
A SOFIC GROUP AWAY FROM AMENABLE GROUPS

YVES CORNULIER

Abstract. We give an example of a sofic group, which is not a limit of amenable
groups.

1. Introduction

Let G be a finitely generated group. A sequence (Gn) of finitely generated groups
converges to G [Cha, Gri, Ch, ChG] if there exists a finitely generated free group F ,
and normal subgroups N , (Nn) of G such that

• F/N ' G; F/Nn ' Gn for all n;
• (Nn) converges to N , i.e. for all x ∈ N , resp. y ∈ F −N ; eventually x ∈ Nn,

resp. y /∈ Nn.

The finitely generated group G ' F/N is isolated if whenever such a situation
occurs, eventually Nn = N .

Sofic groups were introduced by Gromov as “groups whose Cayley graph is initially
subamenable” [Gro, p.157] and by B. Weiss in [Wei]. It will be enough for us to
know that the class of sofic groups is not empty and satisfies the following properties

• (subgroups) Subgroups of sofic groups are sofic;
• (direct limits) A group is sofic if (and only if) all its finitely generated

subgroups are sofic
• (amenable extensions) If a group is sofic-by-amenable, i.e. has an amenable

quotient with sofic kernel, then it is sofic as well (in particular, amenable im-
plies sofic).

• (marked limits) If a finitely generated group G is a limit of a sequence
of sofic groups (Gn), then G is sofic as well. In particular, residually finite
groups are sofic.

No group is known to fail to be sofic. The following question was asked by Gromov
[Gro] and is also addressed by A. Thom [Th] and V. Pestov [Pe].

Question 1. Is every finitely generated sofic group a limit of amenable groups
(“initially subamenable”)?

Examples of sofic groups that are not residually amenable were obtained in [ES],
but by construction, these groups are limits of finite groups. Gromov expected a
negative answer to the general question and we confirm this expectation.

Theorem 2. There exists a finitely presented, non-amenable, isolated, (locally resid-
ually finite)-by-abelian finitely generated group.

Corollary 3. There exists a finitely presented sofic group that is not a limit of
amenable groups.
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Of course, being non-amenable and isolated, a group cannot be limit of amenable
groups. Besides, by the remarks above, a (locally residually finite)-by-abelian group
has to be sofic (a group is locally X means that every finitely generated subgroup
is X ). Therefore the corollary follows from the theorem.

Examples of isolated groups were provided in [CGP]. In that paper, examples
of infinite isolated groups with Kazhdan’s Property T were given [CGP, Paragraph
5.4], but it is not known if they are sofic. Also, some lattices in non-linear semisimple
groups with finite center, are known to be isolated [CGP, Paragraph 5.8], but they
appear as natural candidates to be examples of non-sofic groups (see the discussion
in Section 2).

Fix a prime p, and let Γ be the group of matrices
a b u02 u03 u04

c d u12 u13 u14

0 0 pn2 u23 u24

0 0 0 pn3 u34

0 0 0 0 1

 ,

with (
a b
c d

)
∈ SL2(Z), uij ∈ Z[1/p], n2, n3 ∈ Z.

This group is a variant of a construction by Abels of an interesting finitely pre-
sented solvable group, consisting of the 4 × 4 southeast block of the above group
(with d = 1). Variations on Abels’ group can also be found in [CGP, Section 5.4]
and [C, Th].

Let M , resp. MZ, be the subgroup of Γ consisting of matrices of the form
1 0 0 0 m1

0 1 0 0 m2

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , m1, m2 ∈ Z[1/p], resp. ∈ Z.

The group M ' Z[1/p]2 is obviously normal in Γ, and the action of Γ by conjuga-
tion on M reduces to the action of SL2(Z), so MZ is normal as well in Γ. Theorem 2
follows from the following proposition, proved in Section 3.

Proposition 4. The group Γ/MZ satisfies the conditions of Theorem 2.

Acknowledgment. I thank Andreas Thom and Alain Valette for pointing out
several mistakes in an early version of the paper.

2. Elementary sofic groups

It is natural to introduce the class of elementary sofic groups as the smallest
class of groups containing the trivial group {1} and satisfying all four properties
mentioned in the introduction. For instance, the group Γ/MZ is elementary sofic
(see Paragraph 3.1). We leave as open

Question 5. Is there any sofic group that is not elementary sofic?
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Of course, it is very reasonable to conjecture a positive answer.
At least, we can give examples of non-(elementary sofic) groups. To this purpose,

we have to give a constructive definition of this class. Let C0 be the class consisting
of the trivial group only. By transfinite induction, define Cα as the class of all groups
in the following list

• groups all of whose finitely generated subgroups lie in
⋃

β<α Cβ;

• finitely generated groups G limits of a sequence (Gn) with Gn ∈
⋃

β<α Cβ for
all n;

• groups G in an exact sequence 1 → N → G → A → 1 with A amenable and
N ∈

⋃
β<α Cβ.

