A CHARACTERIZATION OF RELATIVE KAZHDAN
PROPERTY T FOR SEMIDIRECT PRODUCTS WITH
ABELIAN GROUPS

YVES DE CORNULIER AND ROMAIN TESSERA

ABSTRACT. Let A be a locally compact abelian group, and H a locally com-
pact group acting on A. Let G = H x A be the semidirect product, assumed
o-compact. We prove that the pair (G, A) has Kazhdan’s Property T if and
only if the only countably approximable H-invariant mean on the Borel sub-
sets of the Pontryagin dual /1, supported at the neighbourhood of the trivial
character, is the Dirac measure.

1. INTRODUCTION

Let G be a locally compact group and A a subgroup. Recall that the pair (G, A)
has Kazhdan’s Property T (or relative Property T, or Property T) if every unitary
representation of G with almost invariant vectors admits a non-zero A-invariant
vector. We refer to the book [BHV] for a detailed background.

In this paper, we focus on the special case where G is written as a semidirect
product H x A, and A is abelian. Any unitary representation of such a group
can be restricted to A and we can then use the spectral theorem to decompose it
as an integral of characters. It was thus soon observed that relative Property T
for the pair (G, A) is related to restrictions on invariant probabilities on the
Pontryagin dual A of A. This was first used by D. Kazhdan [Kaz] in the case
of SL,(R) x R™ for n > 2. These ideas were then used in a more systematic
way, notably by G. Margulis [Mar] and M. Burger [Bur]. It was in particular
observed that if H is any locally compact group with a representation on a finite-
dimensional vector space V' over a local field, then (H x V, V) has Property T
if and only if H does not preserve any probability measure on the Borel subsets
of the projective space P(V*) over the dual of V' (see [Cor2, Prop. 3.1.9] for
the general statement; the “if” part follows from [Bur, Prop. 7]). The idea of
using means (i.e. finitely additive probabilities) instead of probabilities is due to
Y. Shalom [Sha, Theorem 5.5], who proved that if H preserves no invariant mean
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on A — {1}, then (H x A, A) has Property T and used related ideas in [Sha2] to
prove Property T for such pairs as (SLy(Z[X]) x Z[X]?, Z[X]?). Our main result
gives the first sufficient condition for relative Property T in terms of invariant
means, which is also necessary.

We say that a Borel mean m on a locally compact space X is countably approx-
imable if there exists a countable set {1, : n > 0} of Borel probability measures,
whose weak-star closure in £>°(X)* (each probability measure being viewed as a
mean) contains m.

Theorem 1. Let G = H X A be a o-compact locally compact group and assume
that the normal subgroup A is abelian. We have equivalences

(=T) The pair (G, A) does not have Kazhdan’s Property T.
(M) There exists a countably approzimable H-invariant mean m on Eoo(A —
{1}) such that m(V') =1 for every neighbourhood V' of {1}.
(P) There exists a net of Borel probability measures (j1;) on A such that

A~

(P1) p; — 61 (weak-star convergence in C.(A)*);

(P2) m({1}) = 0;

(P3) for every h € H, ||h - u; — ;|| — 0, uniformly on compact subsets of
H.

Here, Condition (P1) means that p;(V') — 1 for every neighbourhood V' of 1 in
A. Also note that since G is assumed o-compact, the net in (P) can be replaced
by a sequence. In the case of discrete groups, the implication (—T)=(P) has
been independently obtained by A. lIoana [loa, Theorem 6.1], while its converse
was obtained by M. Burger [Bur, Prop. 7].

Corollary 2. If Hy — H is a homomorphism with dense image between o-
compact locally compact groups, then (H x A, A) has Property T if and only if
(Hy x A, A) does.

Moreover, if (H x A, A) has Property T, then we can find a finitely generated
group I' and a homomorphism I' — H such that (I' x A, A) has Property T.

The first statement of Corollary 2 shows that, in a strong sense, relative Prop-
erty T for such a semidirect product only depends on the image of the action
map H — Aut(A), and does not detect if this action, for instance, is faithful. It
typically applies when H is discrete and H; is a free group with a surjection onto
H;.

Corollary 3. The equivalence between (—T) and (P) holds for G locally compact
(without any o-compactness assumption,).
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The implication (=T)=-(M), which uses standard arguments (similar to [Sha,
Theorem 5.5]), is borrowed, in the discrete case, from [Cor, Section 7.6], and
improves it in the case when A is not discrete.

