Feuille d'exercices n°8 : Matrices

PTSI B Lycée Eiffel

18 décembre 2014

Exercice 1 (*)

On considère la matrice $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- 1. Déterminer toutes les matrices B dans $\mathcal{M}_3(\mathbb{R})$ telles que AB = 0.
- 2. Déterminer toutes les matrices C dans $\mathcal{M}_3(\mathbb{R})$ telles que AC = CA = 0.

Exercice 2 (* à **)

Déterminer toutes les matrices qui commutent avec chacune des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}; B = \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & 2 \\ -2 & 1 & -1 \end{pmatrix}; I_n; C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Déterminer les matrices qui commutent avec toutes les matrices diagonales de $\mathcal{M}_n(\mathbb{R})$. Déterminer les matrices qui commutent avec toutes les matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

Exercice 3 (*)

Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore symétrique (très peu de calculs nécessaires).

Exercice 4 (**)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant AB - BA = B. Montrer que, $\forall k \in \mathbb{N}$, $AB^k - B^k A = kB^k$, et en déduire la valeur de $\text{Tr}(B^k)$.

Exercice 5 (**)

On fixe A et B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. Résoudre l'équation X + Tr(X)A = B, où X est une matrice inconnue dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 6 (***)

On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$.

- 1. Déterminer un polynôme de degré 2 annulant la matrice A.
- 2. En déduire que A est inversible et calculer son inverse (sans faire le pivot de Gauss).
- 3. En utilisant les racines du polynôme trouvé à la question 1, déterminer le reste de la division euclidienne de X^n par ce polynôme, pour un entier $n \ge 2$.
- 4. En déduire la valeur de A^n .

Exercice 7 (**)

On considère dans $\mathcal{M}_n(\mathbb{R})$ la matrice J dont tous les coefficients sont égaux à 1. Calculer J^2 puis déterminer les puissances de matrice J. En déduire, à l'aide de la formule du binôme de Newton, les puissances de la matrice $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$.

Exercice 8 (**)

Déterminer les puissances de la matrice $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$ (au moins deux méthodes possibles).

Exercice 9 (***)

Soit
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 6 & -2 & -4 \\ -4 & 1 & 3 \end{pmatrix}$$
.

- 1. Montrer que $A^3 = 6A A^2$.
- 2. Montrer qu'il existe deux suites a_k et b_k telles que $A^k = a_k A^2 + b_k A$ (pour $k \ge 2$).
- 3. Trouver des relations de récurrence pour a_k et b_k et en déduire leurs valeurs.
- 4. En déduire l'expression de A^k . Reste-t-elle valable pour k=0 et pour k=1?

Exercice 10 (*)

 $\text{Inverser (lorsque c'est possible) les matrices suivantes} : A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}; B = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix};$ $C = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 5 \end{pmatrix}; D = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 4 \end{pmatrix}; E = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}; F = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$

Exercice 11 (**)

On considère les matrices $A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$. Montrer que P est inversible et déterminer son inverse. Calculer $P^{-1}AP$ et en déduire les puissances de la matrice A.

Exercice 12 (**)

Soit A une matrice nilpotente. Montrer que I-A est inversible et que son inverse s'écrit sous la forme $I+A+A^2+\cdots+A^k$. En déduire l'inverse de la matrice $A=\begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et celui de la

$$\text{matrice } B = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right).$$

Exercice 13 (**)

Déterminer l'inverse de la matrice suivante (matrice carrée à n lignes et n colonnes) :

$$\begin{pmatrix}
1 & 1 & 0 & & \dots & & 0 \\
0 & 1 & 1 & 0 & & \dots & 0 \\
\vdots & & \ddots & \ddots & & & \vdots \\
\vdots & & & \ddots & \ddots & & \vdots \\
0 & \dots & & 0 & 1 & 1 \\
0 & & \dots & & 0 & 1
\end{pmatrix}$$

Exercice 14 (**)

Déterminer l'inverse de la matrice suivante (on peut perdre énormément de temps à appliquer un pivot bête et (très) méchant, on peut aussi chercher des astuces diaboliques à bases de racines sixièmes de l'unité) :

Exercice 15 (**)

Résoudre chacun des systèmes suivants, en distinguant éventuellement des cas suivants les valeurs des paramètres :