Define C =
⋃
Cα. Clearly, it consists of elementary sofic groups. To see the converse,

we have to check

Lemma 6. The class C is closed under taking subgroups and therefore exactly con-
sists of elementary sofic groups.

Proof. If G lies in an extension of a group N by an amenable group A, then any
subgroup of G lies in an extension of a subgroup of N by a subgroup of A. The
only other (straightforward) verification is that if G is a limit of a sequence (Gn)
and H is a finitely generated subgroup of G, then H is a limit of subgroups of Gn.
This shows at least that C is closed under taking finitely generated subgroups, but
in turn this implies that C is closed under taking general subgroups. �

Lemma 7. Let G be a non-amenable, finitely generated group. Assume that every
finite index subgroup of G is isolated, and that every amenable quotient group of G,
is finite. Then G is not elementary sofic.

Proof. Suppose that G is elementary sofic. Let N be a normal subgroup with G/N
amenable, with N ∈ Cα with α minimal. As N ∈ Cα, and α ≥ 1 since N is non-
amenable, we have one of the three following possibilities

• We can write N in an extension 1 → N ′ → N → A → 1 with A amenable
and N ′ ∈

⋃
β<α Cβ. Since N has finite index, the group N ′ has finitely many

conjugates only, so contains a subgroup N ′′ with N ′′ normal in G and G/N ′′

is amenable as well. As N ′′ is a subgroup of N ′, we have N ′′ ∈
⋃

β<α Cβ as
well, contradicting the minimality of α.

• All finitely generated subgroups of N belong to
⋃

β<α Cβ. Since N is finitely

generated, this would imply N ∈
⋃

β<α Cβ and cannot happen.
• The group N can be written as a non-trivial limit of groups. As N is isolated

by assumption, this cannot happen. �

Proposition 8. Let G be a finitely presented group. Assume that G is not residually
finite, and that for some finite normal subgroup Z of G, the group G/Z is hereditary
just infinite (every proper quotient of any finite index subgroup, is finite). Then G
is isolated, and if moreover G is not amenable, then it is not elementary sofic.

Proof. As G is finitely presented, to prove that G is isolated it is enough to prove
that G is finitely discriminable. As G is not residually finite, there exists an element
x ∈ G − {1} belonging to all finite index subgroups of G. We claim that S =
{x} ∪ Z − {1} is a discriminating subset. Indeed, let N be a normal subgroup of
G with N ∩ S = ∅. If N is contained in Z, then clearly N = {1}. Otherwise, the
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projection of N into G/Z is non-trivial, so has finite index, so N itself has finite
index. As x /∈ N , this leads to a contradiction.

To prove that G (now assumed non-amenable) is not elementary sofic, we note
that the assumptions on G are inherited by its finite index subgroups, and therefore
the conditions of Lemma 7 are satisfied. �

Examples of groups satisfying the hypotheses of Proposition 8 are some non-
residually finite lattices in (non-linear) simple Lie groups with finite center, see [CGP,
Paragraph 5.8], and non-amenable finitely presented simple groups, like Thompson’s
group T (on the circle) or Burger-Mozes’ groups [BM], which are amalgams of free
groups. Accordingly, these groups are not elementary sofic; it is unknown if they
are sofic.

The following proposition gives support that the class of elementary sofic groups
is natural to introduce.

Proposition 9. The class of elementary sofic groups is closed under direct products
and free products.

Proof. The case of direct products is straightforward and left to the reader.
Let us prove that for every elementary sofic group G, the free product G ∗ F is

elementary sofic for every free group F . It is enough to check that the class of groups
G such that G∗F is elementary sofic contains {1} (because free groups are residually
finite, hence elementary sofic) and satisfies the four stability properties mentioned
in the introduction. The case of subgroups and direct limits is trivial. The case of
limits is easy as well, since if (Gn) tends to G, then Gn ∗ F tends to G ∗ F when
F is finitely generated; when F is infinitely generated, this follows by a direct limit
argument. It remains to prove that if G lies in an extension

1 → N → G → M → 1

with M amenable and N ∗ F is elementary sofic for every free group F , then G ∗ F
is elementary sofic as well for every free group F . We can write G ∗ F as G n F ∗G

(F ∗G denoting the free product of copies of F indexed by G). So the kernel of the
natural map of G ∗F onto M is isomorphic to N nF ∗G. If we fix a transversal of N
in G/N , we see that the latter group is isomorphic to N n (F ∗G/N)∗N , which in turn
is isomorphic to N ∗ (F ∗G/N). Since F ∗G/N is free, this group is elementary sofic by
assumption, so G ∗ F is elementary sofic, by the fourth stability property.

