Feuilles d'exercices n°2 : Fonctions usuelles

PTSI B Lycée Eiffel

15 septembre 2016

Vrai/Faux

On doit être capable de répondre correctement et sans hésiter à toutes ces questions, même un an après avoir suivi le cours correspondant.

- 1. La partie entière d'un nombre x négatif est toujours supérieure à x.
- 2. La dérivée d'une fonction réciproque est donnée par la formule $(f^{-1})'(x) = \frac{1}{f'(x)}$.
- 3. Toutes les fonctions exponentielles sont strictement croissantes.
- 4. La fonction \log_a a pour réciproque la fonction $x \mapsto a^x$.
- 5. La fonction *ch* est une fonction paire.

Exercice 1 (*)

Déterminer le domaine de définition de chacune des fonctions suivantes :

1.
$$f(x) = \sqrt{2x^2 - 3x - 2}$$

$$2. \ f(x) = e^x \ln(x+5)$$

3.
$$f(x) = \frac{\sqrt{x(x-1)}}{x^2 - 4}$$

4.
$$f(x) = \ln(x^5 + 1)$$

Exercice 2 (* à **)

Déterminer la parité des fonctions suivantes :

1.
$$f(x) = 2x^6 - 5x^4 + x^2 + 6$$

$$2. \ f(x) = \ln|x|$$

3.
$$f(x) = \frac{1}{(x^3 - 2x)^2} \times \frac{x^4}{\sqrt{x^2 + 2}}$$

4.
$$f(x) = |2x^2 - e^{x^4} + \ln(x^2 - 1)|$$

$$5. \ f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

Exercice 3 (** à ***)

Résoudre les équations, inéquations et systèmes suivants :

1

1.
$$x^4 + x^2 - 20 = 0$$

2.
$$\ln(x+2) - \ln(2x-6) \le \ln 2$$

$$3. \ \frac{-x^3 - 2x^2 - 5}{x^3 + 2x^2 - 5x - 6} \geqslant -1$$

4.
$$x - 1 \leq \sqrt{x + 2}$$

5.
$$\ln(x+3) + \ln(x-1) = 2\ln 2$$

6.
$$3 \times 2^{3x-4} \geqslant 2^4$$

7.
$$\ln(2x-3) \leq \ln 5$$

8.
$$5^x - 5^{x+1} + 2^{3x-1} = 0$$

9.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

10.
$$x^{\frac{1}{4}} + 2x^{\frac{5}{3}} - 3 = 0$$

11.
$$e^{-6x} + 3e^{-4x} - e^{-2x} - 3 = 0$$

12.
$$8^{6x} - 3 \times 8^{3x} \le 4$$

13.
$$\begin{cases} x + y = 520 \\ \log x + \log y = 4 \end{cases}$$

14.
$$4 ch(x) + 3 sh(x) - 4 = 0$$

Exercice 4 (**)

Déterminer sans calculer leur dérivée les variations des fonctions suivantes :

1.
$$f(x) = \frac{-5}{2e^{-2x+3}}$$

2.
$$f(x) = (e^x + 2)^2 - 3$$

3.
$$f(x) = (e^x - 3)^2 + 2$$

4.
$$f(x) = \ln(e^{-x} - 1)$$

5.
$$f(x) = \ln\left(\frac{x+1}{x-1}\right)$$

Exercice 5 (* à ***)

Étudier les variations et tracer la courbe représentative des fonctions suivantes :

1.
$$f(x) = e^x - \frac{x^2}{2}$$

$$2. \ f(x) = x^x$$

3.
$$f(x) = \ln(1 + x + x^2)$$

4.
$$f(x) = e^{x^2 - x - 1}$$

5.
$$f(x) = \ln\left(\frac{x^2 - 4x}{x^2 - 4x + 3}\right)$$

6.
$$f(x) = \frac{e^{2x}}{x^2 - 1}$$

7.
$$f(x) = x^{x^2}$$

8.
$$f(x) = \sqrt{\frac{x^3}{2a - x}}$$
, a étant une constante positive fixée.

Exercice 6 (**)

Dans tout cet exercice, on cherche à étudier la fonction f définie par l'équation $f(x) = \frac{e^x}{(1+e^x)^2}$.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier la parité de f.
- 3. Calculer les limites de f aux bornes de son domaine de définition.

- 4. Montrer que $\forall x \in \mathbb{R}$, $f'(x) = \frac{e^x(1-e^x)}{(1+e^x)^3}$, et dresser le tableau de variations de la fonction f.
- 5. Calculer l'équation de la tangente à la courbe représentative de f en son point d'abscisse $\ln 2$.
- 6. Démontrer que $\forall x \in [0, +\infty[, -\frac{1}{3} \leqslant f'(x) \leqslant 0.$
- 7. Montrer à l'aide de la question précédente que $\forall x \in [0, +\infty[, -\frac{1}{3}x + \frac{1}{4} \le f(x)]$.
- 8. Tracer dans un même repère la droite d'équation $y = -\frac{1}{3}x + \frac{1}{4}$, et la courbe représentative de la fonction f.

Problème 1 (***)

On considère la fonction f définie sur \mathbb{R} par $f(x) = xe^x$, et on note \mathcal{C}_f sa courbe représentative.

