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Abstract. Let A be a locally compact abelian group, and H a locally com-
pact group acting on A. Let G = H n A be the semidirect product, assumed
σ-compact. We prove that the pair (G, A) has Kazhdan’s Property T if and
only if the only countably approximable H-invariant mean on the Borel sub-
sets of the Pontryagin dual Â, supported at the neighbourhood of the trivial
character, is the Dirac measure.

1. Introduction

Let G be a locally compact group and A a subgroup. Recall that the pair (G, A)

has Kazhdan’s Property T (or relative Property T, or Property T) if every unitary

representation of G with almost invariant vectors admits a non-zero A-invariant

vector. We refer to the book [BHV] for a detailed background.

In this paper, we focus on the special case where G is written as a semidirect

product H n A, and A is abelian. Any unitary representation of such a group

can be restricted to A and we can then use the spectral theorem to decompose it

as an integral of characters. It was thus soon observed that relative Property T

for the pair (G, A) is related to restrictions on invariant probabilities on the

Pontryagin dual Â of A. This was first used by D. Kazhdan [Kaz] in the case

of SLn(R) n Rn for n ≥ 2. These ideas were then used in a more systematic

way, notably by G. Margulis [Mar] and M. Burger [Bur]. It was in particular

observed that if H is any locally compact group with a representation on a finite-

dimensional vector space V over a local field, then (H n V, V ) has Property T

if and only if H does not preserve any probability measure on the Borel subsets

of the projective space P(V ∗) over the dual of V (see [Cor2, Prop. 3.1.9] for

the general statement; the “if” part follows from [Bur, Prop. 7]). The idea of

using means (i.e. finitely additive probabilities) instead of probabilities is due to

Y. Shalom [Sha, Theorem 5.5], who proved that if H preserves no invariant mean
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on Â− {1}, then (H n A, A) has Property T and used related ideas in [Sha2] to

prove Property T for such pairs as (SL2(Z[X]) n Z[X]2,Z[X]2). Our main result

gives the first sufficient condition for relative Property T in terms of invariant

means, which is also necessary.

We say that a Borel mean m on a locally compact space X is countably approx-

imable if there exists a countable set {νn : n ≥ 0} of Borel probability measures,

whose weak-star closure in L∞(X)∗ (each probability measure being viewed as a

mean) contains m.

Theorem 1. Let G = H n A be a σ-compact locally compact group and assume

that the normal subgroup A is abelian. We have equivalences

(¬T) The pair (G, A) does not have Kazhdan’s Property T.

(M) There exists a countably approximable H-invariant mean m on L∞(Â −
{1}) such that m(V ) = 1 for every neighbourhood V of {1}.

(P) There exists a net of Borel probability measures (µi) on Â such that

(P1) µi → δ1 (weak-star convergence in Cc(Â)∗);

(P2) µi({1}) = 0;

(P3) for every h ∈ H, ‖h · µi − µi‖ → 0, uniformly on compact subsets of

H.

Here, Condition (P1) means that µi(V ) → 1 for every neighbourhood V of 1 in

Â. Also note that since G is assumed σ-compact, the net in (P) can be replaced

by a sequence. In the case of discrete groups, the implication (¬T)⇒(P) has

been independently obtained by A. Ioana [Ioa, Theorem 6.1], while its converse

was obtained by M. Burger [Bur, Prop. 7].

Corollary 2. If H1 → H is a homomorphism with dense image between σ-

compact locally compact groups, then (H n A, A) has Property T if and only if

(H1 n A, A) does.

Moreover, if (H n A, A) has Property T, then we can find a finitely generated

group Γ and a homomorphism Γ → H such that (Γ n A, A) has Property T.

The first statement of Corollary 2 shows that, in a strong sense, relative Prop-

erty T for such a semidirect product only depends on the image of the action

map H → Aut(A), and does not detect if this action, for instance, is faithful. It

typically applies when H is discrete and H1 is a free group with a surjection onto

H1.

Corollary 3. The equivalence between (¬T) and (P) holds for G locally compact

(without any σ-compactness assumption).
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The implication (¬T)⇒(M), which uses standard arguments (similar to [Sha,

Theorem 5.5]), is borrowed, in the discrete case, from [Cor, Section 7.6], and

improves it in the case when A is not discrete.

We also give a relative version of Theorem 1, generalizing ideas from [CI]. The

relative result actually follows as a corollary from the proof of Theorem 1. In what

follows, all positive functions are assumed to take the value 1 at the unit element.