Now if G and H are elementary sofic groups, the free product G ∗H embeds into
(G × H) ∗ (G × H), which in turn embeds into (G × H) ∗ Z, since the latter is
isomorphic to Z n (G×H)∗Z. So G ∗H is elementary sofic as well. �

3. Proof of Proposition 4

Let Υ be the normal subgroup of Γ consisting of elements for which n2 = n3 = 0.
Define Λ as the normal subgroup of Γ consisting of elements for which(

a b
c d

)
=

(
1 0
0 1

)
.

3.1. The group Γ/MZ is sofic. As Γ/Υ ' Z2, it is enough, to prove Proposition
4, to show that Υ/MZ is locally residually finite.
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For m ≥ 0, define Υm be the subset of Υ consisting of those matrices for which

u02, u12, u23, u24 ∈ p−mZ;

u03, u13, u24 ∈ p−2mZ;

u04, u14 ∈ p−3mZ.

This is a subgroup, as can be check by a direct calculation, and (Υm) is clearly an
increasing sequence of subgroups of union Υ. Therefore it is enough for us to prove
that Υm/MZ is residually finite.

Set Ξm = Υm ∩ Λ; this is a finitely generated nilpotent group, and Υm/MZ '
(Ξm/MZ)oSL2(Z). Now it is known and easy to prove that any semidirect product
of residually finite groups, where the normal factor is finitely generated, is also
residually finite. So Υm/MZ is residually finite (the reader can check it is actually
linear).

3.2. The group Γ is isolated. In [CGP], the following was proved.

Proposition 10. A finitely generated group G is isolated if and only if the two
following conditions are fulfilled

• G is finitely presented;
• G is finitely discriminable, i.e. there exists a finite “discriminating” subset X

of G−{1} such that every normal subgroup N 6= {1} of G satisfies N∩X 6= ∅.

Then Λ/MZ is finitely discriminable. The proof is easy and strictly analogous to
the case of the Abels group (case of the 4×4 southeast block) [CGP, Proposition 5.7]
and we skip it, just mentioning that we can pick X as the set of elements of order
p in M/MZ.

Finite presentability of Λ/MZ is a consequence of that of Λ, which is also analogous
to the proof in the case of the Abels’ group done in [A1], but requires slightly more
work, so let us give the argument, not relying on the direct proof of [A1] (that the
reader can adapt), but on the general criterion of finite presentability from [A2].

Let Λ(Qp) denote the same group as Λ, but with diagonal entries in Q∗
p and

other entries in Qp. Let u denote the Lie algebra of the unipotent part of Λ(Qp).
An element (n2, n3) of Z2 is called a weight of u if there exists x ∈ u such that
Ad(di)(x) = λix with log |λ| = ni for i = 2, 3, where d2, resp. d3, is the diagonal
matrix (1, 1, p, 1, 1), resp. (1, 1, 1, p, 1).

Abels proves that a necessary and sufficient criterion for finite presentability of Λ
is that the two following conditions are satisfied

• For any two weights α, α′ on u/[u, u], the segment in R2 joining α to α′ does
not contain 0;

• Zero is not a weight on the second homology group H2(u).

Let (eij) denotes the obvious basis of u by elementary matrices. A basis for
the vector space u/[u, u] is given by the eigenvectors e02, e12, e23, e34 and we see
immediately that the corresponding weights are (1, 0) (twice), (−1, 1), (0,−1), so
the first condition is satisfied.

The second homology group H2(u) of u is defined as Ker(d2)/Im(d3), where the
maps

u ∧ u ∧ u
d3→ u ∧ u

d2→ u

are defined by:
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d2(x1 ∧ x2) = −[x1, x2] and

d3(x1 ∧ x2 ∧ x3) = x3 ∧ [x1, x2] + x2 ∧ [x3, x1] + x1 ∧ [x2, x3].

The weights of u are the four ones described above, and the ones corresponding
to the eigenvectors e03, e13, e24, e04, e14 are (0, 1) (twice), (−1, 0), and (0, 0) (twice).
If e, e′ are eigenvectors of weight α, α′, then e ∧ e′ has weight α + α′. Therefore the
subspace of u∧u corresponding to the weight 0 possesses as a basis the five elements

ei2 ∧ e24, ei3 ∧ e34 (i = 0, 1), e04 ∧ e14.

It follows that the subspace of Ker(d2) corresponding to the weight 0 possesses as
a basis the three elements

ei2 ∧ e24 − ei3 ∧ e34 (i = 0, 1), e04 ∧ e14,

so to prove that 0 is not a weight on H2(u), we just have to check that these three
elements belong to Im(d3), for instance

ei2 ∧ e24 − ei3 ∧ e34 = d3(ei2 ∧ e23 ∧ e34);

e04 ∧ e14 = d3(e12 ∧ e24 ∧ e04),

and the proof of Proposition 4, and therefore of Theorem 2, is complete.
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