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Abstract. We exhibit infinite, solvable, abelian-by-finite groups, with a fixed
number of generators, with arbitrarily large balls consisting of torsion elements.
We also provide a sequence of 3-generator non-nilpotent-by-finite polycyclic groups
of algebraic entropy tending to zero. All these examples are obtained by taking ap-
propriate quotients of finitely presented groups mapping onto the first Grigorchuk
group.

The Burnside Problem asks whether a finitely generated group all of whose ele-
ments have finite order must be finite. We are interested in the following related
question: fix n sufficiently large; given a group Γ, with a finite symmetric generating
subset S such that every element in the n-ball is torsion, is Γ finite? Since the Burn-
side problem has a negative answer, a fortiori the answer to our question is negative
in general. However, it is natural to ask for it in some classes of finitely generated
groups for which the Burnside Problem has a positive answer, such as linear groups
or solvable groups. This motivates the following proposition, which in particularly
answers a question of Breuillard to the authors.

Proposition 1. For every n, there exists a group G, generated by a 3-element subset
S consisting of elements of order 2, in which the n-ball consists of torsion elements,
and satisfying one of the additional assumptions:

(1) G is solvable, virtually abelian, and infinite (more precisely, it has a free
abelian normal subgroup of finite 2-power index); in particular it is linear.

(2) G is polycyclic, not virtually nilpotent.
(3) G is solvable, non-polycyclic.

Remark 2.

(1) Natural stronger hypotheses are the following: being linear in fixed dimen-
sion, being solvable of given solvability length. We have no answer in these
cases. It is also natural to ask what happens it we fix a torsion exponent.

(2) By [Se, Corollaire 2, p.90], if G is a group and S is any finite generating
subset for which the 2-ball of G consists of torsion elements, then G has
Property (FA): every action of G on a tree has a fixed point. In particular,
if G is infinite, then, by Stalling’s Theorem [St] it cannot be virtually free.

(3) For every sufficiently large prime p, and for all n, there exists an infinite,
2-generated word hyperbolic group in which the n-ball consists of elements
of p-torsion [Ol].
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(4) We give in the sequel more quantitative statements: in (1), the free abelian
subgroup can be chosen of index 2an , where an ∼ 11nk (that is, an/(11nk) →
1), where k ∼= 6.60 is a constant (see Corollary 9).

With a similar construction, we obtain results on the growth exponent. Let G be
generated by a finite symmetric set S, and let Bn be the n-ball. Then, by a standard
argument, the limit h(G, S) = lim 1

n
log(#(Bn)) exists. The (algebraic) entropy of G

is defined as h(G) = infS h(G, S), where S ranges over all finite symmetric generating
subsets of G. Osin has proved [Os1, Os2] that, for an elementary amenable finitely
generated group, h(G) = 0 if and only if G is virtually nilpotent; on the other hand,
J. Wilson [W] has constructed a finitely generated group with h(G) = 0 which is
not virtually nilpotent; see [B2] for a simpler example. Relying on former work of
Grigorchuk [G2], Osin observes in [Os2] that there exist elementary amenable groups
(actually virtually solvable) with h > 0 arbitrary close to 0. This latter result can
be improved as follows.

Proposition 3. For every ε > 0, there exists a polycyclic, virtually metabelian,
3-generated group G with 0 < h(G) < ε.

Propositions 1 and 3 are obtained by approximating the Grigorchuk group, first
introduced in [G1], by finitely presented groups.

We recall below the definition of a family of 3-generated groups Γn, which are
successive quotients (Γn+1 is a quotient of Γn for all n). These are finitely pre-
sented groups obtained by truncating the presentation of Grigorchuk’s group. They
are proved in [GH] to be virtually direct products of nonabelian free groups; they
have larger and larger balls of torsion, and their entropy tends to zero. We get
Propositions 1 and 3 by considering appropriate solvable quotients of the groups Γn.

Following Lysionok [L], the first Grigorchuk group is presented as follows. We
start from the 3-generated group Γ−1 = 〈a, b, c, d | a2 = b2 = c2 = d2 = bcd = 1〉.
Elements un and vn of Γ−1 are defined below. Then, for 0 ≤ n ≤ ∞, Γn is defined
as the quotient of Γ−1 by the relations ui for i < n + 1 and vi for i < n. The
first Grigorchuk group Γ = Γ∞ has a wealth of remarkable properties. The most
celebrated one is that Γ has non-polynomial subexponential growth [G2]. It is also
a 2-group, i.e. a group in which every element is of finite 2-power order.

