
LARGE SCALE SIMPLE CONNECTEDNESS IN GEOMETRIC
GROUP THEORY

1. Cayley Graph

Let G be a group and S a generating set. Define its Cayley graph Γ(G, S) as the
graph with G as set of vertices and {{g, gs}|g ∈ G, s ∈ S} as set of (non-oriented)
edges. This graph is connected and invariant under the left action of G. It is
endowed with the path metric, whose restriction to G is known as the word metric:

dS(g, h) = inf{n|∃s1, . . . , sn ∈ S±1|g = hs1 . . . sn}.

2. Bounded presentedness

Let FS be the (abstract) group freely generated by the set S (not taking G into
account). Then there is an obvious natural morphism of FS onto G, mapping s ∈
S ⊂ FS to s ∈ S ⊂ G.

Define G as boundedly presented by S if there exists a subset R of elements of
FS, called relators, of bounded word length with respect to S±, such that the kernel
of the natural map FS → G coincides with the normal subgroup of FS generated R,
which is also the subgroup generated by conjugates of elements of R in FS.

Remark 2.1. When S is finite, we say that G is finitely presented by S rather than
boundedly presented by S. When G is a locally compact group (always assumed
Hausdorff) and S is compact, we say that G is compactly presented by S.
Exercise 1.

1. Let G be generated by a finite subset S. Suppose that G is finitely presented
by S. Show that G is finitely presented by any other finite generating subset
T .

2. Find a subset S ⊂ Z such that Z is not boundedly presented by S. (In
particular, we cannot drop the assumption T finite in 1.)

3. (Generalization of 1.) Let G be a locally compact group (always assumed
Hausdorff) generated by a compact subset S. Suppose that G is compactly
presented by S. Show that G is compactly presented by any other finite
generating subset T .

Indications for Exercise 1.

1. Begin by the special cases S ⊂ T and T ⊂ S.
2. Show that Z is not boundedly presented by the generating set {n! |n ∈ N}.
3. Use the Baire category Theorem to show that S ⊂ T n for large n.
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3. Large scale category and quasi-isometries

Definition 3.1. Consider a map f : X → Y between metric spaces.

• f is large-scale Lipschitz if for some constants C1, R1, we have, for all x, x′ ∈
X

d(f(x), f(x′)) ≤ C1d(x, x′) + R1;

• f is large-scale expansive if for some constants C2, R2, we have, for all x, x′ ∈
X

d(f(x), f(x′)) ≥ C2d(x, x′)−R2;

• f is essentially surjective1 if for some constant R3, for all y ∈ Y ,

d(y, f(X)) ≤ R3,

• f is a quasi-isometric embedding (or large-scale bilipschitz embedding) if it is
both large-scale Lipschitz and large-scale expansive;

• f is a quasi-isometry2 if it is a quasi-isometric embedding and is essentially
surjective.

Definition 3.2. Two maps f, f ′ : X → Y between metric spaces are at bounded
distance if for some constant R4, for all x ∈ X

d(f(x), f ′(x)) ≤ R4.

Exercise 2. Consider metric spaces X, Y, Z, maps f, f ′ : X → Y at bounded dis-
tance, and large-scale Lispchitz maps g, g′ : Y → Z at bounded distance. Check
that g ◦ f and g′ ◦ f ′ are at bounded distance.

Definition 3.3. The large scale category is the category whose objects are metric
spaces, and the objects between X → Y are large-scale Lipschitz maps modulo being
at bounded distance.

Proposition 3.4. A map X → Y is a quasi-isometry if and only if it defines an
isomorphism in the large scale category.

Exercise 3. Prove Proposition 3.4.

Proposition 3.4 implies that the existence of a quasi-isometry between two metric
spaces defines an equivalence relation between them, called “being quasi-isometric”.

For instance, non-empty bounded metric spaces constitute one quasi-isometry
class of metric spaces.

Exercise 4. Let G be a locally compact, compactly generated group. If S1, S2 are
compact generating sets, then the identity

(G, dS1) → (G, dS2)

is a quasi-isometry.

Exercise 5. Let G be a locally compact, compactly generated group and H a closed,
cocompact subgroup. Show that H is compactly generated and that the embedding
of H into G is a quasi-isometry.

1The reader might object that the inclusion of the empty set in a bounded metric space should
be essentially surjective, but we shall not investigate further in this direction.

2This terminology is widely spread, although quasi-similarity would have been more accurate.
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4. Large scale simple connectedness

A metric space X is geodesic if for every x, y ∈ X, there exists a isometric em-
bedding of the segment [0, d(x, y)] into X mapping 0 to x and d(x, y) to y.

Definition 4.1. A metric space is large scale simply connected if it is quasi-isometric
to some simply connected geodesic metric space3.
Exercise 6.

1. Show that the metric subspace of R2 defined as

X = {(n, x)|n ∈ N, x ∈ R} ∪ {(x, n2)|n ∈ N, x ∈ R}
is large scale simply connected.

2. Show that the metric subspace of R2 defined as

Y = {(n2, x)|n ∈ N, x ∈ R} ∪ {(x, n2)|n ∈ N, x ∈ R}
is not large scale simply connected.

5. Cayley complex

Let G be a group, presented by a set of generators S and a set of relations R, i.e.
a subset of the kernel of FS → G. The Cayley complex Γ(G, S,R) is a polygonal
complex structure whose 1-skeleton is the Cayley graph Γ(G,R).

