
PROPERTY T FOR LINEAR GROUPS OVER RINGS, AFTER
SHALOM

YVES DE CORNULIER

Let R be a ring (all rings here are supposed associative, with unity, but not
necessarily commutative), Recall that a vector (r1, . . . , rn) ∈ Rn is called unimodular
if there exist t1, . . . , tn ∈ R such that

∑
tiri = 1. Recall that the ring R has stable

rank at most n, denoted s-rank(R) ≤ n, if for every unimodular vector (r0, . . . , rn) ∈
Rn+1, there exists s1, . . . , sn ∈ R such that the vector (r0 +s0rn, r1 +s1rn, . . . , rn−1 +
sn−1rn) ∈ Rn is unimodular. For instance, s-rank(Z) = 2, s-rank(Z[X]) = 3, see
[HaOM89] for further examples.

Given any ring R, denote by ELn(R) the subgroup of GLn(R) generated by ele-
mentary matrices (those matrices with 1’s on the diagonal, and at most one non-zero
entry outside the diagonal). When R is commutative, it is contained in SLn(R).

We present here Shalom’s proof1 of the following result.

Theorem 1 (Shalom). Fix n ≥ 3 and a finitely generated ring R. If n ≥ s-rank(R)+
1, then ELn(R) has Property T.

Definition 2. Let G be a topological group and X a subset. We say that (G, Ω)
has corelative Property FH if every continuous Hilbert length function on G which
is bounded on Ω is bounded on all of G.

We say that G is boundedly generated by a subset Ω if Ω generates G so that the
corresponding Cayley graph is bounded. The following lemma is trivial.

Lemma 3. If G is boundedly generated by a subset Ω, then (G, Ω) has corelative
Property FH. �

The first step for the proof of Theorem 1 is the following proposition. View
GLn−1(R) as a subgroup of GLn(R), identifying it to the upper-left block, and set
H = ELn(R) ∩GLn−1(R).

Proposition 4. For every finitely generated ring R and every n ≥ s-rank(R) + 1,
the pair (ELn(R), H) has corelative Property FH.

This proposition follows at once from the two ones below, independent of Property
T. Define K1 as the subgroup of ELn(R) consisting of matrices whose entries differ
from those in the identity matrix only on the n-th column. Define K2 as its transpose.

Proposition 5. For every finitely generated ring R and every n ≥ s-rank(R) + 1,
every A ∈ GLn(R) can be written X1X2Y1BY2 with B ∈ GLn−1(R), X1, Y1 ∈ K1,
X2, Y2 ∈ K2. �

Note that in particular, if A ∈ ELn(R), then B ∈ H.
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1The proof here follows a seminar talk given in Princeton on March 20, 2006. However I claim

any error here is mine!
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Proof : We only sketch the elementary proof. Start from A =

(
M X
Y r

)
.

1) Using the stable rank assumption, we can multiply A on the left by a matrix

in K1 so as to obtain a matrix A1 =

(
M ′ X ′

Y r

)
with X ′ unimodular.

2) Since X ′ is unimodular, we can multiply A1 on the left by a matrix in K2 so

as to obtain a matrix A2 =

(
M ′ X ′

Y ′ 1

)
.

3) Finally take the product B =

(
In−1 −Y ′

0 1

)
A2

(
In−1 0
−X ′ 1

)
, which belongs to

GLn−1(R). �

The following result is crucial; it is due to Shalom [Sha99] when R is commutative,
and Kassabov [Kas05] subsequently observed that the argument also works for non-
commutative R.

Theorem 6. For every finitely generated ring R, the pair (EL2(R)nR2, R2) has rel-
ative Property T. In particular, for every n ≥ 3, and i = 1, 2, the pair (ELn(R), Ki)
has relative Property T. �

The second step for the proof of Theorem 1 is the following theorem.

Theorem 7. 2 Suppose that a group G contains three subgroups H, K1 and K2

satisfying the five following assumptions.

(1) H normalizes both K1 and K2;
(2) K1 ∪K2 generates G;
(3) G is finitely generated;
(4) Hom(G,R) = {0}
(5) (G, H) has corelative property FH;
(6) (G, K1) and (G, K2) have relative Property T.

Then G has Property T.

Remark 8. Actually Assumption (4) is redundant as it follows from (2) and (6).
However we leave it for the following reasons:

• (4) is in general much easier to check than (6);
• it might be tempting to change slightly the hypotheses of the theorem, in

such a way that this implication fails to hold.