We also give a relative version of Theorem 1, generalizing ideas from [CI]. The
relative result actually follows as a corollary from the proof of Theorem 1. In what
follows, all positive functions are assumed to take the value 1 at the unit element.
We denote by fi; the Fourier-Stieltjes transform of p;, which is the positive defi-
nite function on A defined as z;(a) = [ x(a)du;(x) (see [BHV, Appendix D]). If
X C G is a closed subset (G any locally compact group), we also say that (G, X)
has relative Property T if for positive definite functions on G, convergence to 1
uniformly on compact subsets of G implies uniform convergence in restriction to
X (this extends the previous definition when X is a subgroup, see [Cor2]). At the
opposite, (G, X) has the relative Haagerup Property if there exists positive defi-
nite functions on G, arbitrary close to 1 for the topology of uniform convergence
on compact subsets, but whose restriction to X are Cj, i.e. vanish at infinity.
If G is o-compact, then this is equivalent to the existence of an affine isometric
action on a Hilbert space, whose restriction to X is proper: the proof uses the
same argument as the original proof by Akemann and Walter of the equivalence
between the unitary and affine definition of Haagerup’s Property [AW].

Theorem 4. Under the assumptions of Theorem 1, assume that H is discrete
and suppose that X C A is a closed subset. Then we have equivalences

e The pair (G, X) does not have Kazhdan’s Property T.
e There exists a net of Borel probability measures (p;) on A satisfying (P)
and such that the convergence of j1; to 1 on X is not uniform.

If moreover X is H-invariant, we have equivalences

e The pair (G, X) has relative Haagerup’s Property.
e There exists a net of Borel probability measures (p;) on A satisfying (P),
with f1; is Cy on X.

In particular, we deduce the following corollary, which generalizes [CI, Theo-
rem 3.1].

Corollary 5. Under the assumptions of Theorem 1, assume that H is discrete
and that A is a normal subgroup of H whose action on A is trivial. If X C A,
then (H x A, X) has relative Property T if and only if (H/A x A, X) has relative
Property T. If moreover X is H-invariant, then (H x A, X) satisfies relative
Haagerup’s Property if and only if (H/A x A, X) does. |
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Remark 6. It is of course better when the condition of Theorem 4 on the Fourier-
Stieltjes transforms can be made explicit. When X = A, wee actually see that,
for Borel probability measures on A, the uniform convergence of [i; to one is
equivalent to the condition p;({1}) — 1. This extends to the case of a subgroup
B of A (not necessarily H-invariant), by the statement: the convergence of j1; to
1 is uniform on B if and only if pu;(Bt) — 1.

The condition that 1; is Cy on A is not easy to characterize but has been long
studied (see for instance [Ry]). In view of the Riemann-Lebesgue Lemma, it can
be viewed as a weakening of the condition that u; has density with respect to the
Lebesgue measure.

To prove the different equivalences, we need to transit through various proper-
ties analogous to (P), essentially differing in the way the asymptotic H-invariance
is stated. Theorem 7 below states all these equivalences and encompasses The-
orem 1. Several of these implications borrow arguments from the proof of the
equivalence between various formulations of amenability [BHV, Appendix GJ.
Section 2 begins introducing some more definitions, notably concerning means,
measures, and convolution, and then formulates Theorem 7. Section 3 contains
all proofs.

2. EQUIVALENT FORMULATIONS OF RELATIVE PROPERTY T FOR SEMIDIRECT
PRODUCTS

We need to introduce some notation. Let X = (X, 7) be a measurable space.
Recall that a mean on X is a finitely additive probability measure on the mea-
surable subsets of X. We denote by £>(X) the space of bounded measurable
Borel functions on X, endowed with the supremum norm || - ||. Recall that any
mean on X can be interpreted as an element m € L£>(X)* such that m(1) =1
and m(¢) > 0 for all non-negative ¢ € L(X), characterized by the condition
m(1p) = m(B) for every Borel subset B. By a common abuse of notation, we
generally write m instead of m, and similarly p(f) instead of [ f(z)du(z) when
1 is a measure on X, and f is an integrable function. Note that any mean m
on X can be approximated, in the weak-star topology, by a net (v;);c; of finitely
supported probabilities (i.e. finite convex combinations of Dirac measures).