The polygonal structure is defined by adding polygons with vertices

g, gs1, . . . , gs1 . . . sn−1,

for g ∈ G and r = s1 . . . sn in R±1 of length n ≥ 3. Note that this polygonal
structure is invariant under the left action of G.

Endow each such polygon with the usual Euclidean metric on the regular n-gon
with edges of length 1, and endow this polygonal complex X with its geodesic metric.

Proposition 5.1. The embedding of G, endowed with the word distance with respect
to S, into any of its its Cayley complex is a quasi-isometric embedding. This is a
quasi-isometry if and only if elements of R have bounded length.

Proof. This is clearly a 1-Lipschitz map. Moreover, it is easy to check that it is
bilipschitz with lower constant 1/

√
2 (attained if and only if R contains relators of

length 4). Moreover, if X is the Cayley complex,

sup
x∈X

d(x, G) = sup{ρk| R contains elements of length k},

where ρk is the radius of the regular Euclidean k-gon of edge length 1, which proves
the last statement. �

We say that (G, S,R) (usually denoted 〈S|r = 1, r ∈ R〉 is a group presentation
if R generates the kernel of FS → G as a normal subgroup.

Exercise 7. Sketch out a picture of the Cayley complex for the following group
presentations

•
G1 = 〈x, y| x2y−1 = 1〉

3Relevant only if the metric space is assumed large scale geodesic, i.e. quasi-isometric to some
geodesic metric space.
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•
G2 = 〈x, y| x2 = y3 = 1〉

Proposition 5.2. The Cayley complex of every group presentation is simply con-
nected.

Proof. This follows from Lemmas 5.3, 5.4, and 5.5 below. �

Let X be a polygonal complex. A path: γ : [0, r] → X is called an edge path
if there exist 0 = x0 < x1 < · · · < xn = r such that γ(xi) is a vertex for every
i = 0 . . . n, and for every i = 0 . . . n− 1, γ(xi) and γ(xi+1) are joined by an edge (or
equal) and γ maps linearly [xi, xi+1] to the edge joining γ(xi) and γ(xi+1).

Lemma 5.3. In a polygonal complex, every path joining two vertices is homotopic,
relatively to its endpoints, to an edge path.

Proof (sketched). First step: γ is homotopic, relatively to its endpoints, to a path
with values in the 1-skeleton X1 of X. To prove this, let U be the complement of
γ−1(X1). Let V =]a, b[ be any connected component of U ; then [a, b] is mapped to
a single polygon; by convexity, γ|[a,b] is homotopic to a path on the boundary of this
polygon. Doing this on every connected component and fixing the rest, we define
the desired homotopy.

Second step: by compactness, there exist 0 = x0 < x1 < · · · < xn such that each
interval [xi, xi+1] is mapped into a ball of radius < 2. Now, on a graph, every ball
of radius < 2 is contractible. Therefore γ is homotopic (relatively to its endpoints)
with a path with has constant speed in each interval [xi, xi+1]. Such a path is an
edge path. �

On a polygonal complex, define a combinatorial path as a sequence of vertices
x0, . . . , xn with, for all i, xi xi+1 are either equal or connected by an edge.

When X1 is the Cayley graph of a group G with generating set S, such a path
can be described by its origin x0 and the sequence labels si ∈ S±1 ∪ {1} of the edge
joining xi to xi = xi−1si.

Let G be generated by a set S, with a set of relators R, so that G = FS/〈R〉.
Consider the polygonal complex defined above.

There is a combinatorial notion of homotopy between closed paths defined as
follows: this is the equivalence relation generated by the following equivalences γ ∼
γ′, where

γ = (1 = x0, x1, . . . , xn = 1);

γ′ = (1 = x0, . . . , xk, y1 . . . , ym−1, x`, . . . , xn),

xk . . . , x`, ym−1, . . . , y1, xk bounds a polygon defined by R, 0 ≤ k ≤ ` ≤ n (where we
agree that any edge (x, y) bounds a 2-gon). A polygonal complex is said to be com-
binatorially simply connected if every closed combinatorial path is combinatorially
homotopic to a constant combinatorial path.

Lemma 5.4. Consider the Cayley complex Γ(G, S,R). A closed combinatorial path
based at 1, defined by a sequence of edges s1, . . . , sn is combinatorially homotopic to
the trivial combinatorial path (1) if and only if we can write, inside FS,

s1 . . . sn =
k∏

i=1

mirimi
−1,
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for some k, mi ∈ FS, and ri ∈ R±1. In particular, it is combinatorially simply
connected if and only if R generates the kernel of FS → G as a normal subgroup.

Proof( sketched). Observe that the set S of words in the alphabet S defining a trivial
combinatorial path can be viewed as a subset of FS. It is stable under product and
inversion, conjugation and contains all elements of the form ri, and therefore contains
all elements of the form

∏k
i=1 mirimi

−1. Conversely, the set of those elements is
closed under the equivalence defined above. �

Any edge path defines a combinatorial path as follows: let γ : [0, r] → X be an
edge path. Then exists minimal n and elements 0 = x0 < x1 < · · · < xn = r such
that for each i, vi = γ(xi) is a vertex, and, if i < n, γ is either constant on [xi, xi+1]
or maps it linearly to the edge joining vi to vi+1. We say that the combinatorial
path (v0, . . . , vn) is associated to the edge path γ.