We denote by µ̂i the Fourier-Stieltjes transform of µi, which is the positive defi-

nite function on A defined as µ̂i(a) =
∫

χ(a)dµi(χ) (see [BHV, Appendix D]). If

X ⊂ G is a closed subset (G any locally compact group), we also say that (G, X)

has relative Property T if for positive definite functions on G, convergence to 1

uniformly on compact subsets of G implies uniform convergence in restriction to

X (this extends the previous definition when X is a subgroup, see [Cor2]). At the

opposite, (G, X) has the relative Haagerup Property if there exists positive defi-

nite functions on G, arbitrary close to 1 for the topology of uniform convergence

on compact subsets, but whose restriction to X are C0, i.e. vanish at infinity.

If G is σ-compact, then this is equivalent to the existence of an affine isometric

action on a Hilbert space, whose restriction to X is proper: the proof uses the

same argument as the original proof by Akemann and Walter of the equivalence

between the unitary and affine definition of Haagerup’s Property [AW].

Theorem 4. Under the assumptions of Theorem 1, assume that H is discrete

and suppose that X ⊂ A is a closed subset. Then we have equivalences

• The pair (G, X) does not have Kazhdan’s Property T.

• There exists a net of Borel probability measures (µi) on Â satisfying (P)

and such that the convergence of µ̂i to 1 on X is not uniform.

If moreover X is H-invariant, we have equivalences

• The pair (G, X) has relative Haagerup’s Property.

• There exists a net of Borel probability measures (µi) on Â satisfying (P),

with µ̂i is C0 on X.

In particular, we deduce the following corollary, which generalizes [CI, Theo-

rem 3.1].

Corollary 5. Under the assumptions of Theorem 1, assume that H is discrete

and that Λ is a normal subgroup of H whose action on A is trivial. If X ⊂ A,

then (H n A, X) has relative Property T if and only if (H/Λ n A, X) has relative

Property T. If moreover X is H-invariant, then (H n A, X) satisfies relative

Haagerup’s Property if and only if (H/Λ n A, X) does. �
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Remark 6. It is of course better when the condition of Theorem 4 on the Fourier-

Stieltjes transforms can be made explicit. When X = A, wee actually see that,

for Borel probability measures on Â, the uniform convergence of µ̂i to one is

equivalent to the condition µi({1}) → 1. This extends to the case of a subgroup

B of A (not necessarily H-invariant), by the statement: the convergence of µ̂i to

1 is uniform on B if and only if µi(B
⊥) → 1.

The condition that µ̂i is C0 on A is not easy to characterize but has been long

studied (see for instance [Ry]). In view of the Riemann-Lebesgue Lemma, it can

be viewed as a weakening of the condition that µi has density with respect to the

Lebesgue measure.

To prove the different equivalences, we need to transit through various proper-

ties analogous to (P), essentially differing in the way the asymptotic H-invariance

is stated. Theorem 7 below states all these equivalences and encompasses The-

orem 1. Several of these implications borrow arguments from the proof of the

equivalence between various formulations of amenability [BHV, Appendix G].

Section 2 begins introducing some more definitions, notably concerning means,

measures, and convolution, and then formulates Theorem 7. Section 3 contains

all proofs.

2. Equivalent formulations of relative property T for semidirect

products

We need to introduce some notation. Let X = (X, T ) be a measurable space.

Recall that a mean on X is a finitely additive probability measure on the mea-

surable subsets of X. We denote by L∞(X) the space of bounded measurable

Borel functions on X, endowed with the supremum norm ‖ · ‖∞. Recall that any

mean on X can be interpreted as an element m̄ ∈ L∞(X)∗ such that m̄(1) = 1

and m̄(φ) ≥ 0 for all non-negative φ ∈ L∞(X), characterized by the condition

m̄(1B) = m(B) for every Borel subset B. By a common abuse of notation, we

generally write m instead of m̄, and similarly µ(f) instead of
∫

f(x)dµ(x) when

µ is a measure on X, and f is an integrable function. Note that any mean m

on X can be approximated, in the weak-star topology, by a net (νi)i∈I of finitely

supported probabilities (i.e. finite convex combinations of Dirac measures).

We fix a Haar measure λ for H. We use the notation
∫

f(h)dh for the integral

of f ∈ L1(H) against λ. Let X be a measurable space with a measurable action

H × X → X of H. For every mean ν on X, h ∈ H, and B Borel subset of X,

we write (ν · h)(B) = ν(hB). Let UCH(X) be the subspace of L∞(X) whose
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elements φ satisfy that h → h · φ is continuous from H to L∞(X). We also need

to consider the convolution product

f ∗ φ(x) =

∫
f(h)φ(h−1x)dh

between functions in L1(H), or between f ∈ L1(H) and φ ∈ L∞(X). Note that

in the first case, f ∗ φ ∈ L1(H), whereas in the second case, f ∗ φ ∈ L∞(X) (see

also Lemma 10). If µ is a measure on X, we can define the convolution product

of µ and f ∈ L1(H) by µ ∗ f(B) = µ(f ∗ 1B). Using the Lebesgue monotone

convergence theorem, we see it is σ-additive. It follows (using again the Lebesgue

monotone convergence theorem for φ ≥ 0) that for all φ ∈ L∞(X) we have

(µ ∗ f)(φ) = µ(f ∗ φ).

