Feuilles d'exercices n°4 : corrigé

ECE3 Lycée Carnot

4 octobre 2010

Exercice 1 (*)

La suite (u_n) vérifie d'après l'énoncé la relation de récurrence $u_{n+1} = u_n + \frac{5}{100} \times 1000 = u_n + 50$, c'est donc une suite arithmétique de raison 50 et de premier terme $u_0 = 1000$. On sait alors que $u_n = 1000 + 50n$. De même, la suite (v_n) vérifie la relation de récurrence $v_{n+1} = v_n + \frac{3}{100}v_n = v_n \times 1,03$, donc (v_n) est une suite géométrique de raison 1,03 et de premier terme $v_0 = 1000$. Toujours d'après le cours, on a donc $v_n = 1000 \times 1,03^n$. En utilisant la calculatrice, on constate qu'il faut attendre 33 ans pour que le deuxième placement commence à être plus intéressant que le premier.

Si l'épargnant choisit le placement A, il aura doublé son capital lorsque $1\ 000+50n=2\ 000$, soit $50n=1\ 000$, donc n=20. S'il choisit le placement B, il aura doublé son capital lorsque $1\ 000\times 1,03^n=2\ 000$, soit $1,03^n=2$, donc en passant au ln on obtient $n\ln 1,03=\ln 2$, soit $n=\frac{\ln 2}{\ln 1,03}\simeq 23,4$. Il devra donc attendre 20 ans pour doubler son capital avec le placement A et 24 ans avec le placement B.

Exercice 2 (***)

Les deux conditions peuvent se traduire de la façon suivante : $\frac{b}{a} = \frac{c}{b} = q$, et 2b - a = 3c - 2b = q. La première relation revient à dire que b = aq et $c = bq = aq^2$, d'où en remplaçant dans la deuxième donne $2aq - a = 3aq^2 - 2aq(=q)$, d'où $3aq^2 - 4aq + a = 0$, soit en factorisant par a qui est supposé non nul $3q^2 - 4q + 1 = 0$. Cette équation du second degré a pour discriminant $\Delta = 16 - 12 = 4$, et admet deux racines réelles $q_1 = \frac{4+2}{6} = 1$, et $q_2 = \frac{4-2}{6} = \frac{1}{3}$. Si q = 1, la condition 2aq - a = q donne a = 1, puis b = aq = 1 et c = bq = 1; et si $q = \frac{1}{2}$, on obtient $\frac{2}{3}a - a = \frac{1}{2}$, soit $a = -\frac{3}{2}$, puis $b = \frac{1}{3}a = -\frac{1}{2}$ et $c = \frac{1}{3}b = -\frac{1}{6}$. Les deux seules possibilités sont donc d'avoir a = b = c = q = 1 (auquel cas les trois termes consécutifs de la suite géométrique sont 1, 1 et 1, et les trois termes consécutifs de la suite arithmétique sont 1, 2 et 3); ou $q = \frac{1}{3}$, donc $a = -\frac{3}{2}$, $b = -\frac{1}{2}$ et $c = -\frac{1}{6}$ (auquel cas les trois termes consécutifs de la suite géométrique sont $-\frac{3}{2}$, $-\frac{1}{2}$ et $-\frac{1}{6}$, et les trois termes consécutifs de la suite arithmétique sont $-\frac{3}{2}$, -1 et $-\frac{1}{2}$).

Exercice 3 (***)

Notons donc $v_n = u_n + an^2 + bn + c$, alors $v_{n+1} = u_{n+1} + a(n+1)^2 + b(n+1) + c = 2u_n + n^2 - 1 + an^2 + 2an + a + bn + b + c = 2u_n + (1+a)n^2 + (2a+b)n + a + b + c - 1$. Pour que (v_n) soit géométrique, on doit avoir $v_{n+1} = qv_n = qu_n + aqn^2 + bqn + cq$. Il est nécessaire d'avoir q = 2, et en identifiant ensuite les coefficients des deux formules obtenues, on a 1 + a = 2a, 2a + b = 2b et a + b + c - 1 = 2c, ce qui donne successivement a = 1, puis b = 2a = 2, et enfin c = a + b - 1 = 2. Avec ces valeurs, la

suite (v_n) est géométrique de raison 2 et de premier terme $v_0 = u_0 + a \times 0^2 + b \times 0 + c = 2 + 2 = 4$. Conclusion de ces calculs : $v_n = 4 \times 2^n = 2^{n+2}$, puis $u_n = v_n - an^2 - bn - c = 2^{n+2} - n^2 - 2n - 2$.