Lemma 5.5. Let (v0, . . . , vn) and (w0, . . . , wn) be combinatorial paths associated to
edges paths γ and γ′. Suppose that (v0, . . . , vn) and (w0, . . . , wn) are combinatorially
homotopic. Then γ and γ′ are homotopic.

Proof. Left to the reader. �

6. Bounded presentations and simple connectedness

Proposition 6.1. Let G be a group generated by S. Then (G, S) is boundedly
presented if and only if Γ(G, S) is large scale simply connected.

Proof. Suppose that G is boundedly presented, with a set R of relators of length
≤ k. Then G is quasi-isometric to its Cayley complex by Proposition 5.1, which is
geodesic by definition, and which is simply connected by Proposition 5.2.

Conversely suppose that G is quasi-isometric to a geodesic simply connected space
X. Let Gn be the 2-complex with 1-skeleton the Cayley graph of G and with all
combinatorial closed paths of length ≤ n bounding a polygon. Let us show that Gn

is combinatorially simply connected for large n.
Let i : G → X be the quasi-isometry. We can suppose that i is 1-Lipschitz, and

therefore we can extend i to a 1-Lipschitz map from the 1-skeleton of G to X. Let
j : X → G be an inverse quasi-isometry (so that j◦i and i◦j are at bounded distance
to identity). We can suppose that j(i(1)) = 1. Let M, W < ∞ be constants such
that any two points in X at distance ≤ 1 are mapped to points at distance ≤ M ,
and j ◦ i is at distance W to the identity.

Let us show that G4M is combinatorially simply connected.
Let (1 = v0, v1, . . . , vn = 1) be a closed combinatorial path. By geodesicity of

X, we can extend it to a 1-Lipschitz map γ from [0, n] to X, mapping i to vi. Let
(t, x) 7→ γt(x) be a homotopy [0, n] × [0, 1] → X, where γ0 = γ and γ1 is constant
equal to 1. By uniform continuity, there exists m such that for al t1, t2, x1, x2,

|t1 − t2| ≤ 1/m, |x1 − x2| ≤ 1/m ⇒ d(γt1(x1), γt2(x2)) ≤ 1.

We need to introduce the following definition: on a graph, a p-combinatorial path
through a sequence of vertices (w0, . . . , wn) is a combinatorial path v0, . . . , vm such
that for some sequence 0 = i0 < i1 < · · · < in = m with |ij+1 − ij| ≤ p, vij = wj.
(In particular, it exists only if d(wi, wi+1) ≤ p for all i).

First step: the combinatorial path (vi)0≤i≤n is combinatorially homotopic to any
M -combinatorial path through (j ◦ γ(i))0≤i≤n. Indeed, pick combinatorial paths of



6 LARGE SCALE SIMPLE CONNECTEDNESS IN GEOMETRIC GROUP THEORY

length ≤ W between vi and j ◦γ(i). This defines “squares” of length ≤ 2W +M +1
through vi, j ◦γ(i), j ◦γ(i+1) and vi+1. Such squares bound polygons in G2W+M+1.

Second step: any M -combinatorial path (j ◦ γ(i))0≤i≤n is combinatorially homo-
topic to any M -combinatorial path through (j ◦ γ(i/m)0≤i≤mn. This is checked by
inserting all j ◦ γ(i/m) one by one: so we are reduced to check that a path of the
form j ◦ γ(x0), . . . , j ◦ γ(xn), with 0 = x0 < x1 · · · < xn = 1, is combinatorially
homotopic any M -combinatorial path through a sequence of the form

j ◦ γ(x0), . . . , j ◦ γ(xi), j ◦ γ(y), j ◦ γ(xi+1), j ◦ γ(xn),

when xi ≤ y ≤ xi+1 ≤ xi + 1. Now each edge of the “triangle” j ◦ γ(xi), j ◦ γ(y), j ◦
γ(xi+1) has length ≤ M . So there exists a closed path of length ≤ 3M passing
through these three points. By assumption, it bounds a polygon in G3M .

Third step: any combinatorial path through (j ◦ γ(i/m)0≤i≤mn is combinatorially
homotopic to the constant path (1)0≤i≤mn. To see this, it suffices to check that for
every t, any M -combinatorial path through (j ◦ γx(i/m))0≤i≤mn is combinatorially
homotopic to any M -combinatorial path through (j ◦ γx+1/m(i/m))0≤i≤mn.

Indeed, pick combinatorial paths of length ≤ M between j ◦ γx(i/m) and j ◦
γx+1/m(i/m) for each i. This defines “squares” of length ≤ 4M through j ◦ γx(i/m),
j ◦ γx+1/m(i/m) j ◦ γx((i + 1)/m) and j ◦ γx+1/m((i + 1)/m). Such “squares” bound
polygons in G4M .

Combining the three steps, we obtain that Gk is combinatorially simply connected
for k = max(4M, 2W + M + 1). Now if R is the set of elements of length ≤ k in
the kernel of FS → G, then Gk is the Cayley complex of (G, S,R). It then follows
from Lemma 5.4 that (G, S,R) is a group presentation, so that (G, S) is boundedly
presented. �

7. Quasi-geodesic spaces

On a metric space X, a C-path of length n between two points x, y is a sequence
x = x0, x1, . . . , xn = y such that d(xi, xi+1) ≤ C for all i.