Let Y be a locally compact Hausdorff space, endowed with its σ-algebra of

Borel subsets. Let M(Y ) be the Banach space of signed Borel regular measures

on Y (“regular” is redundant when Y is metrizable), equipped with the total

variation norm (i.e. the norm in Cc(Y )∗ = M(Y )). Note that for f ∈ L1(H) and

µ ∈M(Y ), we have ‖µ ∗ f‖ ≤ ‖f‖1‖µ‖.
Let L1(H)1,+ be the subset of L1(H) consisting of non-negative elements of

norm 1. Let Cc(H)1,+ be the set of non-negative, continuous, compactly supported

functions f on H such that
∫

f(h)dh = 1. Note that L1(H)1,+ and Cc(H)1,+ are

stable under convolution.

Theorem 7. Let G = H n A be a σ-compact locally compact group, with A

abelian. Equivalences:

(¬T) the pair (G, A) does not have Property T.

(M) There exists a countably approximable H-invariant mean m on Â − {1}
such that m(V ) = 1 for every neighbourhood V of {1}.

(MC) There exists a Borel σ-finite measure γ on Â − {1} and a mean m on

L∞(Â−{1}) belonging to L∞(Â, γ)∗, such that m(V ) = 1 for every neigh-

bourhood V of {1}, and such that for all f ∈ Cc(H)1,+ and φ ∈ L∞(Â),

m(f ∗ φ) = m(φ).

(P) There exists a net of Borel probability measures (µi) on Â satisfying (P1),

(P2), (P3).

(PC) There exists a net of Borel probability measures (µi) on Â satisfying (P1),

(P2), (P3c), where (P3c) is defined as: ‖µi ∗ f − µi‖ → 0, for all f ∈
Cc(H)1,+.
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(PQ) There exists a net of Borel probability measures (µi) on Â satisfying (P1),

(P2), (P3), with the additional property that µi is H-quasi-invariant for

every i.

In (P) and (PQ), the net can be chosen to be a sequence. Besides, when G

is a σ-compact locally compact group and A a closed abelian normal subgroup

(not necessarily part of a semidirect decomposition), then (¬T) implies all other

properties (with H = G/A), which are equivalent.

Remark 8. If (H n A, A) does not have Property T, we do not necessarily have

a net of probabilities (µi), as in any of the properties in Theorem 7, with density

with respect to the Haar measure. A simple counterexample is given by SL2(R)n
(R2×R) (with the trivial action on R), or its discrete analogue SL2(Z)n(Z2×Z).

Indeed, we could push this sequence forward to R2 (resp. (R/Z)2) and contradict

relative Property T for SL2(R) n R2 and SL2(Z) n Z2.

Remark 9. We could define (M’) as the following weak form of (M): there exists

an H-invariant mean m on Â−{1} such that m(V ) = 1 for every neighbourhood

V of {1}. It can easily be shown to be equivalent to (P’), defined as the existence

of a net of Borel probability measures (µi) satisfying (P1),(P2), and (P3’), where

(P3’) is defined as: µi − hµi tends to zero in the weak-star topology of L∞(Â)∗.

We are not able to determine if these properties imply (¬T).

3. Proof of the results

In this section, we first develop a few preliminary lemmas, which hold in a

more general context. Then we prove Theorem 7, and the corollaries.

Lemma 10. Let X be measurable space with measurable action of H. For all

f ∈ L1(H) and for all φ ∈ L∞(X), we have f ∗ φ ∈ UCH(X).

Proof. If h ∈ H, we have h · (f ∗ φ) = (h · f) ∗ φ. Therefore, if h′ ∈ H we get

‖h · (f ∗ φ)− h′ · (f ∗ φ)‖∞ = ‖(h · f − h′ · f) ∗ φ‖∞

≤ ‖h · f − h′ · f‖1‖φ‖∞.

Since the left regular action of H on L1(H) is continuous, we deduce that g 7→
g · (f ∗ φ) is continuous from G to L∞(X), that is, f ∗ φ ∈ UCH(X). �

Lemma 11. If A is σ-compact, Condition (P1) is equivalent to:

(P1’) for a ∈ A, we have
∫

χ(a)dµi(χ) → 1, uniformly on compact subsets of

A.
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Proof. This appears as [Par, Theorem 3.3] under the assumption that A is second

countable (and actually the proof extends to any locally compact abelian group

A); however we give here a much shorter proof.

Suppose that (P1) holds. Let K be a compact subset of A. There exists a

neighbourhood V of 1 in Â such that |1 − χ(a)| ≤ ε for all χ ∈ V and a ∈ K.