Let us define the relations un and vn. Consider the substitution σ defined by
σ(a) = aca, σ(b) = d, σ(c) = b, σ(d) = c; extend its definition to words in the
natural way, and finally observe that it defines a group endomorphism of Γ−1. Set
u0 = (ad)4, v0 = (adacac)4, un = σn(u0), vn = σn(v0).

For all n ≥ −1, the natural morphism Γn → Z/2Z sending b, c, d to 0 and a to 1
has kernel Ξn of index two.

We are going to focus on the finitely presented groups Γn rather than on Γ.
Individually, and up to commensurability, the structure of these groups is not of
special interest: Γn is commensurable to a direct product of 2n non-abelian free
groups [GH, Proposition 12]. However, since Γ∞ is torsion, for all n, there exists
i(n) such that every element in the n-ball of Γi(n) is torsion. A quantative statement
is given in Corollary 13: we can take i(n) = ⌊logα(n) − 1⌋, with α ∼= 1.25 a root of
the polynomial 2X3 − X2 − X − 1.

The following proposition specifies [GH, Proposition 12].



LARGE BALLS OF TORSION AND SMALL ENTROPY 3

Proposition 4. For every n ≥ 0, Γn has a normal subgroup Hn of index 2αn, where
αn ≤ (11 · 4n + 1)/3, and Hn is a subgroup of index 2βn in a finite direct product of
2n nonabelian free groups of rank 3, where βn ≤ (11 · 4n − 8)/3 − 2n.

Remark 5. The main difference with [GH, Proposition 12] is that the subgroup of
finite index constructed there is not normal. Of course one could take a smaller
normal subgroup of finite index, but this one need not a priori be of 2-power index,
a fact we require to obtain solvable (and not only virtually solvable) groups in
Propositions 1 and 3.

We use the following elementary lemma.

Lemma 6. Let G be a group, and let H be a proper subgroup of index 2a, normalized
by a subgroup of index two in G. Let N be the intersection of all conjugates of H.
Then N has index 2b, for some integer b ≤ 2a − 1.

Proof : If H is normal in G, the result is trivial. Otherwise, consider the unique
conjugate H ′ 6= H of H , so that N = H ∩ H ′. Taking the quotient by N , we can
suppose that H ∩ H ′ = {1} and we are reduced to proving that G is a 2-group of
order d ≤ 22a−1. Let W be the normalizer of H . Since it has index 2 in G, it is
normal in G, so that H ′ ⊂ W . Since H and H ′ are both normal subgroups of W
and H ∩ H ′ = {1}, [H, H ′] = {1}. Accordingly, HH ′ is a normal subgroup of G,
contained in W , and is naturally the direct product of H and H ′. The order of H
is d/2a, so that the order of HH ′ is d2/22a, and hence the index of HH ′ in G is
22a/d. This proves that d is a power of 2, and d ≤ 22a; actually d ≤ 22a−1 because
HH ′ ⊂ W , hence has index ≥ 2. �

Remark 7. In Lemma 6, the assumption that the normalizer has index at most
two is sharp: in the alternating group A4, there are four subgroups of index 4, all
conjugate; they have pairwise trivial intersection, hence of index 12, which is not a
power of 2.

Recall that Ξ0 ⊂ Γ0 is a subgroup of index 2; it is generated by b, c, d, aba,
aca, ada. By [GH, Proposition 1], the assignment i0(b) = (a, c), i0(c) = (a, d),
i0(d) = (1, b) extends to a unique group homomorphism i0 : Ξ0 → Γ−1 × Γ−1 such
that, for all x, if i0(x) = (x0, x1), then i0(axa) = (x1, x0). By [GH, Proposition 10],
this induces, for all n ≥ 1, an injective group homomorphism: in : Ξn → Γn−1×Γn−1.

Proof of Proposition 4. Let us proceed by induction on n. We start with the
essential case when n = 0, worked out in [GH, Lemma 11]. Write Γ0 = 〈a, b, d| a2 =
b2 = d2 = (bd)2 = (ad)4 = 1〉 (this is a Coxeter group). Let H0 be the normal sub-
group generated by (ab)2. Then, by an immediate verification, Γ0/H0 is isomorphic
to the direct product of a cyclic group of order 2 and a dihedral group of order 8.