We say that a metric space is quasi-geodesic if for some constants C, C ′, for every
n ∈ N and any two points x, y at distance ≤ n there exists a C-path between x and
y of length ≤ C ′n.

Exercise 8. Show that a space is quasi-geodesic if and only if it is quasi-isometric
to some geodesic metric space. (In particular, being quasi-geodesic is closed under
quasi-isometries.)

A map f : X → Y between metric spaces is called uniform if for every n, we have
supd(x,y)≤n d(f(x), f(y)) < ∞. It is called uniformly proper if infd(x,y)≥n d(f(x), f(y))
goes to infinity when n → ∞ (where sup ∅ = 0 and inf ∅ = ∞). It is a uniform
embedding if it is both uniform and uniformly proper.

Lemma 7.1. Let f : X → Y be a uniformly proper map which is cobounded. Suppose
that X is quasi-geodesic. Then for some constant C, d(f(x), f(y)) ≥ Cd(x, y) − C
for all x, y.

Proof. By assumption, there exists M < ∞ such that every point in Y is at distance
≤ M to the image. Now fix x, y ∈ X. By geodesicity, there exists a C-path
f(x) = u0, u1, . . . , un = f(y), with n ≤ C ′(d(f(x), f(y)) + 1. Pick xi ∈ X such that
d(f(xi), ui) ≤ M ; we can choose x0 = x and xn = y. In particular, d(f(xi), f(xi+1) ≤
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2M + C. Now there by uniform properness, there exists a constant D, depending
only on f (not on x, y) such that d(f(z), f(w)) ≤ 2M + C implies d(z, w) ≤ D.
Therefore d(xi, xi+1) ≤ D. Therefore d(x, y) ≤ Dn ≤ DC ′(d(f(x), f(y)) + 1). �

8. Lie groups

Lemma 8.1. Let G be a connected Lie group. Then G has a compact subgroup K
such that G/K is diffeomorphic to a Euclidean space.

Exercise 9. Prove the lemma for G = GLn(R).

Indication: use the polar decomposition.
Let G be a group generated by a set S. Let G act by isometries on a metric space

X. We say that the action is regular if for any x ∈ X, the set {sx|s ∈ S} is bounded.
We say that the action is proper if for every unbounded subset W of G (endowed
with the S-word metric) and every x ∈ X, the set {gx|g ∈ W} is unbounded. We
say that the action is cobounded if there exists M < ∞ such that for every x, y ∈ X
there exists g ∈ G such that d(gx, y) ≤ M .

Lemma 8.2. Let G be a group generated by a subset S, acting by isometries on
a quasi-geodesic metric space X. Suppose that the action is regular, proper and
cobounded. Then for every x ∈ X, the map g 7→ gx is a quasi-isometry.

Proof. Set L(g) = d(x, gx). Then L is a length function on G, i.e. satisfies L(1) = 0,
L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for all g, h ∈ G. Therefore it satisfies
L(g) ≤ M |g|S, where M = sups∈S L(s), which is bounded as the action is regular.
Therefore, for all g, h, d(gx, hx) = L(g−1h) ≤ M |g−1h|S.

On the other hand, the map g 7→ gx satisfies the assumptions of Lemma 7.1, so
there exists C such that for all g, h, d(gx, hx) ≥ C|g−1h|S − C.

Since moreover every point is at distance ≤ W to some gx, we get that the map
g 7→ gx is a quasi-isometry. �
Exercise 10.

(1) Show that the statement of Lemma 8.2, where “cobounded” is dropped in
the hypotheses and “is a quasi-isometry” is replaced by “is a quasi-isometric
embedding” in the conclusion, is false.

(2) Show that the assumption that X is geodesic cannot be dropped in Lemma
8.2.

Indications:

(1) Consider the action of a parabolic isometry on the hyperbolic plane.
(2) Consider the action by translations of Z on R endowed with the distance

d(x, y) =
√
|x− y].

Proposition 8.3. Let G be any connected Lie group. Then G is compactly presented.

Proof. By Lemma 8.1, there exists a compact subgroup K such that G/K is diffeo-
morphic to a Euclidean space. Consider the action of K on the tangent space at
the basepoint x0 of G/K. It preserves a Euclidean structure at the tangent space of
G/K at x0. Push forward this Euclidean structure on G/K by the left action of G.
The K-invariance implies that the resulting Euclidean structure at gK ∈ G/K does
not depend on the choice of its representing element g ∈ G. This therefore defines a



8 LARGE SCALE SIMPLE CONNECTEDNESS IN GEOMETRIC GROUP THEORY

left-invariant Riemannian structure on G/K, on which G acts by isometries. By ho-
mogeneousness, is a complete Riemannian structure, and is therefore geodesic. Let
S be any compact subset with non-empty interior. Then the subgroup generated
by S is open and therefore is all of G. Endow G with this generating subset. By
continuity, the action of G on G/K is regular. As closed balls in X are compact
(by completeness), the action of G on G/K is proper. It is transitive and there-
fore cobounded. Accordingly, by Lemma 8.2, G is quasi-isometric to X. Therefore
Γ(G, S) is large scale simply connected, so that G is compactly presented. �

Lemma 8.4. Let G be a locally compact, compactly generated group. Let H ⊂ G be
a cocompact closed subgroup. Then the embedding of H into G is a quasi-isometry.