For i large enough, µi(V ) > 1− ε, which implies, for all a ∈ K∣∣∣∣1− ∫
χ(a)dµi(χ)

∣∣∣∣ ≤ ∫
|1− χ(a)|dµi(χ)

≤
∫

V

|1− χ(a)|dµi(χ) +

∫
V c

|1− χ(a)|dµi(χ) ≤ 2ε.

The converse follows from the following claim: for every neighbourhood V of

1 in Â and every ε > 0, there exists η > 0 and a compact set K in A such that

for every Borel measure µ on Â satisfying supa∈K |1−
∫

χ(a)dµ(χ)| ≤ η, we have

µ(V ) ≥ 1− ε.

Let us prove this claim. Let φ be a positive function in L1(A) with
∫

φ(a)da = 1

(this exists because A is σ-compact). Set F (χ) =
∫

φ(a)χ(a)da; this is the Fourier

transform of φ. In particular, by the Riemann-Lebesgue Lemma, F is continuous

and vanishes at infinity. Moreover, F (1) = 1 and since φ > 0, |F (χ)| < 1 for all

χ 6= 1. Therefore there exists ρ > 0 such that {|F | ≥ 1− ρ} is contained in V .

Define η = ρε/3. Let K be a compact neighbourhood of 1 in A such that∫
K

φ(a)da ≥ 1− η. Let µ be a Borel probability on Â such that∣∣∣∣1− ∫
χ(a)dµ(χ)

∣∣∣∣ ≤ η

for all a ∈ K. Set σ(a) =
∫

(1− χ(a))dµ(χ). We have∣∣∣∣∫ φ(a)σ(a)da

∣∣∣∣ ≤ ∣∣∣∣∫
K

φ(a)σ(a)da

∣∣∣∣ +

∣∣∣∣∫
Kc

φ(a)σ(a)da

∣∣∣∣
≤ η + 2η = 3η.

On the other hand,∫
φ(a)σ(a)da = 1−

∫ (∫
φ(a)χ(a)dµ(χ)

)
da;

since the term in the double integral is summable, we can use Fubini’s Theorem,

giving ∫
φ(a)σ(a)da = 1−

∫
F (χ)dµ(χ),

where
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1−
∫

φ(a)σ(a)da =

∫
F (χ)dµ(χ)

=

∫
{|F |>1−ρ}

F (χ)dµ(χ) +

∫
{|F |≤1−ρ}

F (χ)dµ(χ),

thus∣∣∣∣1− ∫
φ(a)σ(a)da

∣∣∣∣ ≤ (1− µ({|F | ≤ 1− ρ})) + (1− ρ)µ({|F | ≤ 1− ρ})

= 1− ρµ({|F | ≤ 1− ρ})
so ∣∣∣∣∫ φ(a)σ(a)da

∣∣∣∣ ≥ 1− |1−
∫

φ(a)σ(a)da| ≥ ρµ({|F | ≤ 1− ρ}).

Combining with the previous inequality, we obtain.

µ({|F | ≤ 1− ρ}) ≤ 3η/ρ = ε,

hence

µ(V ) ≥ 1− ε. �

Lemma 12. Let X be a measurable space with a measurable action of H, and m

a mean on UCH(X). For all φ ∈ UCH(X) and f ∈ L1(H), we have

m(f ∗ φ) =

∫
f(h)m(h · φ)dh.

Proof. Fix some ε > 0. Let W be a neighbourhood of 1 ∈ H such that for every

h ∈ W,

(3.1) ‖h · φ− φ‖∞ ≤ ε.

We can write, in L1(H), f approximately as a finite sum of functions with small

disjoint support, namely f =
∑k

i=1 fi + f0 with Supp(fi) ⊂ hiW for some hi ∈ H

(when i 6= 0) and ‖f0‖1 ≤ ε and ‖f‖1 =
∑

j ‖fj‖1. Write for short hφ for h · φ.

For given i 6= 0, we have∣∣∣∣∫ fi(h)m(hφ)dh−m

(∫
fi(h) hφ dh

)∣∣∣∣
≤

∣∣∣∣∫ fi(h)m(hφ)dh−
∫

fi(h)m(hiφ)dh

∣∣∣∣
+

∣∣∣∣∫ fi(h)m(hiφ)dh−m

(∫
fi(h) hφ dh

)∣∣∣∣
=

∣∣∣∣∫ fi(h)(m(hφ− hiφ))dh

∣∣∣∣ +

∣∣∣∣m (∫
fi(h)(hφ− hiφ)dh

)∣∣∣∣
≤ 2‖fi‖1ε
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and ∣∣∣∣∫ f0(h)m(hφ)dh−m

(∫
f0(h) hφ dh

)∣∣∣∣ ≤ 2ε‖φ‖∞

If we sum over i, we deduce∣∣∣∣∫ f(h)m(hφ)dh−m

(∫
f(h) hφ dh

)∣∣∣∣ ≤ 2(‖f‖1 + ‖φ‖∞)ε.

