Feuille d'exercices n°10 : Limites et continuité

PTSI B Lycée Eiffel

19 janvier 2017

Exercice 1 (* à ***)

$$\bullet \lim_{x \to 2} \frac{2x^3 - 4x^2 + x - 2}{x^2 - 4}$$

$$\bullet \lim_{x \to +\infty} e^x \sin(e^{-x})$$

$$\bullet \lim_{x \to +\infty} \frac{x^2}{\ln(e^x + 1)}$$

$$\bullet \lim_{x \to +\infty} \sqrt{x^2 + x - 1} - x\sqrt{x}$$

•
$$\lim_{x \to +\infty} \frac{x^{\ln(x)}}{(\ln(x))^x}$$

$$\bullet \lim_{x \to +\infty} \frac{\cos(x + x^2 - x^2)}{x}$$

•
$$\lim_{x \to 0} \frac{x}{\arccos(x) - \frac{\pi}{2}}$$

•
$$\lim_{x \to 0} x Ent\left(\frac{1}{x}\right)$$

$$\bullet \lim_{x \to +\infty} x^{\frac{1}{x}}$$

•
$$\lim_{x \to 0} \frac{x - Ent(x)}{\sqrt{|x|}}$$

Calculer les limites suivantes :

•
$$\lim_{x \to 2} \frac{2x^3 - 4x^2 + x - 2}{x^2 - 4}$$

• $\lim_{x \to +\infty} e^x \sin(e^{-x})$

• $\lim_{x \to +\infty} \sqrt{x^2 + x - 1} - x\sqrt{x}$

• $\lim_{x \to +\infty} \frac{x^{\ln(x)}}{(\ln(x))^x}$

• $\lim_{x \to 0} \frac{x}{\arccos(x) - \frac{\pi}{2}}$

• $\lim_{x \to 0} \frac{x \operatorname{Ent}(x)}{\sqrt{|x|}}$

• $\lim_{x \to +\infty} \frac{x^3 + x^2 - x - 1}{x^3 - 3x - 2}$

• $\lim_{x \to +\infty} \frac{\sin(x)}{e^x}$

• $\lim_{x \to +\infty} \frac{x^{\ln(x)}}{\sqrt{x}}$

• $\lim_{x \to +\infty} \frac{x^{1}}{x^{2}}$

• $\lim_{x \to +\infty} \frac{x^{2}}{x^{2}}$

• $\lim_$

•
$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right)^{\frac{1}{x}}$$

$$\bullet \lim_{x \to +\infty} \frac{\operatorname{sh}(x)}{e^x}$$

•
$$\lim_{x \to 0} \frac{2}{\sin^2(x)} - \frac{1}{1 - \cos(x)}$$

$$\bullet \lim_{x \to 1^+} \ln(x) \ln(\ln(x))$$

•
$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}$$

$$\bullet \lim_{x \to +\infty} x^{x+1} - (x+1)^x$$

$$\bullet \lim_{x \to 1} \frac{x^2 - 1}{(\sqrt{x} - 1)\ln(x)}$$

Exercice 2 (** à ***)

Étudier la continuité et les possibilités de prolongement par continuité des fonctions suivantes :

$$1. \ f(x) = \frac{e^x - 1}{x}$$

2.
$$f(x) = \frac{1-x}{1-x^2}$$

$$3. f(x) = \frac{x^2 \ln(x)}{\sin(x)}$$

4.
$$f(x) = Ent(x) + \sqrt{x - Ent(x)}$$

5.
$$f(x) = \frac{1}{x-1} - \frac{3}{(x-1)^2}$$

6.
$$f(x) = e^{\frac{1}{1-x}} + 2x - 3$$

$$7. \ f(x) = \frac{x \ln x}{x+1}$$

8.
$$f(x) = \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$$

Exercice 3 (***)

On considère la fonction f définie par $f(x) = e^{-\frac{1}{x^2}}$ si x > 0, et f(x) = 0 si $x \le 0$. Montrer que f est continue sur \mathbb{R} . Calculer sa dérivée et montrer qu'elle est aussi continue. Faire de même avec la dérivée seconde. Pour les motivés : prouver que, quel que soit l'entier $n \in \mathbb{N}$, la dérivée n-ème de la fonction f est continue.

1

Exercice 4 (** à ***)

Déterminer toutes les fonctions vérifiant les conditions suivantes :

- 1. f est continue en 0 et en 1 et $\forall x \in \mathbb{R}, f(x) = f(x^2)$.
- 2. f est continue sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f\left(\frac{x+1}{2}\right) = f(x)$.
- 3. f est continue sur \mathbb{R} , f(0) = 1 et $\forall x \in \mathbb{R}$, $f(2x) = f(x)\cos(x)$.
- 4. f est continue sur \mathbb{R} et $\forall (x,y) \in \mathbb{R}^2$, $f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y))$ (on commencera par prouver que, si f(0) = f(1) = 0, f est périodique, et nulle).