We fix a Haar measure A for H. We use the notation [ f(h)dh for the integral
of f € L'(H) against A\. Let X be a measurable space with a measurable action
H x X — X of H. For every mean v on X, h € H, and B Borel subset of X,
we write (v - h)(B) = v(hB). Let UCx(X) be the subspace of L£>(X) whose
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elements ¢ satisfy that h — h - ¢ is continuous from H to £%(X). We also need
to consider the convolution product

fdla) = / F(h)o(h~ ) dh

between functions in L'(H), or between f € L'(H) and ¢ € £L>(X). Note that
in the first case, f x ¢ € L'(H), whereas in the second case, f * ¢ € L>(X) (see
also Lemma 10). If p is a measure on X, we can define the convolution product
of pand f € LY(H) by u* f(B) = p(f * 1g). Using the Lebesgue monotone
convergence theorem, we see it is o-additive. It follows (using again the Lebesgue
monotone convergence theorem for ¢ > 0) that for all ¢ € £>°(X) we have

(x [)(@) = u(f * ).

Let Y be a locally compact Hausdorff space, endowed with its o-algebra of
Borel subsets. Let M(Y') be the Banach space of signed Borel regular measures
on Y (“regular” is redundant when Y is metrizable), equipped with the total
variation norm (i.e. the norm in C.(Y)* = M(Y')). Note that for f € L'(H) and
p € M(Y), we have [[px fIf < [|f]lx[lll-

Let L'(H); + be the subset of L'(H) consisting of non-negative elements of
norm 1. Let C.(H); + be the set of non-negative, continuous, compactly supported
functions f on H such that [ f(h)dh =1. Note that L'(H); 1 and C.(H); ; are
stable under convolution.

Theorem 7. Let G = H x A be a o-compact locally compact group, with A
abelian. Equivalences:

(=T) the pair (G, A) does not have Property T.
(M) There exists a countably approzimable H-invariant mean m on A — {1}
such that m(V') =1 for every neighbourhood V' of {1}.
(MC) There exists a Borel o-finite measure y on A — {1} and a mean m on
L°(A—{1}) belonging to L>(A,~)*, such that m(V) = 1 for every neigh-
bourhood V of {1}, and such that for all f € C.(H)14 and ¢ € L2(A),

m(f * ¢) = m(¢).

(P) There exists a net of Borel probability measures (u;) on A satisfying (P1),
(P2), (P3).
(PC) There exists a net of Borel probability measures (y;) on A satisfying (P1),
(P2), (P3c), where (P3c) is defined as: ||p; * f — wi|| — 0, for all f €
Co.(H)p -
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(PQ) There exists a net of Borel probability measures (u;) on A satisfying (P1),
(P2), (P3), with the additional property that u; is H-quasi-invariant for
every 1.
In (P) and (PQ), the net can be chosen to be a sequence. Besides, when G
is a o-compact locally compact group and A a closed abelian normal subgroup
(not necessarily part of a semidirect decomposition), then (—T) implies all other
properties (with H = G /A), which are equivalent.

Remark 8. If (H x A, A) does not have Property T, we do not necessarily have
a net of probabilities (y;), as in any of the properties in Theorem 7, with density
with respect to the Haar measure. A simple counterexample is given by SLy(R) X
(R*xR) (with the trivial action on R), or its discrete analogue SLy(Z) X (Z%x Z).
Indeed, we could push this sequence forward to R? (resp. (R/Z)?) and contradict
relative Property T for SLy(R) X R? and SLy(Z) x Z2.

Remark 9. We could define (M) as the following weak form of (M): there exists
an H-invariant mean m on A — {1} such that m(V) = 1 for every neighbourhood
V of {1}. It can easily be shown to be equivalent to (P’), defined as the existence
of a net of Borel probability measures (p;) satisfying (P1),(P2), and (P3’), where
(P3') is defined as: p; — hjy; tends to zero in the weak-star topology of £°(A)*.
We are not able to determine if these properties imply (=T).

3. PROOF OF THE RESULTS

In this section, we first develop a few preliminary lemmas, which hold in a
more general context. Then we prove Theorem 7, and the corollaries.

Lemma 10. Let X be measurable space with measurable action of H. For all
f e LY H) and for all $ € L>®(X), we have f * ¢ € UCH(X).

Proof. It h € H, we have h- (f x ¢) = (h- f) * ¢. Therefore, if b’ € H we get
[ (f*) =R - (fxd)llow=Il(h-f—h"f)*dlo
<|h-f=0"flillllo-

Since the left regular action of H on L'(H) is continuous, we deduce that g —
g (f % ¢) is continuous from G to L£L2(X), that is, f * ¢ € UCHx(X). O

Lemma 11. If A is o-compact, Condition (P1) is equivalent to:

(P1’) for a € A, we have [ x(a)du;(x) — 1, uniformly on compact subsets of
A,
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Proof. This appears as [Par, Theorem 3.3] under the assumption that A is second
countable (and actually the proof extends to any locally compact abelian group
A); however we give here a much shorter proof.