Since this holds for any ε, we deduce

m(f ∗ φ) = m

(∫
f(h) hφ dh

)
=

∫
f(h)m(hφ)dh. �

Lemma 13. Let X be a measurable space with a measurable action of H by

homeomorphisms, and m an H-invariant mean on UCH(X). Fix f0 ∈ Cc(H)1,+,

define a mean by

m̃(φ) = m(f0 ∗ φ), φ ∈ L∞(X).

Then for all f ∈ Cc(H)1,+ and φ ∈ L∞(X),

m̃(f ∗ φ) = m̃(φ).

Proof. First, m̃ is well-defined by Lemma 10. We have to show that m̃(f ∗ φ) =

m̃(φ) for all f ∈ Cc(H)1,+ and φ ∈ L∞(X).

Let (fi) be a net in Cc(H)1,+ with Supp(fi) → {1}. This implies that ‖f ∗ fi−
f‖1 → 0, and hence that ‖f ∗ fi ∗ φ − f ∗ φ‖∞ → 0, for all f ∈ Cc(H)1,+, and

φ ∈ L∞(X). Accordingly m(f ∗φ) = limi m(f ∗fi∗φ), which by Lemma 12 equals

limi m(fi ∗ φ) (since fi ∗ φ ∈ UCH(X)). This shows that m(f ∗ φ) = m(f ′ ∗ φ)

for all f, f ′ ∈ Cc(H)1,+, and all φ ∈ L∞(X). Then for all f ∈ Cc(H)1,+ and all

φ ∈ L∞(X),

m̃(f ∗ φ) = m(f0 ∗ f ∗ φ) = m(f0 ∗ φ) = m̃(φ). �

Proof of Theorem 7. We are going to prove the implications

(¬T) ⇒ (P) ⇒ (PQ) ⇒ (¬T) and

(P) ⇒ (M) ⇒ (MC) ⇒ (PC) ⇒ (PQ) ⇒ (P).

• (¬T)⇒(P). Let (π,H) be a unitary representation of G such that 1 ≺ π

and such that A has no invariant vector. Let (Kn) be an increasing

sequence of compact subsets of G whose interiors cover G. Let (εn) be

a positive sequence converging to zero. For each n, let ξn be a (Kn, εn)-

invariant vector. Let E be the projection-valued measure associated to
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π|A, so that π(a) =
∫

Â
χ(a)dE(χ) for all a ∈ A. For every n, let µn be

the probability on Â defined by µn(B) = 〈E(B)ξn, ξn〉. We have:

‖π(a)ξn − ξn‖2 =

∫
Â

|1− χ(a)|2dµn(χ) ∀a ∈ A.

Therefore, (P1) results from the almost invariance of (ξn). Since π has no

A-invariant vector, µn({1}) = 0 for all n. If f is a continuous function on

Â, we define a bounded operator f̂ on H by f̂ =
∫

f(χ)dE(χ) (actually

f̂ is the element of the C∗-algebra of π|A associated to f); note that its

operator norm is bounded above by ‖f‖∞. For every h ∈ H and any f ,

we have

h · µn(f) =

∫
fd(h · µn) = 〈π(h−1)f̂π(h)ξn, ξn〉

= 〈f̂ ξn, ξn〉+ 〈f̂(π(h)ξn − ξn), ξn〉
+〈f̂ ξn, π(h)ξn − ξn〉+ 〈f̂(π(h)ξn − ξn), π(h)ξn − ξn〉

Thus

|h · µn(f)− µn(f)| ≤ 4‖f‖∞‖π(h)ξn − ξn‖,
so

‖h · µn − µn‖ ≤ 4‖π(h)ξn − ξn‖
which by assumption tends to zero, uniformly on compact subsets of H.

So (P3) holds.

• (PQ)⇒(¬T). Consider the sequence of Hilbert spaces Hn = L2(Â, µn),

and for every n, the unitary action of H on Hn defined by

(πn(h)f)(χ) = f(h · χ)

(
d(h · µn)

dµn

(χ)

)1/2

.

There is also a natural action of A on L2(Â, µn) given by πn(a) · f(χ) =

χ(a)f(χ), and since (by a straightforward computation) we have

πn(h)πn(a)πn(h−1) = πn(h · a) ∀h ∈ H, a ∈ A,

so that πn extends to a unitary action of the semidirect product H n A

on L2(Â, µn). This action has no nonzero A-invariant vector. Indeed, let

f be an invariant vector. So for every a ∈ A, there exists a Borel subset

Ωa ⊂ Â with µn(Ωa) = 1 and for all χ ∈ Ωa,

(χ(a)− 1)f(χ) = 0.