Observe that these assumptions are satisfied in the example with the assumptions
of Theorem 1: (1) is trivial, (5) is Proposition 4, and (6) is contained in Theorem 6.
For (2), (3), and (4), write the identity [eik(y), enk(−x)] (where [a, b] = aba−1b−1),
for i, j, k pairwise distincts, which has the following easy consequences:

• If n ≥ 3, then G = ELn(R) is perfect, so that (4) is satisfied.
• If R is a finitely generated ring and n ≥ 3, then G is finitely generated.
• In particular, if i, j, n are pairwise distincts, then eij(x) = [ein(1), enj(−x)].

Thus if n ≥ 3, then ELn(R) is generated by K1 ∪K2.

2The explicit statement of this theorem is mine; the however the proof follows Shalom’s one for
ELn without changes.
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Let us finally prove Theorem 7, completing the proof of Theorem 1. Using As-
sumptions (2) and (3), we can fix a finite generating subset S ⊂ K1 ∪ K2 of G.
Consider the set A of all (equivalence classes of) affine isometric actions (α,H) on
Hilbert spaces such that for every x ∈ H, we have sups∈S ‖α(s)x− x‖ ≥ 1. Suppose
by contradiction that G does not have Propety (T). By a result of Shalom [Sha00]
(see also Gromov [Gro03]), it follows that A 6= ∅.

For every (α,H) ∈ A, define

dα = inf{‖v1 − v2‖ : v1 ∈ Hα(K1), v2 ∈ Hα(K2)}.

Assumption (6) implies that dα < ∞ for every α ∈ A. Now define d = infα∈A dα.
As A 6= ∅, we have d < ∞. We claim that this infimum is attained:

Lemma 9. There exists α ∈ A such that dα = d. Moreover, we can choose it so
that the linear part has no invariant vector.

Proof : Consider a sequence (αn,Hn) such that dαn → d. In Hn, choose points
xn ∈ Hαn(K1), yn ∈ Hαn(K2) such that ‖xn− yn‖ → d. Changing the origin in Hn, we
can suppose that yn = 0 for all n. Now fix a non-principal ultrafilter ω on N, and
define H∗ as the ultralimit of all Hn: this is constructed as follows: take all bounded
sequences (vn) with vn ∈ Hn, kill all sequences (vn) such that limω ‖vn‖ = 0, define
the scalar product 〈(vn), (wn)〉 = limω〈vn, wn〉, and finally take the completion.

If g ∈ G and zn is a bounded sequence, we claim that the sequence (αn(g)zn) is
bounded. It suffices to check this for g ∈ S. As we have chosen S ⊂ K1 ∪K2, every
g ∈ S fixes a point at bounded (independently of n) distance from zero (observing
that xn is bounded as ‖xn‖ tends to d).

Therefore α(g)((zn)) = (α(g)zn) defines a isometric action on H, where K2 fixes
0 and K1 fixes (xn) which has norm d. Finally observe that α ∈ A. Indeed, fix a
bounded sequence (zn) with each zn ∈ Hn. For every n there exists sn ∈ S such
that ‖αn(sn)zn − zn‖ ≥ 1. The sets Ns = {n ∈ N : sn = s} make up a finite
partition of N, so that one of them satisfies ω(Ns) = 1. Therefore we obtain that
‖α(s)((zn))− (zn)‖ ≥ 1, proving that α ∈ A.

It remains to check the last statement about the linear action. Let π denote the
linear part of the action α. Denote by H∗ = V1 ⊕ V2, where V1 denote the π(G)-
invariant vectors and V2 its orthogonal. As by Assumption (4) G has no non-trivial
action by translations, the action writes as α(g)(v1, v2) = v1 + π2(g)v2 + b2(g). In
particular, the orthogonal of the invariant vectors is invariant under α(G), and the
induced action α′ is thus in A. On the other hand, it clearly satisfies dα′ = d. �

Now consider α as provided by the lemma, with points x1 and x2 fixed by α(K1)
and α(K2) respectively, at distance d; let π be the linear part of α. As H normalizes
both K1 and K2 by Assumption (1), for some g ∈ H, if we define yi = α(g)xi, then
yi is also fixed by α(Ki).

By Assumption (5), we can choose g so that y1 6= x1. It is easy to check that the
function f(t) = t 7→ ‖(1 − t)x1 + ty1 − (1 − t)x2 − ty2‖2 is strictly convex unless
x1 − x2 = y1 − y2. As f(0) = f(1) = d ≤ f , this implies that x1 − x2 = y1 − y2.
Observe now that this vector is fixed by both π(K1) and π(K2), and hence by all of
π(G) by Assumption (2). Thus x1 = x2, a contradiction.
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