Exercice 4 (**)

Vérifions donc que (v_n) est arithmético-géométrique : $v_{n+1} = \frac{u_{n+1}}{3^{n+1}} = \frac{2u_n + 3^n}{3^{n+1}} = \frac{2u_n}{3 \times 3^n} + \frac{3^n}{3^{n+1}} = \frac{2}{3}u_n + \frac{1}{3}$. La suite est donc arithmético-géométrique, il ne reste plus qu'à calculer son terme général. L'équation de point fixe associée est $x = \frac{2}{3}x + \frac{1}{3}$, qui a pour solution x = 1. On introduit donc la suite auxiliaire $w_n = v_n - 1$. Verifions que cette troisième suite est géométrique : $w_{n+1} = v_{n+1} - 1 = \frac{2}{3}v_n + \frac{1}{3} - 1 = \frac{2}{3}v_n - \frac{2}{3} = \frac{2}{3}(v_n - 1) = \frac{2}{3}w_n$. La suite (w_n) est donc géométrique de raison $\frac{2}{3}$ et de premier terme $w_0 = v_0 - 1 = \frac{u_0}{3^0} - 1 = -1$. Conclusion de nos calculs : $w_n = -\left(\frac{2}{3}\right)^n$, puis $v_n = w_n + 1 = 1 - \left(\frac{2}{3}\right)^n$, et enfin $u_n = 3^n v_n = 3^n \left(1 - \left(\frac{2}{3}\right)^n\right) = 3^n - 2^n$.

Exercice 5 (***)

Un peu d'observation (et peut-être d'habitude de manipuler ce genre de suites) conduit à s'intéresser aux deux suites suivantes : $u_{n+1}+v_{n+1}=\frac{1}{3}(2u_n+v_n)+\frac{1}{3}(u_n+2v_n)=\frac{2}{3}u_n+\frac{1}{3}v_n+\frac{1}{3}u_n+\frac{2}{3}v_n=u_n+v_n$, donc la suite (u_n+v_n) (on peut lui donner un nom si on le souhaite) est constante, égale à son premier terme $u_0+v_0=3$. De même, on remarque que $u_{n+1}-v_{n+1}=\frac{2}{3}u_n+\frac{1}{3}v_n-\frac{1}{3}u_n-\frac{2}{3}v_n=\frac{1}{3}u_n-\frac{1}{3}v_n=\frac{1}{3}(u_n-v_n)$, donc la suite (u_n-v_n) est géométrique de raison $\frac{1}{3}$ et de premier terme $u_0-v_0=1-2=-1$. Conclusion, on a $\forall n\in\mathbb{N},\ u_n-v_n=-\left(\frac{1}{3}\right)^n=-\frac{1}{3^n}$, soit $u_n=v_n+\frac{1}{3^n}$. Comme on sait par ailleurs que $u_n+v_n=3$, on peut remplacer u_n pour obtenir $2v_n+\frac{1}{3^n}=3$, soit $v_n=\frac{1}{2}\left(1-\frac{1}{3^n}\right)$, puis $u_n=\frac{1}{2}\left(1+\frac{1}{3^n}\right)$.

Exercice 6 (**)

L'énoncé se traduit par la relation de récurrence $u_{n+1}=u_n+\frac{3}{100}u_n+1\ 000=1,03u_n+1\ 000$ donc la suite (u_n) est arithmético-géométrique. Son équation de point fixe est $x=1,03x+1\ 000$, ce qui donne $x=-\frac{10\ 000}{3}$, qu'on notera simplement α pour alléger les calculs. En posant $v_n=u_n-\alpha$, on a donc $v_{n+1}=u_{n+1}-\alpha=1,03u_n+1\ 000-\alpha=1,03(u_n-\alpha)$, puisque par définition $1\ 000-\alpha=-1,03\alpha$. La suite (v_n) est donc géométrique de raison 1,03 et de premier terme $v_0=u_0-\alpha=3\ 000-\alpha$. On en déduit que $v_n=(3\ 000-\alpha)\times 1,03^n$, puis $u_n=(3\ 000-\alpha)\times 1,03^n+\alpha$.

Notre épargnant dispose de 30 000 euros quand $(3\ 000-\alpha)\times 1,03^n+\alpha=30\ 000,$ soit $1,03^n=\frac{30\ 000-\alpha}{3\ 000-\alpha}$, ou encore après passage au ln (comme à la fin de l'exercice 1), $n=\frac{\ln\left(\frac{30\ 000-\alpha}{3\ 000-\alpha}\right)}{\ln 1,03}\simeq 18,9$. L'épargnant aura donc décuplé sa mise initiale au bout de 19 ans, en ayant déposé sur cette période $19\times 1\ 000+3\ 000=22\ 000$ euros.