If a ∈ A, define its orthogonal Ka = {χ : χ(a) = 1} for all a 6= 0.

Recall that we assume that A is σ-compact. If we assume for a moment
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that A is also second countable, then A is separable; so there exists a

sequence (an) in A such that
⋂

n Kan = {1}. If we set Z = {f 6= 0}, we

get Z ⊂ Kan ∪ W , where W is the complement of
⋂

n Ωan . We deduce

that Z ⊂ W , which has µn-measure zero. So f = 0 in L2(Â, µn). If A is

only assumed σ-compact (i.e. Â has an open second-countable subgroup),

we proceed as follows: there exists a second-countable open subgroup B

of Â such that µn(B) > 0 for n large enough (because µn concentrates on

{1}). So we can work in B as we just did in Â and thus L2(Â, µn) has no

A-invariant vector (at least for n large enough).

An immediate calculation gives, for a ∈ A

‖1Â − πn(a)1Â‖L2(Â,µn) = 2Re

(
1−

∫
χ(a)dµn(χ)

)
,

which tends to zero, uniformly on compact subsets of A, when n → ∞,

by (P1). On the other hand, for every h ∈ H we have

‖1Â − πn(h)1Â‖L2(Â,µn) =

∫
Â

∣∣∣∣∣1−
(

d(h · µn)

dµn

(χ)

)1/2
∣∣∣∣∣
2

dµn(χ),

so using the inequality |1−
√

u| ≤
√

1− |u| for all u ≥ 0 we get

‖1Â − πn(h)1Â‖L2(Â,µn) ≤
∫

Â

∣∣∣∣1− d(h · µn)

dµn

(χ)

∣∣∣∣ dµn(χ)

= ‖µn − h · µn‖,

which tends to zero, uniformly on compact subsets of H, when n →∞, by

(P3). Accordingly, if we consider the representation
⊕

πn, which has no

A-invariant vector, then the sequence of vectors (ξn) obtained by taking

1Â in the nth component, is a sequence of almost invariant vectors.

• (P)⇒(M). View µn as a mean on Borel subsets of Â−{1}. Let m = limω µn

be an accumulation point (ω some ultrafilter) in the weak-star topology

of L∞(Â − {1}). (P3) immediately implies that m is H-invariant. (P1)

implies that
∫

χ(a)dm(χ) = 1 for all a ∈ A. So for every ε > 0, we

deduce that m({|χ − 1| < ε}) = 1. In case A is discrete, since those

subsets form a prebasis of the topology of Â, we deduce that m(V ) = 1

for every neighbourhood V of 1 in Â. Hence (M) follows.

When A is not discrete, we need to appeal to Lemma 11, which implies

that µn(V ) → 1 (hence m(V ) = 1) for every Borel neighbourhood V of 1

in Â.
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• (M)⇒(MC). Let m be an invariant mean as in (M). Define m̃ as in Lemma

13, which provides the convolution invariance. Clearly, m̃({1}) = 0. Be-

sides, if V is a closed subset of Â not containing 1, we see that f0 ∗ 1V

is supported by the closed subset Supp(f0)V , which does not contain 1

either. So m̃ is supported at the neighbourhood of 1. The argument in the

proof of Corollary 2 shows that m̃ also lies in the closure of a countable set

{νn : n ≥ 0} of probability measures on Â− {1}. If we set γ =
∑

2−nνn,

then νn, viewed as a mean, belongs to L∞(Â − {0}, γ)∗ (i.e. vanishes on

γ-null sets), so m also lies in L∞(Â− {0}, γ)∗.

• (MC)⇒(PC). Let m be a mean as in (MC) and let (νi) be a net of Borel

probabilities on Â − {1}, converging to m in L∞(Â)∗ for the weak-star

topology, with νi having density with respect to γ. We can suppose that

γ is a probability measure. Let us show that for any ε > 0, any compact

subset K of A, and any finite subset Ω of Cc(H)1,+, one can find an element

µ in

W =

{
ν ∈M(Â \ {1}) : Re

(∫
χ(a)dν(χ)

)
≥ 1− ε, ∀a ∈ K

}
,

such that ‖µ∗f −µ‖ ≤ ε for all f ∈ Ω. This is exactly, in view of Lemma

11, what is required to produce a net (µi) satisfying (PC). First define

γ′ = γ +
∑

f∈Ω γ ∗ f , so that γ′({0}) = 0 and each µi ∗ f belongs to

L1(Â − {0}, γ′). For every f ∈ Cc(H)1,+, the net (νi ∗ f − νi) converges

to 0 for the weak-star topology in L∞(Â)∗. Since γ′ is σ-finite, the dual

of L1(Â, γ) is equal to L∞(Â, γ′). So the convergence of (νi ∗ f − νi) to 0

holds in L1(Â− {0}, γ′).
Besides, (νi) satisfies (P1) and therefore, by the easy part of Lemma 11,

we have the convergence
∫

χ(a)dνi(χ) → 1, uniformly on compact subsets

of A. Note that W is a closed and convex subset of M(Â \ {1}). Fix i0
such that for all i ≥ i0, we have νi ∈ W . Consider the (finite) product

