Devoir Surveillé n° 6 (Devoir Bilan)

PTSI B Lycée Eiffel

27 février 2021

Exercice 1: Mise en jambes.

Les questions de cet exercice sont indépendantes.

- 1. Déterminer les racines cubiques du nombre a = -2 2i.
- 2. Calculer l'intégrale $I = \int_0^{\frac{\pi}{2}} \cos^3(x) \ dx$.
- 3. Résoudre l'équation $\arctan(2x) + \arctan(3x) = \frac{\pi}{4}$.
- 4. Résoudre dans \mathbb{C} l'équation $z^2 + (3i 4)z + 1 7i = 0$.

Exercice 2

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \frac{x}{e^x - 1}$.

- 1. Montrer qu'on peut prolonger f par continuité en 0.
- 2. Calculer la dérivée f' de la fonction f.
- 3. On admet pour cette question que, $\forall x \in \mathbb{R}, e^x = 1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)$, avec $\lim_{x \to 0} \varepsilon(x) = 0$. En exploitant cette formule, déterminer la limite de f'(x) quand x tend vers 0. Que peut-on en déduire pour le prolongement de la fonction f à $[0, +\infty[$?
- 4. Montrer que, $\forall x > 0$, $f''(x) = \frac{e^x(xe^x 2e^x + x + 2)}{(e^x 1)^3}$.
- 5. Étudier les variations de la fonction $g: x \mapsto (x-2)e^x + x + 2$ sur l'intervalle $[0, +\infty[$.
- 6. Déduire des questions précédentes le tableau de variations complet de la fonction f.
- 7. Tracer une allure soignée de la courbe représentative de la fonction f.
- 8. On considère dans cette question la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Déterminer les points fixes de la fonction f.
 - (b) Indiquer sur le graphe de la question 7 les premières valeurs de la suite (u_n) (jusqu'à u_3).
 - (c) Montrer que, $\forall x \ge 0, f(x) \in [0,1]$ et $|f'(x)| \le \frac{1}{2}$.
 - (d) Montrer rigoureusement que, $\forall n \in \mathbb{N}, |u_{n+1} \ln(2)| \leq \frac{1}{2}|u_n \ln(2)|$.
 - (e) Montrer que la suite (u_n) converge et préciser sa limite.
 - (f) Donner une valeur de n pour laquelle u_n est une valeur approchée de sa limite à 10^{-3} près.

Exercice 3

On note dans cet exercice
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ -2 & 0 & -2 \end{pmatrix}$$
 et $P = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Montrer que la matrice P est inversible et calculer son inverse P^{-1} .
- 2. On note désormais $T = PAP^{-1}$.
 - (a) Calculer la matrice T (non, elle n'est pas diagonale, mais d'un genre remarquable quand même).
 - (b) Déterminer les puissances de la matrice T.
 - (c) En déduire celles de la matrice A.
- 3. On note désormais $B(t) = I_3 + tA + \frac{t^2}{2}A^2$, pour tout réel t.
 - (a) Que vaut B(0)? Et B(1)?
 - (b) Montrer que, quels que soient les réels t et t', on a toujours $B(t) \times B(t') = B(t+t')$.
 - (c) En déduire que la matrice B(t) est toujours inversible, et déterminer son inverse en fonction de t, de I_3 , de A, et de A^2 .
 - (d) Exprimer $(B(t))^n$ en fonction de t, I_3 , A et A^2 . La formule reste-t-elle valable pour n = -1?
 - (e) Résoudre l'équation B(t) = A (l'inconnue étant ici le réel t).

Problème

On notera dans tout ce problème sh la fonction sinus hyperbolique définie par $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$ et ch la fonction cosinus hyperbolique définie par $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$. On notera de plus th la fonction définie par $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (fonction tangente hyperbolique), pour laquelle aucune connaissance spécifique ne sera bien entendu demandée.

A. Étude d'une fonction.

On note dans cette partie f la fonction définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}\left(\frac{1}{x}\right)$.

- 1. Quelle est la parité de la fonction f?
- 2. Que vaut $\lim_{x\to 0} \frac{\operatorname{sh}(x)}{x}$ (on justifiera le résultat)? En déduire les limites de f en $+\infty$ et en $-\infty$.
- 3. Montrer que, $\forall x \in \mathbb{R}^*$, $f'(x) = \left(\operatorname{th}\left(\frac{1}{x}\right) \frac{1}{x}\right) \times \operatorname{ch}\left(\frac{1}{x}\right)$.
- 4. Faire une étude rapide de la fonction th, et prouver en particulier qu'on a toujours th(x) < x lorsque x > 0.
- 5. Dresser le tableau de variations complet de la fonction f.
- 6. Tracer une allure de la courbe représentative de la fonction f.
- 7. Montrer que la fonction $x \mapsto f\left(\frac{1}{x}\right)$ est prolongeable par continuité en une fonction g définie sur \mathbb{R} . On admettra pour la suite que cette fonction g est en fait dérivable sur \mathbb{R} .

B. Une équation différentielle.

On considère dans cette partie l'équation différentielle $(E): xy' + y = \operatorname{ch}(x)$.

- 1. Résoudre cette équation sur l'intervalle $]0, +\infty[$.
- 2. Donner sans justification les solutions de l'équation (E) sur l'intervalle $]-\infty,0[$.
- 3. Montrer que g est la seule fonction définie et dérivable sur \mathbb{R} qui soit solution de l'équation (E) sur \mathbb{R} tout entier.

C. Étude d'une suite.

- 1. Montrer que l'équation $f(x) = \frac{n+1}{n}$ admet une unique solution dans $]0, +\infty[$ pour tout entier $n \ge 1$. On notera désormais cette solution u_n .
- 2. Montrer que la suite (u_n) est croissante.
- 3. Montrer que (u_n) est une suite divergeant vers $+\infty$.

D. Une fonction définie par une intégrale.

Pour tout réel strictement positif x, on note désormais $J(x)=\int_{\frac{x}{2}}^{x}f(t)\ dt$.

- 1. Montrer que, $\forall x \in \mathbb{R}$, $\operatorname{sh}(2x) = 2\operatorname{ch}(x)\operatorname{sh}(x)$.
- 2. En notant F une primitive (quelconque) de f (qu'on ne cherchera surtout pas à calculer), exprimer J(x) à l'aide de la fonction F, puis en déduire que $J'(x) = f(x) \times \left(1 \frac{1}{2}\operatorname{ch}\left(\frac{1}{x}\right)\right)$.
- 3. En déduire les variations de la fonction J.
- 4. On **admet** que la courbe représentative de J admet une asymptote oblique d'équation $y = \frac{x}{2}$ en $+\infty$, et que la courbe de J est toujours située au-dessus de cette asymptote. On **admet** également que $\lim_{x\to 0} J(x) = +\infty$. Donner le tableau de variations complet de la fonction J.
- 5. Tracer une allure soignée de la courbe représentative de la fonction J. On donne les valeurs suivantes : en notant $\alpha = \frac{1}{\ln(2+\sqrt{3})}, \ \alpha \simeq 0.76$ et $J(\alpha) \simeq 0.65$.