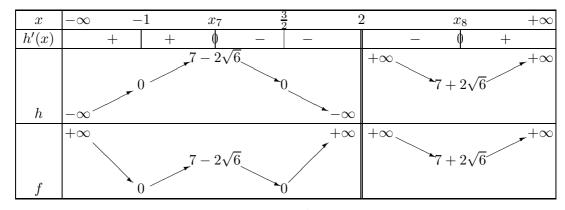
5. On va bien sûr dériver la fonction h (qui est dérivable partout où elle est définie) : $h'(x) = \frac{(4x-1)(x-2)-(2x^2-x-3)}{(x-2)^2} = \frac{2x^2-8x+5}{(x-2)^2}$. Cette dérivée est du signe de son numéra-

teur, qui a pour discriminant $\Delta = 64 - 40 = 24$, et s'annule donc en $x_7 = \frac{8 - \sqrt{24}}{4} = 2 - \frac{\sqrt{6}}{2}$

et en
$$x_8 = 2 + \frac{\sqrt{6}}{2}$$
. Ces deux valeurs vérifiant par définition $2x^2 = 8x - 5$, on peut en déduire que $h(x_7) = \frac{8x_7 - 5 - x_7 - 3}{x_7 - 2} = \frac{14 - \frac{7\sqrt{6}}{2} - 8}{-\frac{\sqrt{6}}{2}} = 7 - 2\sqrt{6}$. De même, $h(x_8) = \frac{7x_8 - 8}{x_8 - 2} = \frac{14 - \frac{7\sqrt{6}}{2}}{-\frac{\sqrt{6}}{2}} = \frac{14 - \frac{7\sqrt{6}}{2}}{-\frac{7\sqrt{6}}{2}} = \frac{14 - \frac{7\sqrt{6}}{2}}{-\frac{7\sqrt{6}}{2}} = \frac{14 - \frac{7\sqrt{6}}{2}}{-\frac{7\sqrt{6}}{2}} = \frac{14 - \frac{7\sqrt{6}}{2}}{-\frac{7\sqrt{6}}{2}} = \frac{14 - \frac$

 $\frac{6+\frac{7\sqrt{6}}{2}}{\sqrt{6}}=7+2\sqrt{6}$. On peut alors dresser le magnique tableau de variations suivant (les

calculs de limite ne posent aucun problème, en exploitant le quotient des termes de plus haut degré en $\pm \infty$, et en utilisant les signes étudiés à la question précédente pour les autres limites):



6. Calculons donc simplement $h(x) - (2x+3) = \frac{2x^2 - x - 3 - (2x+3)(x-2)}{x-2}$

 $=\frac{2x^2-x-3-(2x^2-x-6)}{x-2}=\frac{3}{x-2}$, qui tend effectivement vers 0 quand x tend vers $+\infty$. Ceci signifie exactement que la droite d'équation y=2x+3 est asymptote oblique à la courbe représentative de h, et donc à celle de f puisque celles-ci sont confondues du côté de

La limite de h(x)-(2x+3) est tout autant nulle du côté de $-\infty$, mais cette fois-ci on a f(x)=-h(x) au voisinage de $+\infty$ (sur tout l'intervalle $]-\infty;-1]$, donc la courbe représentative de f admettra pour asymptote du côté de $-\infty$ la droite d'équation y=-2x-3.

7. Quelques valeurs approchées utiles pour le tracé : $\sqrt{3} \simeq 1.7$, donc $x_1 \simeq -0.35$ et $x_2 \simeq 1.35$; comme $\frac{5}{2} \simeq 2.56$, on aura $x_3 \simeq 1.6$ et $x_4 \simeq -1.6$; enfin, $\sqrt{6} \simeq 2.4$ donc $x_7 \simeq 0.8$, $x_8 \simeq 3.2$, $f(x_7) \simeq 2.2$ et $f(x_8) \simeq 11.8$. Les asymptotes ne sont pas indiquées sur la courbe qui suit (il faut un dessin à grande échelle pour vraiment tout bien voir):

2