E = L1(Â \ {1}, γ)Ω,

equipped with the product of norm topologies. Let Σ be the convex hull

of

{(νi ∗ f − νi)f∈Ω, i ≥ i0} ⊂ E.

Since (νi ∗f−νi) converges to 0 in the weak topology of E, the convex set

Σ contains 0 in its weak closure. As E is locally convex, by Hahn-Banach’s
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theorem1, the weak closure of Σ coincides with its closure in the original

topology of E. Hence there exists µ in the convex hull of {νi : i ≥ i0} such

that ‖µ ∗ f − µ‖ ≤ ε for all f ∈ Ω; since W is convex, we have µ ∈ W .

• (PC)⇒(PQ). Let (µi) be as in (PC). By density of compactly supported

continuous functions, for all f ∈ L1(H)1,+, we have ‖f ∗ µi − µi‖ → 0.

This convergence is uniform on each compact subset K of L1(H)1,+: this

is a trivial consequence of the fact that (f, µ) 7→ f ∗ µ is 1-Lipschitz for

every µ.

Now fix f0 ∈ L1(H)1,+ and set µ′i = f0 ∗ µi. It is easy to check that it

satisfies (P1) and (P2).

By a direct computation, we have, for any h ∈ H and ν ∈ M(Â), the

equality h · (ν ∗ f) = ∆(h)ν ∗ fh
0 , where fh

0 is the right translate of f0,

given by fh
0 (g) = f0(gh). Note that ∆(h)fh

0 ∈ L1(H)1,+. Then for h ∈ H

we have

‖h · µ′i − µ′i‖ = ‖h · (µi ∗ f0)− µi ∗ f0‖

= ‖µi ∗ (∆(h)fh
0 )− µi ∗ f0‖

≤ ‖µi ∗ (∆(h)fh
0 )− µi‖+ ‖µi ∗ f0 − µi‖.

Since the right regular representation of H on L1(H) is continuous, the

function h 7→ ∆(h)fh
0 is continuous as well so maps compact subsets of

H to compact subsets of L1(H)1,+; therefore the above term converges to

zero, uniformly on compact subsets of H. So (µ′i) satisfies (P3).

Now suppose that we have chosen f0 > 0 everywhere; this is possible

since H is σ-compact. Let us show that (µ′i) satisfies (PQ): it only remains

to prove that each µ′i is quasi-invariant. Since h · µ′i = µi ∗ (∆(h)fh
0 ), we

have to show that the measures µi ∗ f , for positive f ∈ L1(H), all have

the same null sets. If B is a Borel subset of Â and x ∈ Â, we have

f ∗ 1B(x) = 0 ⇔
∫

f(h)1B(h−1x)dh = 0

⇔ λ({h : f(h)1B(h−1x) 6= 0}) = 0

⇔ λ({h : 1B(h−1x) 6= 0}) = 0

1The Hahn-Banach Theorem works because we are working with the weak topology (and
not the weak-star). This is the reason why we need all the measures νi to have density with
respect to a given measure γ. We are not able to bypass this argument.
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(since f does not vanish) and this condition does not depend on f , pro-

vided f > 0. Thus we have

µi ∗ f(B) = 0 ⇔ µi(f ∗ 1B) = 0

⇔ µi({x : f ∗ 1B(x) 6= 0}) = 0

and this condition does not depend on f . So µi∗f and µi∗f ′ are equivalent

measures.

• (PQ)⇒(P) is trivial.

Let us justify the statement about nets and sequences for (P) (the proof for

(PQ) being the same). Since G is assumed σ-compact, there is an increasing

sequence (Kn) of compact subsets whose interiors cover G. In view of Lemma

11, Condition (P) can be written as: for every ε > 0 and every n, there exists a

Borel probability µn,ε on Â− {1} such that
∫

χ(a)dµi(χ) ≥ 1− ε for all a ∈ Kn.

So the sequence (µn,1/n) satisfies the required properties.