Proof. Let T be a compact generating subset of H, W a compact subset such that
G = HW and S = T ∪ W , which is a compact generating subset of G. Then for
every h ∈ H, |h|T ≥ |h|S. To get a reverse inequality, it suffices in view of Lemma
7.1 to show that the embedding of H into G is uniformly proper. By equivariance,
this means that this embedding is proper. In set-theoretic terms, this means that
for every bounded subset of G, its intersection with H is bounded. This is obvious
as a subset of G (resp. H) is bounded if and only if it has compact closure, and H
is closed in G. �

Exercise 11. Let G be a group endowed with a left-invariant metric. Check that
this metric is quasi-geodesic if and only if it is equivalent to the word metric with
respect to some generating subset.

9. Topological HNN-extensions

Let G be a Hausdorff topological group in which open subgroups form a basis of
neighbourhoods of 1. Consider open subgroups H1, H2 along with an isomorphism
φ : H1 → H2. Consider the HNN-extension

Γ = HNN(G, H1, H2, φ).

This is the group with presentation

〈G, t|tgt−1 = φ(g) ∀g ∈ h1〉.

Say that a net (gi) in Γ converges to g ∈ Γ if for every open subgroup L of G,
eventually g−1gi ∈ L. This defines a topology on Γ.

Lemma 9.1. This topology makes Γ a Hausdorff topological group, and the embed-
ding of G into Γ is a homeomorphism onto an open subgroup. In particular, if G is
locally compact then Γ is also locally compact.

Proof. Let us show that the inversion map is continuous. Suppose that gi → g.
Let L be any open subgroup of G. By Lemma 9.2, eventually g−1gi ∈ g−1Lg ∩ G.
Therefore eventually gig

−1 ∈ L. Thus eventually gg−1
i ∈ L, i.e. g−1

i → g−1.
Let us show that the law is continuous. Suppose that gi → g and hi → H. Let L

be any open subgroup of G. By Lemma 9.2, hLh−1 ∩ G is an open subgroup of G.
As h−1

i → h−1, this implies that eventually g−1gi ∈ hLh−1 and hh−1
i ∈ hLh−1, i.e.

hih
−1 ∈ hLh−1. Therefore eventually g−1gihih

−1 ∈ hLh−1, i.e. (gh)−1gihi ∈ L. So
gihi → gh.
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Thus we have a topological group. It is Hausdorff if and only if {1} is closed, i.e.
1 → g implies g = 1, which is fulfilled because the intersection of all open subgroups
is trivial.

It is straightforward that G is open in Γ and that the induced topology coincides
with the original one. �

Lemma 9.2. For all open subgroups L, M of G and x ∈ Γ, L ∩ xMx−1 is an open
subgroup of G.

Proof. First case: x = t (the case x = t−1 being similar). Set M ′ = M ∩H1. Then
tM ′t−1 ⊂ H2. So

L ∩ tMt−1 ⊃ L ∩H2,

which is an open subgroup of G.
Second case: x ∈ G. Then xMx−1 is an open subgroup of G and therefore so is

L ∩ xMx−1.
General case: argue by induction of the word length |x| of x with respect to the

generating subset G ∪ {t} of Γ. The case |x| ≤ 1 is already settled, so suppose
|x| ≥ 2. Write x = wy with |w| = 1 and |y| = |x| − 1. Then

L ∩ xMx−1 ⊃ L ∩ xMx−1 ∩ wLw−1 = L ∩ w(yMy−1 ∩ L)w−1

By induction assumption, yMy−1 ∩ L is an open subgroup of G. By the case of
length 1, L ∩ w(yMy−1 ∩ L)w−1 is an open subgroup of G. �

10. A few metabelian groups

Proposition 10.1. The p-adic affine group Q∗
p n Qp is compactly presented.

It contains as a cocompact subgroup Znp Qp, on which we will focus. This group
has the following “presentation”

〈Zp, t| txt−1 = xp ∀x ∈ Zp〉.
This means, more formally: a set of generators {t} ∪ {sx|x ∈ Zp} along with the
relations tsxt

−1 = sxp and the (implicit) relations of length three sxsy = sxy for
x, y ∈ Zp.

Exercise 12. Check that this is indeed a presentation of Z np Qp.

Proposition 10.2. The p-adic SOL-group Q∗
p n (Qp × Qp), acting by diagonal

matrices of determinant one, is not compactly presented.

This group has the following presentation. Let Z1, Z2 denote two copies of Zp.

〈Z1, Z2, t| txt−1 = xp ∀x ∈ Z1, t
−1yt = yp ∀y ∈ Z2,

[t−kxtk, t`yt−`] = 1 ∀x ∈ Z1, y ∈ Z2, k, l ∈ N〉.
The latter family has unbounded length; however this is not enough to prove that
G is not compactly presented. To carry out this, let us consider the presentation
with the same set of generators and the set of relators Rn, which is the same, except
that in the commuting relators, k, ` only range from 0 to n. Now those relators have
bounded length. Denote by Gn the group defined by this “truncated” presentation.

Observe that Rn, the relators for which (k, `) 6= (n, n) are redundant. This gives
readily
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Lemma 10.3. The mapping t 7→ t, Z1 3 x 7→ p−nx, Z2 3 y 7→ pny is an isomor-
phism of G0 onto Gn.