I. Étude de f et de sa réciproque.

- 1. Étudier les variations et limites de la fonction f.
- 2. (a) Déterminer la dérivée seconde f'' de la fonction f et vérifier qu'elle s'annule en une unique valeur α .
 - (b) Donner l'équation de la tangente (T) à C_f en son point d'abscisse α . En quel point (T) coupe-t-elle l'axe des abscisses?
 - (c) Étudier la position relative de (T) et de \mathcal{C}_f (on pourra dériver deux fois la différence des deux équations si besoin).
- 3. Tracer dans un même repère (T) et \mathcal{C}_f .
- 4. Montrer que la fonction f est bijective de $[-1; +\infty[$ vers un intervalle à préciser. On note g la réciproque de la fonction f sur cet intervalle. Donner le tableau de variations complet de la fonction g.
- 5. Exprimer la dérivée g' de la fonction g en fonction de x et de g(x), sans utiliser d'exponentielle. En déduire une équation différentielle vérifiée par la fonction g.
- 6. Montrer que l'équation $2^x = x$ admet pour solution $x = -\frac{g(-\ln(2))}{\ln(2)}$ (qu'on ne cherchera bien sûr pas à expliciter plus).
- 7. Exprimer de même une solution de l'équation $x^x = 3$ en faisant intervenir la valeur $g(\ln(3))$.

II. Des fonctions auxiliaires.

On considère désormais, pour tout réel a > 0, la fonction h_a définie sur \mathbb{R} par $h_a(x) = e^{-x} + ax^2$.

- 1. Établir le tableau de variations de la fonction h_a (en exploitant les résultats de la première partie). On montrera en particuler que h_a admet un minimum en un point m_a que l'on exprimera en fonction de a et à l'aide de la fonction g. Montrer que $h_a(m_a) = am_a(m_a + 2)$.
- 2. On note enfin i la fonction $i: a \mapsto m_a$ définie sur \mathbb{R}^{+*} . Étudier les variations de la fonction i ainsi que ses limites.
- 3. Montrer que la valeur du maximum de h_a est une fonction croissante du paramètre a, et déterminer sa limite lorsque a tend vers $+\infty$.

Problème 2 (***)

Nous allons dans ce problème définir et tenter d'étudier les propriétés élémentaires d'une nouvelle fonction : la fonction **tangente hyperbolique** ou th définie par : th $(x) = \frac{sh(x)}{ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

I. Étude de la fonction th.

- 1. Montrer que the st définie sur \mathbb{R} et que, $\forall x \in \mathbb{R}$, th $(x) = \frac{e^{2x} 1}{e^{2x} + 1}$. Déterminer la parité de th.
- 2. Calculer la dérivée de la fonction thet vérifier que $\operatorname{th}'(x) = 1 \operatorname{th}^2(x) = \frac{1}{ch^2(x)}$. En déduire le tableau de variations de thet prouver qu'elle est bijective de $\mathbb R$ vers un intervalle I à préciser.
- 3. Déterminer l'équation de la tangente à la courbe de la fonction then son point d'abscisse 0, puis donner une allure de la courbe.
- 4. Simplifier, pour un réel x quelconque, l'expression de ch(x) + sh(x) ainsi que celle de ch(x) sh(x). En déduire que, $\forall (x,y) \in \mathbb{R}^2$, ch(x+y) + sh(x+y) = (ch(x) + sh(x))(ch(y) + sh(y)) et ch(x+y) sh(x+y) = (ch(x) sh(x))(ch(y) sh(y)).
- 5. À l'aide des résultats de la question précédente, exprimer sh(x+y) et ch(x+y) en fonction de ch(x), sh(x), ch(y) et sh(y).
- 6. Démontrer que, $\forall (x,y) \in \mathbb{R}^2$, $\operatorname{th}(x+y) = \frac{\operatorname{th}(x) + \operatorname{th}(y)}{1 + \operatorname{th}(x) \operatorname{th}(y)}$

II. Réciproque de la fonction th.

On note arg
th la fonction réciproque de la fonction th, définie sur l'intervalle I et à valeurs dans \mathbb{R} .

- 1. Donner sans aucun calcul une allure de la courbe de la fonction argth, si possible dans le même repère que celle de la question I.3.
- 2. À l'aide de la formule de dérivation d'une réciproque, calculer la dérivée de la fonction argth.
- 3. Soit $x \in I$ et $y = \operatorname{argth}(x)$. Montrer que $e^{2y} = \frac{1+x}{1-x}$, et en déduire une expression de argth à l'aide de la fonction ln. Vérifier avec cette nouvelle expression que votre dérivée de argth est correcte.
- 4. On considère désormais la fonction f définie par $f(x) = \operatorname{argth}(\sqrt{\frac{ch(x)-1}{ch(x)+1}})$.
 - (a) Déterminer la domaine de définition de f.
 - (b) En posant y = ch(x), montrer que $f(x) = \frac{1}{2}\ln(y + \sqrt{y^2 1})$.
 - (c) En déduire que $f(x) = \frac{|x|}{2}$.

Une équation fonctionnelle (pour aller beaucoup plus loin).

On cherche maintenant toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall x \in \mathbb{R}, f(2x) = \frac{2f(x)}{1 + (f(x))^2}$$

- 1. Déterminer les fonctions constantes solutions du problème.
- 2. Montrer que la fonction the est une solution du problème.
- 3. Soit f une solution, quelles sont les valeurs possibles de f(0)?
- 4. Vérifier que, si f est solution, -f également, et $g: x \mapsto f(kx)$ également (quelle que soit la valeur de $k \in \mathbb{R}$).
- 5. Montrer que toutes les valeurs prises par la fonction f sont comprises entre -1 et 1.

4