For the last statement, first observe that the proof of (¬T)⇒ (P ) works without

assuming that A is part of a semidirect decomposition. Now all properties except

(¬T) only refer to the action on A, so their equivalence follows from the theorem

applied to the semidirect product (G n A, A). �

Proof of Corollary 2. We use Characterization (M). The “if” part is trivial. Con-

versely, suppose that (H1 n A, A) does not have Property T. So there exists an

H1-invariant mean on L∞(Â), with m(1{0}) = 0 and m = limω νn with νn(Vn) = 0

for some neighbourhood Vn of 1. Consider the restriction m′ of m to UCH(Â).

Since the action of H on UCH(Â) is separately continuous (that is, the orbital

maps H → UCH(Â) are continuous), the action on (UCH(Â), weak*) is contin-

uous as well. So the stabilizer of m′ is closed in H; since it contains the image

of H1 in H, this shows that m′ is H-invariant. Fix f ∈ Cc(H)1,+. Thanks to

Lemma 10, we can define, for φ ∈ L∞(Â),

m′′(φ) = m′(f ∗ φ).

Clearly, m′′ is an H-invariant mean on Â. Moreover, m′′(1{1}) = m′(f ∗ 1{1}) =

m′(1{1}) = 0, so m′′ is not the Dirac measure at 1. Finally we have m′′ = limω ν ′n
in the weak-star topology, where ν ′n(φ) = νn(f ∗ φ), and ν ′n is a probability on

Â− {1}.
For the second statement, assume that (HnA, A) has Property T. There exists

a compact normal subgroup K in G = H n A such that G/K is separable [Com,

Theorem 3.7]. Consider a countable subgroup S of G whose image into G/K is

dense, and let T be the closure of S in G. Set K ′ = K/(A ∩K). Then G/K ′ is



RELATIVE PROPERTY T FOR SEMIDIRECT PRODUCTS 15

generated by T/K ′ and K/K ′. Since K/K ′ centralizes A/K ′, the means preserved

by G and by T on the Pontryagin dual of A/K ′ are the same. This Pontryagin

dual is an open subgroup of Â, so the means preserved by G and by T at the

neighbourhood of 1 in Â are the same. Therefore (T nA, A) has Property T. Now

by the first statement of the Corollary, if S is endowed with the discrete topology,

then (S n A, A) has Property T. Finally by [Cor, Theorem 2.5.2], there exists a

finitely generated subgroup Γ of S such that (Γ n A, A) has Property T. �

Proof of Corollary 3. We first deal with the case when A is not σ-compact. First,

this condition easily implies (¬T) (see for instance [Cor, Lemma 2.5.1]). It also

implies (P). Indeed, let (Gi) be an increasing net of open, σ-compact subgroups of

G and Ai = Gi∩A, Hi = Ai∩Gi. Let µi be the Haar measure on the orthogonal

of Ai in Â; note that µi is Hi-invariant and µi({1}) = 0 since Ai has infinite index

in A. So (µi) satisfies (P).

Now suppose that A is σ-compact. If either (¬T) or (P) is true for H nA, then

it also holds for LnA for any open subgroup L of H. Let us check that conversely,

if it fails for H nA, then it fails for some σ-compact open subgroup LnA, so that

the corollary reduces to the σ-compact case from the theorem. This is immediate

for (P). For (¬T), if (H n A, A) has Property T, by [Cor, Theorem 2.5.2], there

exists an open compactly generated subgroup L of H, containing A, such that

(L, A) has Property T. �

Proof of Theorem 4. In either case, suppose that the first condition is satisfied.

We have a net (ϕi) of positive definite functions on G, converging to 1 uniformly

on compact subsets of G, satisfying some additional condition on X. The proof

of (¬T)⇒(P) of Theorem 7 constructs a net of Borel measures (µi) on Â, with

µ̂i = ϕ|A and ‖µi − hµi‖ → 0. So we exactly get the second condition.

Conversely, suppose that the second condition is satisfied. Let Γ be the sub-

group generated by an arbitrary finite subset S of H. Denote by T the average

operator by S. Then T̂ µ = T µ̂. If µ̂i is C0 on X and X is H-invariant, then

T̂ µi is also C0 and Tµi is also Γ-quasi-invariant, we can then follow the proof of

(PQ)⇒(¬T) of Theorem 7 to obtain a net (ϕi) of positive definite functions on

Γ n A whose restriction to A is µ̂i.

On the other hand, suppose that the convergence of µ̂i to 1 is not uniform on

X. Then the convergence of T̂ µi to one is also non-uniform on X (by an obvious

positivity argument using that positive definite functions are bounded by one).

Again, apply the proof of (PQ)⇒(¬T) to obtain the desired net.

In both cases, we obtain a net on a subgroup of the form ΓnA. These functions

can be extended to positive definite functions [BHV, Exercise C.6.7] on H n A
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by taking the value zero elsewhere. If we define the resulting functions as a net

indexed by both the indices i and Γ, the resulting net exactly gives the relative

Haagerup Property for (G, X), resp. the negation of relative Property T. �
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