Exercise 13. Prove in detail Lemma 10.3.

Indication: check that this is a well-defined group homomorphism, define similarly
its expected inverse, and check that both composites are identity.

Therefore, the study of Gn is reduced to that of G0. Observe that G0 is a HNN-
extension of Zp × Zp, for the isomorphism diag(p, p−1) between its two open sub-
groups Zp×pZp and pZp×Zp. This is a non-ascending HNN-extension (i.e. none of
the two subgroups is contained in the other) and therefore G0, and thus Gn contains
a non-abelian free subgroup. In particular, the mapping Gn → G is not injective
for any n. Now Gn is a locally compact, compactly generated group, and the kernel
N of G0 → G is discrete, because it has trivial intersection with the open subgroup
Zp × Zp. Let Nn ⊂ N be the kernel of G → Gn, so that (Nn) is an increasing
sequence of proper subgroups of N with union N . The intersection of Nn with any
bounded ball is finite; therefore for any k, there exists nk such that the intersection
of the k-ball of G0 with N is contained in Nnk

. This proves that N is not generated,
as a normal subgroup, by relations of bounded length. Thus G is not compactly
generated.

Propositions 10.1 and 10.2 have the following generalization.

Proposition 10.4. Fix i1, . . . , in ∈ Z. Let A = diag(pi1 , . . . , pin) and G = Q∗
pnAQn

p .
Then

• G is compactly generated if and only if all ik 6= 0;
• G is compactly generated if either all ik > 0 or all ik < 0.

The first statement is an easy observation: indeed if some ik = 0, then G possesses
Qp as a quotient, which is not compactly generated4.

Exercise 14. Prove Proposition 10.4.

Indication: for the second statement, adapt the proofs of Propositions 10.1 10.2.

11. Dehn function

The real analogues R n Rn of the groups above are connected Lie groups and
are therefore compactly presented. However, there is still an important difference
between a group like R n R and SOL(R), which is similar to large scale simple
connectedness, but more subtle.

Let G be a group generated by a subset S, and let N be the kernel of FS → G,
and suppose that N is generated by a subset R as a normal subgroup. Let T be the
set of conjugates in G of elements of R, so that N is generated by T as a group.
Define the area a(g) of g ∈ G as the word length of g with respect to T . Define the
Dehn function of (G, S,R) as

δ(n) = sup{a(g)|g ∈ N, |g|S ≤ n}
(where sup ∅ = 0).

4This is essentially the only obstruction: by a theorem of Borel and Tits (1966), an algebraic
group G(Qp) is non-compactly generated if and only if it has a normal cocompact algebraic sub-
group having Qp as a quotient.



LARGE SCALE SIMPLE CONNECTEDNESS IN GEOMETRIC GROUP THEORY 11

Exercise 15. Compute the (exact value of the) Dehn function δi(n) for the following
presentations

G1 = 〈x, y| y2 = 1〉
G2 = 〈xn(n ∈ N)| x0 = 1, xnx

−1
n+1 = 1(n ∈ N)〉

Let us define a similar notion for graphs. Let Γ be a connected graph with a base-
vertex called 1. Consider the set LΓ of all closed 1-paths based at 1, i.e. sequences
of vertices 1 = v0, v1, . . . , vd = 1 with d(vi, vi+1) ≤ 1 for all i.

Fix an integer n. Define a structure of polygonal complex on Γ by adding i-gons
at every closed 1-path of length ≤ n. Define the incidence relations ∼0 and ∼1 as
follows:

(v0, . . . , vk, . . . , vd) ∼0 (v0, . . . , v̂k, . . . , vd)

if vk−1 = vk (this means removing a redundant vertex);

(v0, . . . , vk−1, vk, . . . , vd) ∼0 (v0, . . . , v̂k−1, v̂k, . . . , vd)

if vk−1 = vk+1 (this means: removing a back-and-forth);

(v0, . . . , vk, . . . , v`, . . . , vd) ∼1 (v0, . . . , vk, w1 . . . , wm−1, v`, . . . , vd)

if (vk, . . . , v`, wm−1 . . . , w1, vk) is the boundary of a polygon (in particular `−k+m ≤
n).

Let d be the greatest distance on LΓ for which d(u, v) ≤ i whenever u ∼i v. This
is a geodesic distance. Define δΓ,nn(m) = sup(d(u, 1)), where u ranges over closed
1-paths of length ≤ m and 1 is the path (1).

Lemma 11.1.
δΓ,n(m) ≤ δΓ,k(n)δΓ,k(m).

In particular, if δΓ,k(n) and δΓ,n(k) is finite then δΓ,n and δΓ,k are equivalent.

Proof. This is left as an exercise. �

Lemma 11.2. Suppose that Γ, Λ are quasi-isometric graphs. Then there exists C
such that for every m,n

δΓ,Cm(n) ≤ δΛ,m(n) + n.

Proof (sketched). Consider f : Γ → Λ and g : Λ → Γ quasi-inverse M -Lipschitz
quasi-isometries mapping the base-points to each other. Suppose that g ◦ f is at
distance M to identity.

Let v0, . . . , vn be a closed 1-path. Interpolate its image by f by a 1-path w0, . . . , wMn

where wMi = f(vi). Interpolate in turn its image by g by a 1-path V0, . . . , VM2n,
where VM2i = g ◦ f(vi).