We claim that H0 is free of rank 3. Let L be the normal subgroup of Γ0 generated
by ab: then L has index 4 in Γ0, contains H0, and is shown, in the proof of [GH,
Lemma 11], to be isomorphic to Z ∗ (Z/2Z).

Accordingly, by Kurosh’s Theorem, if H0 were not free, then it would contain a
conjugate of ab, but this is not the case. Actually H0 is contained in a subgroup of
index 8 in Γ0, free of rank 2 (see the proof of [GH, Lemma 11]), hence has rank 3.

Now, for n ≥ 1, let us suppose that Γn−1 has a normal subgroup Hn−1 of index
2αn−1 , which embeds as a subgroup of index 2βn−1 in a direct product of 2n−1 non-
abelian free groups of rank 3.
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The homomorphism in described above embeds Ξn as a subgroup of index 8 in
Γn−1 × Γn−1. Define H ′

n = i−1
n (Hn−1 ×Hn−1): this a normal subgroup of index 2k in

Ξn, with k ≤ 2αn−1.
Then, using Lemma 6, Hn = H ′

n ∩ aH ′

n has index 2αn , with αn ≤ 4αn−1 − 1.
Combining the inclusions Hn ⊂ H ′

n ⊂ Hn−1×Hn−1 ⊂ (F3)
2n−1

× (F3)
2n−1

, we obtain
that Hn has index 2βn in (F3)

2n

, with βn ≤ (2αn − 1) + 8 + 2βn.
Define α′

n11 · 4n + 1)/3 and β ′

n = (11 · 4n − 8)/3 − 2n. Then α′

0 = 4, β ′

0 = 0,
and they satisfy, for all n: α′

n = 4α′

n−1 − 1 and β ′

n = 2α′

n + 2β ′

n + 2. Therefore, an
immediate induction gives αn ≤ α′

n and βn ≤ β ′

n for all n. �

It is maybe worth restating the result avoiding reference to the particular se-
quence Γn.

Corollary 8. For every finitely presented group G mapping onto the first Grigorchuk
group Γ, there exist normal subgroups N ⊂ H in G, with H of finite 2-power index,
such that H/N is isomorphic to a finite index subgroup of a nontrivial direct product
of free groups.

Proof : Let p : G → Γ be onto. Since G is finitely presented, p factors through Γn

for some sufficiently large n, so that there exists a map p′ of G onto Γn. Then take
N = Ker(p′) and H = p′−1(Hn). �

Combining with Corollary 13, we also obtain the following statement.

Corollary 9. In the group Γi(n), the n-ball consists of 2i(n)+1-torsion elements, and
there exists a normal subgroup of index 2αi(n) , which embeds in a direct product of
free groups, with αi(n) ≤ (11 · nlog

α
(4) + 1)/3, and logα(4) ∼= 6.60.

Proof of Proposition 1. Take i sufficiently large so that the n-ball of Γi consists
of torsion elements. Since Hi is a finite index subgroup in a nontrivial direct product
of free groups (see Proposition 4), it has infinite abelianization. There is a short
exact sequence

1 → Hi/[Hi, Hi] → Γi/[Hi, Hi] → Γi/Hi → 1 .

Accordingly, G = Γi/[Hi, Hi] is an infinite, virtually abelian group, in which the
n-ball consists of torsion elements. Moreover, since Γi/Hi is a finite 2-group, G is
also solvable.

For (3), take, instead, G = Γi/[[Hi, Hi], [Hi, Hi]]. Since Hi maps onto a non-
abelian free group, its metabelianization is not virtually polycyclic, so that G is
virtually metabelian, but not virtually polycyclic.

For (2), take a morphism of Hi onto, say, a polycyclic group W which is not
virtually nilpotent, and let K be the kernel of this morphism. Since the normalizer
of K has finite index in Γi, K has finitely many conjugates K1, . . . , Kl. Set L =⋂l

j=1 Ki. Then the diagonal map Hi/L →
∏l

j=1 Hi/Ki is injective, hence embeds

Hi/L in W l. On the other hand, observe that Hi/L projects onto W , so is not
virtually nilpotent. It follows that G = Γi/L is polycyclic but not virtually nilpotent.
If W has been chosen metabelian, then we also have that G is virtually metabelian.

