Feuille d'exercices n°15 : Analyse asymptotique

PTSI B Lycée Eiffel

22 mars 2016

Exercice 1 (*)

Déterminer un équivalent simple de chacune des suites suivantes :

1.
$$u_n = \frac{n^2 + e^{-2n} + \sqrt{n^5}}{\ln(2n) + 2n - 3}$$

2.
$$u_n = (n+3\ln(n))e^{-(n+1)}$$

3.
$$u_n = \frac{\ln(n^2 + 1)}{n^2 + 1}$$

4.
$$u_n = \ln\left(\frac{n^2 + 1}{n^2 + 2}\right)$$

5.
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

6.
$$u_n = \sum_{k=0}^{k=n} k!$$

7.
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$

Exercice 2 (**)

Soit (u_n) une suite décroissante vérifiant $u_n + u_{n+1} \sim \frac{1}{n}$. Montrer que la suite converge nécessairement vers 0 et en donner un équivalent simple. Le résultat reste-t-il vrai si la suite n'est pas supposée décroissante?

Exercice 3 (***)

On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{n - 2 + \dots + \sqrt{2 + \sqrt{1}}}}}$.

1

- 1. Montrer que (u_n) diverge vers $+\infty$.
- 2. Déterminer une relation simple entre u_{n+1} et u_n .
- 3. Prouver par récurrence que $u_n \leq n$ puis que $u_n = o(n)$.
- 4. Déterminer un équivalent simple de u_n .
- 5. Déterminer $\lim_{n \to +\infty} u_n \sqrt{n}$.

Exercice 4 (** à ***)

Déterminer des équivalents des fonctions suivantes :

1.
$$\frac{\ln(1+\tan(x))}{\sqrt{\sin(x)}} \text{ en } 0$$

2.
$$\frac{\sqrt{x^3+1}}{\sqrt[3]{x^2-1}}$$
 en $+\infty$

3.
$$\ln(\cos(x))$$
 en 0

4.
$$(x+1)^x - x^x$$
 en 0

5.
$$\sqrt{\ln(x+1) - \ln(x)}$$
 en $+\infty$

6.
$$\frac{1}{\cos(x)} - \tan(x)$$
 en $\frac{\pi}{2}$

7.
$$x^{x^{\frac{1}{x}}} - x$$
 en $+\infty$ et en 0

8.
$$\frac{\ln(x^2+1) - \ln(2x^2+1)}{\ln(x^3+1) - \ln(x^3-1)}$$
 partout où c'est intéressant

Exercice 5 (**)

On considère, pour tout entier naturel n, la fonction $f_n: x \mapsto x^3 + nx + n$.

- 1. Montrer que l'équation $f_n(x) = 0$ possède toujours une unique solution u_n sur \mathbb{R} .
- 2. Montrer que $-1 \leqslant u_n \leqslant 0$.
- 3. Déterminer la monotonie de la suite (u_n) .
- 4. Prouver que $\lim_{n \to +\infty} u_n = -1$.
- 5. Montrer que $u_n + 1 \sim \frac{1}{n}$, puis que $u_n = -1 + \frac{1}{n} \frac{3}{n^2} + o\left(\frac{1}{n^2}\right)$.
- 6. Comme vous avez du temps à perdre, continuez les calculs jusqu'à avoir un développement asymptotique à l'ordre $\frac{1}{n^5}$.

Exercice 6 (* à **)

Calculer les développements limités suivants (on utilisera la notation $DL_n(a)$ pour indiquer le • $DL_4(0); f(x) = \frac{1}{\sqrt{1-x}}$ • $DL_6(0); f(x) = \frac{1}{\cos(x)}$ • $DL_4(1); f(x) = e^x$ • $DL_2(0); f(x) = \sqrt{3+\cos(x)}$ • $DL_4(0); f(x) = \sqrt{\cos(x)}$ • $DL_5(0); f(x) = \frac{1}{(x-1)^2}$ • $DL_3(0); f(x) = \sqrt{\cos(x)} - \cos(\sqrt{x})$ • $DL_4(0); f(x) = \ln(1+e^x)$ • $DL_6(0); f(x) = \frac{\sin(x)}{x}$ • $DL_3(0); f(x) = (1+\sin(x))^x$ • $DL_2(1); f(x) = \arctan(x)$ • $DL_3(1); f(x) = \ln(\sqrt{x})$ • $DL_3(0); f(x) = \sqrt{1+\sqrt{1+x}}$ • $DL_3(0); f(x) = \frac{1}{\sin(x)} - \frac{1}{\sin(x)}$ • $DL_3(0); f(x) = \frac{\ln(1+x)}{e^x-1}$ • $DL_3(0); f(x) = \ln(2e^x + e^{-x})$ • $DL_3(0); f(x) = \ln(2e^x + e^{-x})$ développement limité à l'ordre n au point a):