Exercice 7 (**)

La suite (v_n) est bien définie si $\forall n \in \mathbb{N}, u_n > 0$, ce que nous allons prouver par récurrence. Posons donc $P_n : u_n > 0$. La propriété P_0 est manifestement vraie puisque 16 > 0. Supposons désormais P_n vraie, c'est-à-dire que $u_n > 0$. On a alors également $\sqrt{u_n} > 0$, donc $u_{n+1} = 2\sqrt{u_n} > 0$, ce qui prouve P_{n+1} . La suite (v_n) est donc bien définie.

Cherchons désormais à calculer $v_{n+1}: v_{n+1} = \ln(u_{n+1}) = \ln(2\sqrt{n}) = \ln 2 + \frac{1}{2} \ln u_n = \ln 2 + \frac{1}{2} v_n$. La suite (v_n) est donc arithmético-géométrique. Son équation de point fixe est $x = \ln 2 + \frac{1}{2} x$, ce qui donne $x = 2 \ln 2$. Posons donc une suite auxiliaire $w_n = v_n - 2 \ln 2$, et vérifions que (w_n) est géométrique : $w_{n+1} = v_{n+1} - 2 \ln 2 = \ln 2 + \frac{1}{2} v_n - 2 \ln 2 = \frac{1}{2} v_n - \ln 2 = \frac{1}{2} (v_n - 2 \ln 2) = \frac{1}{2} w_n$. La suite (w_n) est donc géométrique de raison $\frac{1}{2}$ et de premier terme $w_0 = v_0 - 2 \ln 2 = \ln(u_0) - 2 \ln 2 = \ln(16) - 2 \ln 2 = 2 \ln 2$. On en déduit que $w_n = \frac{2 \ln 2}{2^n} = \frac{\ln 2}{2^{n-1}}$, soit $v_n = w_n + 2 \ln 2 = \frac{\ln 2}{2^{n-1}} + 2 \ln 2$, et enfin $u_n = e^{v_n} = e^{2^{1-n} \ln 2} e^{2 \ln 2} = 4 \times 2^{2^{1-n}} = 2^{2^{1-n} + 2}$.

Exercice 8 (*)

- 1. L'équation caractéristique de la suite est $x^2-3x+2=0$, qui a pour discriminant $\Delta=9-8=1$, et admet deux racines réelles $r=\frac{3+1}{2}=2$ et $s=\frac{3-1}{2}=1$. La suite (u_n) a donc un terme général de la forme $u_n=\alpha 2^n+\beta$, avec, en utilisant les valeurs initiales, $\alpha+\beta=0$ et $2\alpha+\beta=1$. En soustrayant les deux équations on obtient $\alpha=1$, puis $\beta=-\alpha=-1$, donc $u_n=2^n-1$.
- 2. L'équation caractéristique de la suite est $x^2-6x+9=0$, qui a pour discriminant $\Delta=36-36=0$, et admet une racine double $r=\frac{6}{2}=3$. La suite (u_n) a donc un terme général de la forme $u_n=(\alpha+\beta n)3^n$, avec, en utilisant les valeurs initiales, $\alpha\times 3^0=0$ et $(\alpha+\beta)\times 3^1=1$. La première équation donne $\alpha=0$, puis la deuxième donne $\beta=\frac{1}{3}$, d'où $u_n=\frac{1}{3}n3^n=n3^{n-1}$ (formule valable seulement si $n\geqslant 1$).
- 3. L'équation caractéristique de la suite est $2x^2-3x+1=0$, qui a pour discriminant $\Delta=9-8=1$, et admet deux racines réelles $r=\frac{3+1}{4}=1$ et $s=\frac{3-1}{4}=\frac{1}{2}$. La suite (u_n) a donc un terme général de la forme $u_n=\alpha+\frac{\beta}{2^n}$, avec, en utilisant les valeurs initiales, $\alpha+\beta=1$ et $\alpha+\frac{\beta}{2}=-1$. En soustrayant les deux équations on obtient $\frac{\beta}{2}=2$, soit $\beta=4$, puis la première équation donne $\alpha=-3$, d'où $u_n=\frac{4}{2^n}-3$.

Exercice 9 (**)

- Prouvons par récurrence la propriété P_n: u_n > 2 (ce qui prouvera au passage que (u_n) est bien définie puisqu'on aura alors toujours u_n ≠ 2). La propriété P₀ est manifestement vraie. Supposons maintenant P_n vraie, c'est-à-dire que u_n > 2. On a alors u_n-2 > 0, donc 1/(u_n-2) > 0, puis 1/(u_n-2) + 2 > 2, ce qui prouve P_{n+1}. Par principe de récurrence, P_n est vérifiée pour tout entier n.
- 2. D'après la question précédente, on a toujours $u_n 2 > 0$, ce qui prouve la bonne définition de v_n .