Proof of Proposition 3. Keep the last construction in the previous proof. Then
h(Γi/L) ≤ h(Γi). Moreover, h(Γi/L) > 0 since Γi/L is solvable but not virtually
nilpotent [Os1]. On the other hand, it is proved in [GH] that h(Γi) → 0. Thus we
can obtain h(G) arbitrary small. �
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Remark 10. Consider for every i an infinite quotient Qi of Γi. In the topology
of marked groups (defined in [G2]; see also, for instance, [C]), the sequence (Qi)
converges to the Grigorchuk group Γ. Indeed, otherwise it would have another
cluster point, which would be a proper quotient of Γ, thus would be finite. This
is a contradiction since the infinite groups form a closed subset in the topology of
marked groups.

Appendix

We gather here the technical results, used in the proofs of the results above. They
are slight modifications of results in the papers [GH], [B1].

Let α ∼= 1.25 be the real root of the polynomial 2X3 − X2 − X − 1.
We introduce on Γ−1 (hence on all its quotients) the metric | · | of [B1]: it is

defined by attributing a suitable weight to each of the generators a, b, c, d: |a| =
2(α − 1) ∼= 0.47, |b| = 1 − |a| = α−3 ∼= 0.53, |c| = 2α2 − 3α + 1 ∼= 0.34, and
|d| = −2α2 + α + 2 ∼= 0.19. Throughout this appendix, unless explicitly

stated, the balls and the lengths are meant in the sense of this weighted

metric.

To check that the length of a, b, c, d is exactly the weight we have imposed, it
suffices to check this in the abelianization of Γ−1, the F2-vector space with basis
(a, b, d) (which is also the abelianization of all Γn). There, it is a straightforward
verification that the mapping | · | just defined extends to a length function by setting
|aξ| = |a| + |ξ| for ξ ∈ {b, c, d}.

Observe that if ξ ∈ {b, c, d}, and in(ξ) = (ξ0, ξ1), we have

(1) |ξ0| + |ξ1| = α−1(|ξ| + |a|).

Lemma 11. Let x ∈ Γ0 be any element. Set x′ = x if x ∈ Ξ0 and x′ = xa otherwise;
and set i0(x

′) = (x0, x1).
Then |x0| + |x1| ≤ α−1(|x| + |a|).
Suppose moreover that x is of minimal length among its conjugates, and that

x /∈ {b, c, d}. Then |x0| + |x1| ≤ α−1|x|.

Proof : Fix x ∈ Γ0, and let w be a word in the letters {a, b, c, d}, of minimal length1

representing x. Since every element in {b, c, d} is the product of the two others, w
can be chosen without any two consecutive occurrences of letters in {b, c, d}.

Suppose now that x is of minimal length within its conjugacy class and that w is
not a single letter. Maybe conjugating x by the last letter of w, we can suppose that
w ends with the letter a. The minimality assumption then implies that w begins
with a letter in {b, c, d}.

• First case: x ∈ Ξ0. Write w = ξ1(aξ2a) . . . ξ2n−1(aξ2na), where ξi ∈ {b, c, d}
for i = 1, . . . , 2n. Write i(x) = (x0, x1) and i(ξi) = (ξi

0, ξ
i
1), so that i(ξi) =

(ξi
1, ξ

i
0). Then

|x0| + |x1| ≤ (|ξ1
0 | + |ξ2

1| + · · ·+ |ξ2n−1
0 | + |ξ2n

1 |) + (|ξ1
1| + |ξ2

0 | + · · ·+ |ξ2n−1
1 | + |ξ2n

0 |)

= (|ξ1
0| + |ξ1

1|) + (|ξ2
0 | + |ξ2

1 |) + · · ·+ (|ξ2n
0 | + |ξ2n

1 |).

1If w = u1 . . . un, the length of w is defined as |u1| + · · · + |un|.
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By (1), we get

|x0| + |x1| ≤ α−1
2n∑

i=1

(|ξi| + |a|)

On the other hand, |x| =
∑2n

i=1(|ξ
i|+ |a|), so that finally |x0|+ |x1| ≤ α−1|x|.

• Second case: x /∈ Ξ0, so that xa ∈ Ξ0. Write w = ξ1(aξ2a) . . . ξ2n−1(aξ2na)ξ2n+1a,
so that ξ1(aξ2a) . . . ξ2n−1(aξ2na)ξ2n+1 represents xa in Γ0. Write i0(xa) =
(x0, x1), and i0(ξ

i) = (ξi
0, ξ

i
1). Then

|x0|+|x1| ≤ (|ξ1
0|+|ξ2

1|+· · ·+|ξ2n−1
0 |+|ξ2n

1 |+|ξ2n+1
0 |)+(|ξ1

1|+|ξ2
0|+· · ·+|ξ2n−1

1 |+|ξ2n
0 |+|ξ2n+1

1 |)

= (|ξ1
0 | + |ξ1

1 |) + (|ξ2
0| + |ξ2

1 |) + · · · + (|ξ2n+1
0 | + |ξ2n+1

1 |).