•
$$DL_4(0); f(x) = \frac{1}{\sqrt{1-x}}$$

•
$$DL_6(0); f(x) = \frac{1}{\cos(x)}$$

$$DL_4(1); f(x) = e^x$$

•
$$DL_2(0); f(x) = \sqrt{3 + \cos(x)}$$

•
$$DL_4(0); f(x) = \sqrt{\cos(x)}$$

•
$$DL_5(0); f(x) = \frac{1}{(x-1)^2}$$

•
$$DL_3(0); f(x) = \sqrt{x+2}$$

•
$$DL_4(0); f(x) = \ln(1 + e^x)$$

•
$$DL_6(0); f(x) = \frac{\sin(x)}{x}$$

•
$$DL_3(0); f(x) = \sqrt{\cos(x)} - \cos(\sqrt{x})$$

•
$$DL_5(0); f(x) = e^{\sin(x)}$$

•
$$DL_3(2); f(x) = x^4$$

$$DL_4(0), f(x) = (1 + \sin(x))$$

$$DL_2(0), f(x) = \sqrt{1 + \sqrt{1 + x}}$$

•
$$DL_2(1)$$
; $f(x) = \arctan(x)$

•
$$DL_3(1), f(x) = \text{In}(\sqrt{x})$$

• $DL_3\left(\frac{\pi}{2}\right); f(x) = \cos(x)$

•
$$DL_3(0); f(x) = \frac{1}{\sin(x)} - \frac{1}{\sin(x)}$$

•
$$DL_2(0); f(x) = \frac{\ln(1+x)}{e^x - 1}$$

•
$$DL_3(0); f(x) = \ln(2e^x + e^{-x})$$

•
$$DL_2(0); f(x) = \frac{xe^{-x}}{2x+1}$$

$$DL_2(2); f(x) = x^x$$

•
$$DL_2(2); f(x) = x^x$$
 • $DL_2(0); f(x) = \arcsin\left(\frac{x+1}{x+2}\right)$

Exercice 7 (***)

À l'aide de l'inégalité de Taylor-Lagrange, déterminer un réel A tel que $\forall x \in [0,1], \ \forall n \in \mathbb{N}^*, \ \left| (1+x^2)^{\frac{1}{n}} - 1 - \frac{1}{n} \ln(1+x^2) \right| \leqslant \frac{A}{n^2}$. En déduire deux réels a et b tels que $\int_{0}^{1} (1+x^{2})^{\frac{1}{n}} dx = a + \frac{b}{n} + o\left(\frac{1}{n}\right).$

Exercice 8 (* à **)

Calculer à l'aide de développements limités les limites suivantes.

•
$$\lim_{x \to +\infty} x - x^2 \ln\left(1 + \frac{1}{x}\right)$$
•
$$\lim_{x \to 0} \left(\frac{\tan(x)}{x}\right)^{\frac{1}{x^2}}$$
•
$$\lim_{x \to 0} \frac{e^x - x - \cos(x)}{x^2}$$
•
$$\lim_{x \to 0} \frac{1}{x^3} - \frac{1}{\sin^3(x)}$$
•
$$\lim_{x \to +\infty} \left(\cosh\left(\frac{1}{x}\right)\right)^{x^2}$$

•
$$\lim_{x \to 0} \frac{1}{x^3} - \frac{1}{\sin^3(x)}$$
 • $\lim_{x \to +\infty} \left(\operatorname{ch}\left(\frac{1}{x}\right) \right)^x$

Exercice 9 (** à ***)

Étudier le comportement des fonctions suivantes (existence d'asymptote ou de tangente et position relative) à l'endroit indiqué:

1.
$$f(x) = \ln(1 + x + x^2)$$
 au voisinage de 0.

2.
$$f(x) = \frac{x}{e^x - 1}$$
 au voisinage de 0.

3.
$$f(x) = 2\sqrt{x} - \sqrt{x+1} - \sqrt{x-1}$$
 en $+\infty$.