Suppose that (P1) holds. Let K be a compact subset of A. There exists a
neighbourhood V of 1 in A such that |1 — y(a)] < e forall x € V and a € K.
For ¢ large enough, p;(V') > 1 — €, which implies, for all a € K

b—/&mmMuﬂs/u—x@wmu>
< [ n=x@ldmto + [ 1= x@lduto < 2

The converse follows from the following claim: for every neighbourhood V' of
1in A and every € > 0, there exists n > 0 and a compact set K in A such that
for every Borel measure 1 on A satisfying sup,cy |1 — [ x(a)du(x)| < n, we have
wV)y>1-—e.

Let us prove this claim. Let ¢ be a positive function in L1 A) with [ ¢(a)da =1
(this exists because A is o-compact). Set F(x) = [ ¢(a da this is the Fourler
transform of ¢. In particular, by the Rlemann—Lebesgue Lemma, F' is continuous
and vanishes at infinity. Moreover, F'(1) = 1 and since ¢ > 0, |F(x)| < 1 for all
X # 1. Therefore there exists p > 0 such that {|F| > 1 — p} is contained in V.

Deﬁne n = pe/3. Let K be a compact neighbourhood of 1 in A such that
[ @ ®(a)da > 1 —n. Let u be a Borel probability on A such that

‘1 - /x(a)du(x)‘ <7

for all a € K. Set o(a) = [(1 — x(a))du(x). We have

’/qb(a) a)da| < . ¢(a)o(a)da

On the other hand,

fom 1= (s

since the term in the double integral is summable, we can use Fubini’s Theorem,

[ stwo@ia =1~ [ Feoduo.

<n+2n=3n.

giving

where
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1= [ taotayda = [ FOOduty

/ F(x)dp(x) + / F(x)du(x),
) {|F|>1—p} (FI<1-p}
thus

‘1 _ / é(a)o(a)da

[ otatardal =111~ [ o(@ota)dal = pu{IF| < 1~ o))
Combining with the previous inequality, we obtain.

p({|F| <1—p}) <3n/p=c¢,

<A =-p{IF<1=p}))+ A =p)u|F] <1-p})

=1—pu({|F| <1-p})

hence
wV)y>1—e. 0O

Lemma 12. Let X be a measurable space with a measurable action of H, and m
a mean on UCy(X). For all p € UCK(X) and f € L'(H), we have

fr0)= [ s

Proof. Fix some € > 0. Let W be a neighbourhood of 1 € H such that for every
heW,

(3.1) [h-¢—dlle <e.

We can write, in L'(H), f approximately as a finite sum of functions with small

disjoint support, namely f = Zle fi + fo with Supp(f;) € h;W for some h; € H

(when i # 0) and [ folly < € and || f[ls = 3=, [| fylls. Write for short "¢ for h - ¢.
For given i # 0, we have

/fz ¢)dh — m(/f qﬁdh)’

[ s aan - [ fm-on

+ /fz ¢)dh — m(/f h¢dh)‘

= | sonto=ropan]+ | ([ s - o)

< 2|| fillxe

IA
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‘/fo o)dh m</fo ¢dh)‘<2er|¢||m

If we sum over 7, we deduce

[ rmoyin - m(/f ’"‘¢dh)‘<2(HfH1+H¢Hoo)

Since this holds for any e, we deduce

(/f hgbdh) /f $)dh. O

Lemma 13. Let X be a measurable space with a measurable action of H by

and

homeomorphisms, and m an H-invariant mean on UCy(X). Fix fo € C.(H)1 +,
define a mean by

m(¢) =m(fox @), ¢ € L2(X).
Then for all f € C.(H)14 and ¢ € L*(X),

m(f * ¢) = m(e).

Proof. First, m is well-defined by Lemma 10. We have to show that m(f * ¢) =
m(¢) for all f € C.(H),+ and ¢ € L(X).