= α−1(
2n+1∑

i=1

(|ξi| + |a|)) again by (1).

Since |x| =
∑2n+1

i=1 (|ξi| + |a|), we get |x0| + |x1| ≤ α−1|x|.

The other inequality |x0|+ |x1| ≤ α−1(|x|+ |a|) is proved similarly: we must deal
with the following cases:

• w begins and ends with the letter a: discussing whether or not x ∈ Ξ0, in
both cases we obtain the stronger inequality |x0| + |x1| ≤ α−1(|x| − |a|).

• w begins and ends with letters in {b, c, d}: discussing whether or not x ∈ Ξ0,
in both cases we obtain the inequality |x0| + |x1| ≤ α−1(|x| + |a|).

• w begins with the letter a and ends with a letter in {b, c, d}: in this case,
replacing x and w by x−1 and w−1 (this is the word w read from the right to
the left — recall that the generators are involutions), we reduce to the case,
already carried out, when w begins with a letter in {b, c, d} and ends with
the letter a, obtaining the inequality |x0| + |x1| ≤ α−1|x|.

Since the verifications are similar to the computations above and since we do not
use this case in the sequel, we omit the details. �

Lemma 12. For every n ≥ −1, and every element in the open αn−1-ball of Γ−1, its
image in Γn is of 2n+1-torsion.

Proof : For n = −1, α−2 = |a| + |d| ∼= 0.66, and the elements in the open α−2-ball
are 1, a, b, c, and d, and are of 2-torsion in Γ−1.

For n = 0, α−1 = |a| + |c| ∼= 0.81, and the elements in the open α−1-ball are,
besides the elements in the open α−2-ball already quoted, ad and its inverse da,
which are of 4-torsion in Γ0.

We can start an induction, and suppose that, for some n ≥ 1, we have already
proved that every element in the open αn−2-ball of Γ−1, its image in Γn−1 is of 2n-
torsion. Pick x in the open αn−1-ball of Γ−1. We want to show that x2n+1

= 1. We
can suppose that x is of minimal length among its conjugates, and that x /∈ {b, c, d}.
Define x′ as in Lemma 11, i.e. {x′} = {x, xa} ∩Ξ−1. Denote by [·] the projection of
Γ−1 onto Γ0. Set i0([x

′]) = (x0, x1).

• First case: x ∈ Ξ−1, i.e. x = x′. By Lemma 11, for i = 0, 1, |xi| ≤
|x0| + |x1| ≤ α−1|x| ≤ αn−2. By the induction hypothesis, x0 and x1 are of
2n-torsion in Γn−1. Since i0 induces an injection of Ξn into Γn−1 ×Γn−1, this
implies that x is of 2n-torsion, hence of 2n+1-torsion in Γn.
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• Second case: x /∈ Ξ−1, i.e. x′ = xa. Then x2 ∈ Ξ−1, and

i0([x
2]) = i0([xaaxaa]) = i0([xa])i0([a(xa)a]) = (x0x1, x1x0),

which is conjugate to (x0x1, x0x1) in Γ−1 × Γ−1. By Lemma 11, we have
|x0x1| ≤ |x0| + |x1| ≤ α−1|x| ≤ αn−2. By the induction hypothesis, x0x1

is of 2n-torsion in Γn−1, and thus i0([x
2]) is of 2n-torsion in Γn−1 × Γn−1.

Since i0 induces an injection of Ξn into Γn−1 × Γn−1, this implies that x2 is
of 2n-torsion in Ξn ⊂ Γn, hence x is of 2n+1-torsion in Γn. �

Corollary 13. Set i(n) = ⌊logα(n) − 1⌋. Then, in the n-ball of Γi(n) (for the word

metric), every element is 2i(n)+1-torsion.

Proof : Suppose that x has word length ≤ n. Then |x| ≤ |b|n = α−3n = αlog
α
(n)−3 <

αi(n)−1. By Lemma 12, the image of x in Γi(n) is of 2i(n)+1-torsion. �
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