3. Calculons donc $v_{n+1} = \ln(u_{n+1} - 2) = \ln\left(\frac{1}{u_n - 2} + 2 - 2\right) = \ln\left(\frac{1}{u_n - 2}\right) = -\ln(u_n - 2) = -v_n$. La suite (v_n) est donc une suite géométrique de raison -1 et de premier terme $v_0 = \ln(u_0 - 2) = \ln 2$, d'où $v_n = (-1)^n \ln 2$, puis $u_n = e^{v_n} + 2 = e^{(-1)^n \ln 2} + 2$. En fait, on aura $u_n = 2 + 2 = 4$ pour toutes les valeurs paires de n, et $u_n = \frac{1}{2} + 2 = \frac{5}{2}$ pour toutes les valeurs impaires de n (on parle de suite périodique, comme pour les fonctions, pour une suite reprenant ainsi toujours les mêmes valeurs).

Exercice 10 (***)

Remarquons que, en décalant la relation de récurrence, $u_n = u_{n-1} + 2u_{n-2} + \cdots + 2u_0$. En soustrayant cette relation à celle donnée dans l'énoncé, on obtient $u_{n+1} - u_n = u_n + u_{n-1}$, soit $u_{n+1} = 2u_n + u_{n-1}$. C'est une relation de récurrence linéaire d'ordre 2, d'équation caractéristique $x^2 - 2x - 1 = 0$. Son discriminant vaut $\Delta = 4 + 4 = 8$, elle admet donc deux racines réelles $r = \frac{2+\sqrt{8}}{2} = 1+\sqrt{2}$, et $s = \frac{1-\sqrt{8}}{2} = 1-\sqrt{2}$. Le terme général de la suite (u_n) est donc de la forme $u_n = \alpha(1+\sqrt{2})^n + \beta(1-\sqrt{2})^n$, avec en utilisant les deux premiers termes, $\alpha + \beta = u_0 = 1$, et $\alpha(1+\sqrt{2})+\beta(1-\sqrt{2})=u_1=u_0=1$. En soustrayant les deux équations on obtient $\alpha\sqrt{2}-\beta\sqrt{2}=0$, donc $\alpha = \beta$, ce qui en reprenant la première équation mène à $\alpha = \beta = \frac{1}{2}$. Conclusion : $u_n = \frac{1}{2}(1+\sqrt{2})^n + \frac{1}{2}(1-\sqrt{2})^n$ (ce n'est pas évident au premier abord, mais tous les termes de cette suite sont bel et bien entiers, malgré la présence de ces $\sqrt{2}$ dans la formule du terme général).

Exercice 11 (***)

- 1. Posons donc $v_n = an + b$, on a alors $v_{n+2} 3v_{n+1} + 2v_n = a(n+2) + b 3a(n+1) 3b + 2an + 2b = an + 2a + b 3an 3a 3b + 2an + 2b = -a$. Si on veut avoir $v_{n+2} 3v_{n+1} + 2v_n = 3$, il suffit donc de prendre a = -3 (et, b pouvant être égal à n'importe quoi, autant prendre simplement b = 0). La suite définie par $v_n = -3n$ convient donc.
- 2. Si $z_n=u_n-v_n$, on a $z_{n+2}-3z_{n+1}+2z_n=u_{n+2}-v_{n+2}-3u_{n+1}+3v_{n+1}+2u_n-2v_n=u_{n+2}-3u_{n+1}+2u_n-(v_{n+2}-3v_{n+1}+2v_n)=3-3=0$ puisque les deux suites (u_n) et (v_n) satisfont la récurrence initiale. La suite (z_n) est donc récurrente linéaire d'ordre 2, d'équation caractéristique $x^2-3x+2=0$, qui a pour discriminant $\Delta=9-8=1$, et admet deux racines réelles $r=\frac{3-1}{2}=1$ et $s=\frac{3+1}{2}=2$. On en déduit que $z_n=\alpha+\beta 2^n$, avec $\alpha+\beta=z_0$, et $\alpha+2\beta=z_1$. En soustrayant les deux équations, on obtient $\beta=z_1-z_0$, puis $\alpha=z_0-\beta=2z_0-z_1$. Notons que $z_0=u_0-v_0=u_0$, et $z_1=u_1-v_1=u_1+3$. On a donc $z_n=2u_0-u_1-3+(u_1+3-u_0)2^n$, puis $u_n=z_n+v_n=2u_0-u_1-3+(u_1+3-u_0)2^n-3n$.