Let (f;) be anet in C.(H); 4+ with Supp(f;) — {1}. This implies that || f * f; —
flli — 0, and hence that ||f * fi x ¢ — f * ¢||oc — O, for all f € C.(H); +, and
¢ € L2(X). Accordingly m(f*¢) = lim; m(f * f;*¢), which by Lemma 12 equals
lim; m(f; * ¢) (since f; * ¢ € UCH(X)). This shows that m(f * ¢) = m(f' % ¢)
for all f, f' € C.(H)14+, and all ¢ € L>(X). Then for all f € C.(H);+ and all
¢ € L>(X),

m(f *¢) =m(fox f*o)=m(foxo)=m(¢). O
Proof of Theorem 7. We are going to prove the implications
(=T) = (P) = (PQ) = (=T) and

(P) = (M) = (MC) = (PC) = (PQ) = (P).

e (=T)=(P). Let (7, H) be a unitary representation of G such that 1 < 7
and such that A has no invariant vector. Let (K,) be an increasing
sequence of compact subsets of G whose interiors cover G. Let (g,) be
a positive sequence converging to zero. For each n, let &, be a (K,,,¢&,)-
invariant vector. Let E be the projection-valued measure associated to
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7|4, so that 7 fAX ) for all @ € A. For every n, let u, be
the probablhty on A deﬁned by ,LLn(B) = (E(B)&n, &n). We have:
(@6 = &ulF = [ 1= x@Pdu()  Vae A

Therefore, (P1) results from the almost invariance of (¢,). Since 7 has no
A-invariant vector, u,,({1}) = 0 for all n. If f is a continuous function on
A, we define a bounded operator f on H by f = J f(x)dE(x) (actually
f is the element of the C*-algebra of 7|4 associated to f); note that its
operator norm is bounded above by || f|l. For every h € H and any f,
we have

b ilf) = / fd(h- ) = {m(h™Y) fr(h)n, )

= (f&u, &) + (F (@M)€ — &), )
(e m(h)&n — &u) + {f(m (W)€ — &), T (W)€ — &)
Thus
- pn(f) = ()] < 4l flloollm(R)En = &nll,
SO
17 pn = || < 4|7 (R)En — &nll
which by assumption tends to zero, uniformly on compact subsets of H.
So (P3) holds.

(PQ)=(—T). Consider the sequence of Hilbert spaces H, = L2(A, i),
and for every n, the unitary action of H on H,, defined by

d(h - pin) V2
w00 = 1) ()
There is also a natural action of A on L2(A, y1,) given by m,(a) - f(x) =
x(a)f(x), and since (by a straightforward computation) we have
Tn(h)mp (@) (b)) = mo(h-a) Yhe H ac€ A,

so that 7, extends to a unitary action of the semidirect product H x A
on L*(A, u,). This action has no nonzero A-invariant vector. Indeed, let
f be an invariant vector. So for every a € A, there exists a Borel subset

0, C A with tn(£2,) = 1 and for all y € Q,,

(x(a) =1)f(x) =0.

If a € A, define its orthogonal K, = {x : x(a) = 1} for all a # 0.
Recall that we assume that A is o-compact. If we assume for a moment
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that A is also second countable, then A is separable; so there exists a
sequence (a,) in A such that (), K,, = {1}. If we set Z = {f # 0}, we
get Z C K,, UW, where W is the complement of [, €2,,. We deduce
that Z C W, which has pu,-measure zero. So f = 0 in Lz(fl, fn). If A s
only assumed o-compact (i.e. A has an open second-countable subgroup),
we proceed as follows: there exists a second-countable open subgroup B
of A such that p,(B) > 0 for n large enough (because s, concentrates on
{1}). So we can work in B as we just did in A and thus L?(A, z1,) has no
A-invariant vector (at least for n large enough).
An immediate calculation gives, for a € A

I8~ 7 @iy = 2R (1= [ x(@in(0))

which tends to zero, uniformly on compact subsets of A, when n — oo,
by (P1). On the other hand, for every h € H we have

- ()

dpn(X),
i fn (X)

14— Wn(h)lAHL?(A,un) - /A

so using the inequality |1 — /u| < /1 — |u| for all u > 0 we get

I w0l < [ 1= 2522 00] it
= o —h - pall,

which tends to zero, uniformly on compact subsets of H, when n — oo, by
(P3). Accordingly, if we consider the representation € m,, which has no
A-invariant vector, then the sequence of vectors (&,) obtained by taking
1 in the nth component, is a sequence of almost invariant vectors.
(P)=(M). View p,, as a mean on Borel subsets of A—{1}. Let m = lim,, fi,,
be an accumulation point (w some ultrafilter) in the weak-star topology
of L2(A —{1}). (P3) immediately implies that m is H-invariant. (P1)
implies that [ x(a)dm(x) = 1 for all a € A. So for every ¢ > 0, we
deduce that m({|x — 1| < €}) = 1. In case A is discrete, since those
subsets form a prebasis of the topology of A, we deduce that m(V) =1
for every neighbourhood V of 1 in A. Hence (M) follows.