Then the distance of (v0, . . . , vn) to (V0, . . . , VM2n) in LΓ,(M+1)2 is at most n (using
a polygon through vi, vi+1, VM2(i+1), VM2i).

Now if we have two closed paths (a0, . . . , ak) ' (b1, . . . , d`), i.e. they differ “by
one K-gon”, then their images by g can be interpolated to paths differing by one
MK-gon. Thus, if in LΛ,K , (a0, . . . , ak) is at distance at most n to the constant path
1, then (g(a0), . . . , g(ak)) is at distance at most n to 1 in LΛ,MK .

Thus we get, if M ≥ 1 and K ≥ M + 3,

δΓ,MK(n) ≤ δΛ,K(n) + n.

�
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Proposition 11.3. Let (G, S,R) be a compactly presented group. Then δ(n) < ∞.

Proof. The set of closed 1-paths of length n, based at 1, is compact. Let (v0, . . . , vn)
be one of them. If (w0, . . . , wn) is close to (v0, . . . , vn), then the two are at distance
≤ k, where k is an integer such that the word length of (G, S) is bounded by k
nearby 1. It follows that the area function is locally bounded. By compactness, it
is bounded. �

12. Computation of some Dehn functions

Let G be a group, S a set of generators, and R ⊂ FS a set of relators, so that
G is the quotient of FS by the normal subgroup N generated by R. The area
function can be redefined as follow: let Rc be the set of conjugates in FS of elements
of R. Then, for g ∈ FS, let a(g) be the word length of g with respect to Rc;
if g ∈ N , agree that a(g) = ∞. Let b(g, h) = a(g−1h) be the corresponding right-
invariant (R+∪{infty})-valued distance. As the “generating”-set is invariant under
conjugation, this is also a right-invariant distance.

Lemma 12.1.
a([x, y]) = a([y, x]) and

a([xn, ym]) ≤ |mn|a([x, y]) ∀m, n ∈ Z

Proof. For the first statement just observe that [y, x] = [x, y]−1.
For the second statement, first check the cases when |m|, |n| = 1; also . Then

prove the general inequality a([xy, z]) ≤ a([x, z]) + a([y, z]) and deduce the general
case. �

Exercise 16. Complete the proof of Lemma 12.1.

Proposition 12.2. The group presentation

G = 〈x, y| [x, y] = 1〉
has Dehn function δ(n) ≤ n(n− 1)/2.

Proof. Observe that G ' Z2; in particular every g ∈ G can be written in a unique
way, in G, as xαyβ for (α, β) ∈ Z2, where |α| + |β| ≤ |g|. In our language, where
we prefer to work inside the free group FS, this states that for every g ∈ FS, there
exists a unique (α, β) ∈ Z2 such that b(g, xαyβ) < ∞. Let us show by induction on
n = |g| that b(g, xαyβ) ≤ un = n(n− 1)/2.

This is clear for n = 0. Suppose that this is proved for n, and suppose |g| = n+1.
There are two cases. If g = xem with |e| = 1 and |m| = n, then b(g, xα+eyβ) =
b(xem, xa+ey) = b(m,xαyβ) ≤ un by induction. Therefore b(g, xα+ey) ≤ un ≤ un+1.
If g = yem with |e| = 1 and |m| = n, then

b(g, xαyβ+e) = b(yem,xαyβ+e) = b(m, y−exαyeyβ)

= a(y−exαyex−αxαyβm−1) ≤ a([y−e, xα]) + a(xαyβm−1)

≤ |α|+ b(g, xαyβ) ≤ n + un ≤ un+1,

by induction and by Lemma 12.1.
Now, if a(g) < ∞, we have (α, β) = (0, 0), so this gives a(g) ≤ u|g|, and therefore

δ(n) ≤ un for all n. �
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Exercise 17. Generalize Proposition 12.2 as follows: if Hi has presentation

〈Si|Ri〉
for i = 1, 2, if G = H1 ×H2 is presented as

〈S1 ∪ S2| R1 ∪R2 ∪ [S1, S2]〉
(where [S1, S2] = {[s1, s2]| s1 ∈ S1, s2 ∈ S2}), then

max(δH1(n), δH2(n)) ≤ δG(n) ≤ δH1(n) + δH2(n) + n(n− 1)/2.

Proposition 12.3. The group presentation

H = 〈x, y| [x, [x, y]] = [y, [x, y]] = 1〉
has Dehn function δ(n) ≤ (4n3 + 12n2 + 11).

Proof. We shall show that every element is equal in G a a unique element of the
form xαyβzγ, where we denote z = [x, y].

Looking in the abelianization, we get the uniqueness of (α, β). So the uniqueness of
γ is equivalent to say that z is torsion-free, as we see by using the usual representation
as upper unipotent 3× 3 matrices.

Let us prove something stronger than the existence, namely: for every m ∈ FS

with |m| = n, there exists (α, β, γ) in Z3 such that b(m,xαyβzγ) ≤ vn = 4n3+12n2+
11, with |α|, |β| ≤ n and |γ| ≤ n(n− 1)/2.

