Exercice à travailler n° 15 : corrigé

PTSI B Lycée Eiffel

1er février 2021

Une étude de suite implicite.

- 1. La fonction f_n est continue et dérivable sur [0,1], de dérivée $f'_n(x) = -\frac{1}{2} nx^{n-1} < 0$. La fonction est donc stricteent décroissante et (étant continue) bijective de [0,1] vers $[f_n(1),f_n(0)]$ Comme $f_n(1) = -\frac{1}{2}$ et $f_n(0) = 1$, le réel 0 est compris entre $f_n(0)$ et $f_n(1)$ et admet un unique antécédent par la fonction f_n .
- 2. Par définition, $f_n(u_n) = 0$, donc $1 \frac{u_n}{2} u_n^n = 0$. On en déduit que $f_{n+1}(u_n) = 1 \frac{u_n}{2} u_n^{n+1} = 0$ $u_n^n - u_n^{n+1} = u_n^n (1 - u_n)$. L'encadrement $0 < u_n < 1$ permet alors de conclure que $f_{n+1}(u_n) > 0$.
- 3. On sait par ailleurs que $f_{n+1}(u_{n+1}) = 0$ (toujours la définition de la suite), donc $f_{n+1}(u_n) > 0$ $f_{n+1}(u_{n+1})$. La décroissance de la fonction assure alors que $u_n < u_{n+1}$. La suite (u_n) est donc croissante, et comme elle est majorée par 1, converge donc d'après le théorème de convergence monotone.
- 4. Notons l la limite de la suite (u_n) , nécessairement comprise entre 0 et 1. Si l < 1, comme la suite (u_n) est croissante, on aura toujours $u_n < l$, donc $0 < u_n^n < l^n$, et (d'après le théorème des gendarmes) $\lim_{n\to+\infty}u_n^n=0$. Or, en faisant passer à la limite la relation $1-\frac{u_n}{2}-u_n^n=0$, on obtiendrait alors $1-\frac{l}{2}=0$, donc l=2, ce qui est complètement absurde. On en déduit que l=1.

Bonus: La fonction est définie sur \mathbb{R}^* , et continue sur tous les intervalles de la forme $\left| \frac{1}{n+1}, \frac{1}{n} \right|$ (lorsque n > 0), et sur les intervalles de la forme $\left| \frac{1}{n}, \frac{1}{n+1} \right|$ (lorsque n < -1). Il faut étudier pour chaque inverse d'entier la limite à gauche et à droite pour voir ce qui s'y passe. Plus précisément :

- sur $]1, +\infty[$, on aura $\frac{1}{x} \in]0, 1[$, donc f(x) = 0. En particulier, $\lim_{x \to 1^+} f(x) = 0$. sur $\Big]\frac{1}{2}, 1\Big[$, on aura $\frac{1}{x} \in]1, 2[$, donc f(x) = x. En particulier, $\lim_{x \to \frac{1}{2}^+} f(x) = \frac{1}{2}$ et $\lim_{x \to 1^-} f(x) = \frac{1}{2}$ f(1) = 1. La fonction n'est donc pas continue en 1.
- sur $\left| \frac{1}{3}, \frac{1}{2} \right|$, on aura $\frac{1}{x} \in]2, 3[$, donc f(x) = 2x. En particulier, $\lim_{x \to \frac{1}{3}^+} f(x) = \frac{2}{3}$ et $\lim_{x \to \frac{1}{2}^-} f(x) = \frac{2}{3}$ $f\left(\frac{1}{2}\right) = 1$. La fonction n'est donc pas continue en $\frac{1}{2}$.
- de même on aura f(x) = nx sur l'intervalle $\left[\frac{1}{n+1}, \frac{1}{n} \right]$ et la fonction n'est jamais continue en $\frac{1}{n}$ (limite égale à 1 à droite et $\frac{n-1}{n}$ à gauche. La fonction est continue à gauche en tous ces points.

- sur] $-\infty$, -1[, on aura f(x) = -x, avec une limite -1 à gauche en -1 (et une fonction continue à gauche en ce point).
- sur $\left]-1, -\frac{1}{2}\right[$, on a f(x) = -2x, avec une limite -2 à droite en -1 (pas de continuité en -1) et à nouveau -1 à gauche en $-\frac{1}{2}$.
- à nouveau ces considérations se généralisent, on a notamment f(x) = nx sur $\left] \frac{1}{n+1}, \frac{1}{n} \right[$ quand n < 0.
- \bullet on peut par contre remarquer que la fonction est prolongeable par continuité en 0, car $\lim_{x\to 0} f(x) = 1.$

Une allure de courbe (les segments verticaux ne devraient pas être tracés, ils ne font pas partie de la courbe) :