Exercice 5 (*)

Montrer que les seules fonctions continues de \mathbb{R} dans \mathbb{Z} sont les fonctions constantes.

Exercice 6 (***)

Soit f une fonction continue sur [0;1] vérifiant f(0)=f(1). Montrer qu'il existe un réel x tel que $f\left(x+\frac{1}{2}\right)=f(x)$. Généraliser en prouvant qu'on peut toujours trouver un x tel que $f\left(x+\frac{1}{n}\right)=f(x)$, pour tout entier $n\geqslant 2$.

Exercice 7 (*)

Montrer que chacune des équations suivantes admet une solution sur l'intervalle I considéré.

- 1. $x^{2015} x^{2014} = -1 \text{ sur } I = [-1; 1].$
- 2. $\ln x = \frac{x^2 5}{x + 2}$ sur I = [1; 10].
- 3. $3x = 1 + \ln(2 + x^2)$ sur I = [0; 1].
- 4. $e^x = 2 + x \operatorname{sur} [\ln 2; 2 \ln 2].$
- 5. $x^3 3x^2 = -1$ sur I = [-1; 1].

Déterminer par dichotomie (et en utilisant la calculatrice!) une valeur approchée à 0.01 d'une solution de chaque équation.

Exercice 8 (***)

On définit, pour tout entier $n \in \mathbb{N}$, la fonction f_n par $f_n(x) = x^n + 9x^2 - 4$.

1. Montrer que l'équation $f_n(x) = 0$ a une seule solution strictement positive, qu'on notera désormais u_n .

2

- 2. Calculer u_1 et u_2 et vérifier que, $\forall n \in \mathbb{N}^*, u_n \in \left]0; \frac{2}{3}\right[$.
- 3. Montrer que, $\forall x \in]0; 1[, f_{n+1}(x) < f_n(x).$
- 4. Que peut-on en déduire concernant la suite u_n ?
- 5. Montrer que u_n est convergente vers une limite qu'on notera l.
- 6. Déterminer la limite de u_n^n et en déduire la valeur de l.

Exercice 9 (**)

On considère la fonction f définie sur \mathbb{R} par $f(x) = e^x + x$.

- 1. Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle à expliciter.
- 2. Justifier que pour tout entier positif n, l'équation f(x) = n possède une unique solution que l'on notera par la suite x_n .
- 3. Déterminer la monotonie de la suite x_n .
- 4. Démontrer que $\forall n \ge 1$, $\ln(n \ln n) \le x_n \le \ln n$.
- 5. En déduire la limite de la suite (x_n) puis celle de $\frac{x_n}{\ln(n)}$.

Exercice 10 (**)

On considère, pour tout entier naturel n, la fonction f_n définie par $f_n(x) = x^5 + nx - 1$.

- 1. Étudier les variations de f_n .
- 2. Montrer que, $\forall n \geqslant 1$, il existe un unique réel u_n tel que $f_n(u_n) = 0$.
- 3. Montrer que $u_n \leqslant \frac{1}{n}$ et en déduire la convergence de la suite (u_n) .
- 4. Montrer que (nu_n) admet une limite finie, que l'on précisera.

Exercice 11 (***)

Pour tout $n \ge 1$, on définit la fonction f_n sur \mathbb{R}^{+*} par $f_n(x) = 1 + x + x^2 + \cdots + x^n$.

- 1. Montrer que l'équation $f_n(x) = 2$ admet une unique solution qu'on notera u_n .
- 2. Montrer que $\forall n \geq 2, u_n \in]0;1[$.
- 3. Déterminer la monotonie de la suite (u_n) , et en déduire sa convergence.
- 4. Calculer la limite de la suite (on pourra commencer par prouver que $\lim_{n\to+\infty}u_n^n=0$).
- 5. En posant $v_n = u_n \frac{1}{2}$, montrer que $\left(\frac{1}{2} + v_n\right)^{n+1} = 2v_n$.

Exercice 12 (**)

Pour tout entier $n \ge 1$, on définit la fonction g_n par $g_n(x) = e^x - \frac{1}{nx}$.

- 1. Étudier les variations de la fonction g_n sur l'intervalle $]0, +\infty[$, et prouver que l'équation $g_n(x) = 0$ admet une seule solution sur cette intervalle, que l'on notera désormais u_n .
- 2. Montrer que $0 < u_n \leqslant \frac{1}{n}$, en déduire la limite de la suite (u_n) .
- 3. Simplifier l'expression de $g_{n+1}(x) g_n(x)$, et en déduire le signe de $g_n(u_{n+1})$ puis la monotonie de la suite (u_n) .

3

4. Déterminer $\lim_{n \to +\infty} nu_n$.