This is clear for n = 0; suppose this is proved for n, and consider m′ of length n+1.
If m′ = xem with |m| = n and b(m, xαyβzγ) ≤ vn, then b(m′, xα+1yβzγ) ≤ vn ≤ vn+1

and γ ≤ un ≤ un+1. So suppose m′ = yem with |m′| = n. Then

b(yem, xαyβ+ezγ−αe) = a(y−exαyβ+ezγ−αem−1)

= a(xαy−e[ye, x−α]yβ+ezγ−αem−1)

= a([ye, x−α]yβ+ezγ−αem−1xαy−e)

≤ a([ye, x−α]z−eα) + a(zeαyβ+ezγ−αem−1xαy−e)

= a([ye, x−α]z−eα) + a([zeα, yβ+e]) + a(yβ+ezeαzγ−αem−1xαy−e).

Let us deal with each of these three terms:

(1) Let us check that

a([ye, x−α]z−eα) ≤ kα = |α|(|α|+ 1)/2.

Let us prove it by induction for α ≥ 0 and e = 1, the case α ≤ 0 and/or
e = −1 being similar. For α = 0 this is obvious. Suppose that this is proved
for α ≥ 0, i.e. b(x−αyxα, y−1z−α) ≤ kα. Then

b(x−α−1yxα+1, y−1z−α−1) = b(x−αyxα, xy−1z−α−1x−1)

≤ kα + b(y−1z−α, xy−1z−α−1x−1)

= kα + a(yxy−1z−1x−1[x, z−α])

= kα + a([x, y]z−1) + a([x, z−α])

≤ kα + 1 + α ≤ kα+1.

(2) By Lemma 12.1,

a([zeα, yβ+e]) ≤ |α|(|β|+ 1)



14 LARGE SCALE SIMPLE CONNECTEDNESS IN GEOMETRIC GROUP THEORY

(3)

a(yβ+ezeαzγ−αem−1xαy−e) = a(xαyβ+ezγm−1) ≤ vn.

We thus get

b(m′, xαyβ+ezγ−αe) ≤ vn + |α|(|α|+ 1)/2 + |α|(n− |α|+ 1)

= vn + (n + 3/2)2/2− (α− n− 3/2)2/2 ≤ vn + (n + 3/2)2/2 = vn+1.

In particular, if a(m) < ∞, we get a(m) ≤ vn. �

Proposition 12.4. The group presentation

G = 〈x, y| [x, y] = 1〉

has Dehn function δ(n) ≥ (n− 3)2/4.

Proof. It suffices to show that k = a(xnynx−ny−n), which is finite, is at least equal
to n2. Indeed, write in FS

xnynx−ny−n =
k∏

i=1

ci[x, y]εic−1
i ,

where εi ∈ {−1, 0, 1}. Take the image inside the Heisenberg H group of Proposition
12.3. This gives the inequality in H

xnynx−ny−n = [x, y]σ,

where σ =
∑k

i=1 εi. On the other hand, in H we have xnynx−ny−n = [x, y]n
2
, and

[x, y] is torsion-free in H. Therefore we get k ≥ n2.
So we get δ(4n) ≥ n2 for all n, which implies the desired inequality. �

Proposition 12.5. The group presentation

H = 〈x, y, z| [x, [x, y]] = [y, [x, y]] = 1〉

has Dehn function δ(n) ≥ ((n− 11)/12)3.

Proof. We only skecth the proof which is, to a certain extent, similar to that of
Proposition 12.4. It consists in showing that δ([[xn, yn], xn]) ≥ n3. To see this, write
[[xn, yn], xn] as a product of a = a([[xn, yn], xn]) conjugates of relators, and then take
the image in the group

N = 〈x, y, z, t|[x, y] = z, [x, z] = t, [x, t] = [y, t] = [y, z] = 1〉

This group can be viewed as the semidirect product Z n (Z[X]/X3), where the left-
hand Z = 〈x〉 acts by multiplication by the invertible element 1 + X, and y, z, t
correspond to the elements 1, X, X2 of Z[X]/X3. Then a direct calculation shows

that, in N , we have [[xn, yn], xn] = tn
3
. Now the relators of H can be computed in

N : [x, [x, y]] = t and [y, [x, y]] = 1; in particular they are central in N . In particular,
the product of a conjugates of relators is actually a genuine product of a elements
among 1 and t±1; as this product in N is equal to tn

3
and t is torsion-free in N (as

follows from this very representation as Z n Z3), we get that a ≥ n3). �

Exercise 18. Fill in the details in the proof of Proposition 12.5. In particular, check
that we have indeed an isomorphism from N to this Z n1+X Z[X]/X3; and check

the equality [[xn, yn], xn] = tn
3

in the latter group.
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Gersten, Holt and Riley proved (2003, GAFA) that every finitely generated group
of nilpotency length c has Dehn function bounded by a polynomial of degree ≤ c+1.
This is likely to hold more generally for all simply connected nilpotent Lie groups.
This is not optimal: the higher Heisenberg groups, of dimension 2n + 1 ≥ 5, have
quadratic Dehn function (Allcock, 1998, previously stated by Thurston and sketched
by Gromov).

Gromov (1987) proved that a f.g. group has linear Dehn function if and only
if it is word hyperbolic. The converse was improved by Olshanskii (1991, IJAC),
who proved that a f.g. group with subquadratic Dehn function is actually word
hyperbolic. All these results are likely to hold for locally compact groups, but
unfortunately, so far, most people in geometric group theory seem reluctant to go
into general locally compact groups.