•
$$\begin{cases} x + 2y + 3z = 1 \\ -x - 3y + 5z = 2 \\ x + y + z = -1 \end{cases}$$
•
$$\begin{cases} 2x - y + 3z = 1 \\ x - y + z = 2 \\ x - 2y + 4z = 1 \end{cases}$$
•
$$\begin{cases} x + 2y + z = 2 \\ 2x + y + z = -1 \\ x - 3y + 2z = -1 \end{cases}$$
•
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$
•
$$\begin{cases} ax + by + z = 1 \\ x + aby + z = b \\ x + by + az = 1 \end{cases}$$
•
$$\begin{cases} x - y + 2z + 3t + w = 3 \\ x + y + 2z + 7t + 3w = 19 \\ -x + 4y - 5z + 12t - 4w = 33 \\ 2x - 4y + 5z + t = -12 \\ 4x - 3y + 4z + 11t + 9w = 15 \end{cases}$$

Problème (***)

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite **stochastique** si tous ses coefficients sont positifs et si, $\forall i \in$ $\{1;\ldots;n\},$ $\sum_{i=1}^n a_{ij}=1$. On considèrera dans ce problème qu'une suite de matrice $(A_p)_{p\in\mathbb{N}}$ converge vers la matrice A si chacun des coefficients $(A_p)_{i,j}$ a pour limite $A_{i,j}$ quand n tend vers $+\infty$.

I. Étude d'un exemple dans $\mathcal{M}_2(\mathbb{R})$.

On considère dans cette première partie la matrice $A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}$.

- 1. Déterminer deux réels a et b tels que $A^2 = aA + bI_2$.
- 2. Prouver que, $\forall n \in \mathbb{N}, \exists (a_n, b_n) \in \mathbb{R}^2, A^n = a_n A + b_n I$.
- 3. Déterminer des relations de récurrence sur les suites (a_n) et (b_n) , et en déduire les valeurs de a_n et b_n , puis la matrice A^n .
- 4. Montrer que la suite de matrices (A^n) converge, et que sa limite est une matrice stochastique.

II. Étude d'un exemple dans $\mathcal{M}_3(\mathbb{R})$.

Dans cette deuxième partie, on pose
$$B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$
, et $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Déterminer les puissances de la matrice J.
- 2. Écrire B comme combinaison des matrices I_3 et J, et en déduire les puissances de la matrice B à l'aide de la formule du binôme de Newton.
- 3. Montrer que la suite (B^n) converge, et que sa limite est une matrice stochastique.

III. Étude générale des matrices stochastiques de $\mathcal{M}_2(\mathbb{R})$.

On considère désormais une matrice stochastique $A = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$, avec $(a,b) \in [0,1]^2$.

- 1. Calculer A^p dans le cas où a=b=1, et a=b=0. On exclut ces deux cas particuliers pour les questions suivantes.
- 2. On considère le polynôme P = (X 1)(X a b + 1), calculer P(A).
- 3. Déterminer le reste de la division euclidienne de X^n par P.
- 4. En déduire les puissances de la matrice A.
- 5. Montrer que la suite (A^p) converge vers une limite à préciser.

IV. Une étude plus générale.

On considère désormais une matrice stochastique (à n lignes et n colonnes) dont tous les coefficients sont strictement positifs. On note m le plus petit coefficient de A; $\alpha_i^{(p)}$ le plus petit coefficient de la colonne numéro j de la matrice A^p , et $\beta_j^{(p)}$ le plus grand coefficient de cette même colonne. Enfin, on note $\delta_j^{(p)} = \beta_j^{(p)} - \alpha_j^{(p)}$.

- 1. Montrer que si la suite (A^p) converge, sa limite B est une matrice stochastique, et vérifie $B^2 = B$ et BA = AB.
- 2. Montrer que, $\forall p \in \mathbb{N}, \forall j \in \{1; \ldots; n\}, \, \alpha_j^{(p)} \leqslant \alpha_j^{(p+1)} \leqslant \beta_j^{(p+1)} \leqslant \beta_j^{(p)}, \, \text{et } \delta_j^{(p+1)} \leqslant (1-2m)\delta_j^{(p)}.$ 3. En déduire que la suite (A^p) converge. Que peut-on dire des lignes de la matrice limite B?
- 4. Déterminer la limite de la suite (A^p) lorsque $A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$ (on pourra exploiter le fait que A est une matrice symétrique).