4.
$$f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$$
 en $+\infty$.

5.
$$f(x) = x^2 \arctan\left(\frac{1}{1+x}\right) \text{ en } +\infty.$$

6.
$$f(x) = \frac{\arctan(x)}{\sin^3(x)} - \frac{1}{x^2}$$
 au voisinage de 0.

$$\sin^{6}(x) = x^{2}$$
7. $f(x) = \int_{x}^{x^{2}} \frac{1}{\sqrt{1+t^{4}}} dt$ en $+\infty$ (on donnera un développement asymptotique avec trois termes).

8.
$$f(x) = \frac{x \ln(x)}{x^2 - 1}$$
 sur \mathbb{R} .

9.
$$f(x) = x^{1 - \frac{1}{x^2}}$$
 sur \mathbb{R} .

Exercice 10 (***)

Montrer que les suites (u_n) et (v_n) définies par $u_n = n - \sum_{n=1}^{n} \cos\left(\frac{1}{k}\right)$ et $v_n = u_n + \sin\left(\frac{1}{n}\right)$ sont adjacentes (au moins à partir d'un certain rang).

3

Problème (***)

On s'intéresse dans tout cet exercice à la fonction $g: x \mapsto e^{\frac{1}{x}} \sqrt{1+x+x^2}$.

- 1. Étude de la fonction g.
 - (a) Déterminer le domaine de définition de g.
 - (b) Calculer la dérivée de g et prouver que $g'(x) = \frac{e^{\frac{1}{x}}}{2x^2\sqrt{1+x+x^2}}(2x^3-x^2-2x-2).$
 - (c) Sans chercher à résoudre d'équation du troisième degré, montrer que g' s'annule une seule fois sur \mathbb{R} , en une valeur α vérifiant $1 < \alpha < 2$ (on pourra redériver un morceau de g').
 - (d) Déterminer les limites de g aux bornes de son ensemble de définition.
 - (e) La fonction g prolongée à gauche en 0 admet-elle une demi-tangente à gauche en 0 (si oui, déterminer sa pente)?
 - (f) Donner un équivalent simple de g(x) lorsque x tend vers $+\infty$.
 - (g) Effectuer un développement asymptotique de g à l'ordre $\frac{1}{x^2}$ quand x tend vers $+\infty$ (on commencera par sortir un facteur x de la racine carrée). En déduire la présence d'une asymptote oblique dont on donnera l'équation, ainsi que la position relative de la courbe de g et de cette asymptote au voisinage de $+\infty$.
 - (h) La même droite est-elle asymptote quand x tend vers $-\infty$? Sinon, que se passe-t-il de ce côté-là?
 - (i) Tracer une allure soignée de la courbe représentative de g. On donne $\alpha \simeq 1,55$ et $g(\alpha) \simeq 4,2$.
- 2. Un peu de suites implicites.
 - (a) Justifier que, $\forall n \geq 5$, l'équation g(x) = n admet deux solutions distinctes u_n et v_n sur \mathbb{R}^{+*} vérifiant $u_n < \alpha$ et $v_n > \alpha$.
 - (b) Montrer que les deux suites (u_n) et (v_n) sont monotones et prouver rigoureusement que $\lim_{n\to+\infty}u_n=0$ et $\lim_{n\to+\infty}v_n=+\infty$.
 - (c) En partant de l'équation $g(u_n) = n$, montrer que $\ln(n)u_n = 1 + \frac{u_n}{2}\ln(1 + u_n + u_n^2)$. En déduire un équivalent simple de u_n .
 - (d) Montrer que $u_n = \frac{1}{\ln(n)} + \frac{1}{2\ln^3(n)} + o\left(\frac{1}{\ln^3(n)}\right)$ (attention à la rédaction!).
 - (e) Utiliser l'expression précédente pour obtenir le terme suivant du développement asymptotique de la suite (u_n) .
 - (f) Donner un équivalent simple de v_n quand n tend vers $+\infty$ (on oubliera pas que (v_n) tend elle-même vers $+\infty$, contrairement à (u_n)).
 - (g) Montrer que $v_n = ne^{-\frac{1}{v_n}} \left(1 + \frac{1}{v_n} + \frac{1}{v_n^2}\right)^{-\frac{1}{2}}$, et en déduire la limite de $v_n n$ quand n tend vers $+\infty$.
 - (h) Calculer un développement asymptotique de v_n sous la forme $v_n = n + a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$.

4