When A is not discrete, we need to appeal to Lemma 11, which implies
that p, (V) — 1 (hence m(V') = 1) for every Borel neighbourhood V" of 1
in A.



12

YVES DE CORNULIER AND ROMAIN TESSERA

o (M)=(MC). Let m be an invariant mean as in (M). Define /m as in Lemma

13, which provides the convolution invariance. Clearly, m({1}) = 0. Be-
sides, if V is a closed subset of A not containing 1, we see that fy * 1y
is supported by the closed subset Supp(fo)V, which does not contain 1
either. So m is supported at the neighbourhood of 1. The argument in the
proof of Corollary 2 shows that m also lies in the closure of a countable set
{vn : n > 0} of probability measures on A — {1}. If we set v = 3. 27",
then v,, viewed as a mean, belongs to L®(A — {0},7)* (i.e. vanishes on
~-null sets), so m also lies in L®(A — {0}, 7)*.

(MC)=-(PC). Let m be a mean as in (MC) and let (v;) be a net of Borel
probabilities on A — {1}, converging to m in £>(A)* for the weak-star
topology, with v; having density with respect to v. We can suppose that
v is a probability measure. Let us show that for any ¢ > 0, any compact
subset K of A, and any finite subset §2 of C.(H); 4, one can find an element

4 in
W= {y € M(A\ {1}) : Re </X(a)dy(x)> >1—¢eVae K},

such that ||u* f —u|| < e for all f € Q. This is exactly, in view of Lemma
11, what is required to produce a net (u;) satisfying (PC). First define
Y =9+ Y peqr * [, so that /({0}) = 0 and each p; * f belongs to
L'(A - {0},7'). For every f € C.(H)14, the net (1; * f — ;) converges
to 0 for the weak-star topology in EOO(A)*. Since ~' is o-finite, the dual
of L'(A,~) is equal to L®(A,~'). So the convergence of (v; * f — 1) to 0
holds in L'(A — {0},~/).

Besides, (v;) satisfies (P1) and therefore, by the easy part of Lemma 11,
we have the convergence [ x(a)dv;(x) — 1, uniformly on compact subsets
of A. Note that W is a closed and convex subset of M(A \ {1}). Fix ig
such that for all # > iy, we have v; € W. Consider the (finite) product

E=L'(A\{1},7)%

equipped with the product of norm topologies. Let ¥ be the convex hull
of
{(vix f —vi)peq, i > io} C E.

Since (v;* f —v;) converges to 0 in the weak topology of E, the convex set
) contains 0 in its weak closure. As F is locally convex, by Hahn-Banach’s
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theorem!, the weak closure of ¥ coincides with its closure in the original
topology of E. Hence there exists p in the convex hull of {v; : i > iy} such
that ||u* f — p|| < e for all f € Q; since W is convex, we have p € W.

e (PC)=(PQ). Let (p;) be as in (PC). By density of compactly supported
continuous functions, for all f € L'(H), ,, we have |f * p; — p|| — 0.
This convergence is uniform on each compact subset K of L'(H); ;: this
is a trivial consequence of the fact that (f, u) — f % p is 1-Lipschitz for
every .

Now fix fo € L'(H); 4 and set u) = fo * p;. It is easy to check that it
satisfies (P1) and (P2).

By a direct computation, we have, for any h € H and v € M(fl), the
equality h - (v * f) = A(h)v * f, where f? is the right translate of fy,
given by f(g) = fo(gh). Note that A(h)fy € L'(H); . Then for h € H

we have

A — gl = (1R - (i % fo) — i foll
= [l % (A(R) ) = i * foll

< i = (AR f) = pall + |l fo — pall.

Since the right regular representation of H on L'(H) is continuous, the
function h +— A(h)fl is continuous as well so maps compact subsets of
H to compact subsets of L'(H); 1 ; therefore the above term converges to
zero, uniformly on compact subsets of H. So (u;) satisfies (P3).

Now suppose that we have chosen f; > 0 everywhere; this is possible
since H is o-compact. Let us show that (u)) satisfies (PQ): it only remains
to prove that each y} is quasi-invariant. Since h - u} = p; * (A(h) ff), we
have to show that the measures u; * f, for positive f € L'(H), all have
the same null sets. If B is a Borel subset of A and z € A, we have

Frlpa)=0 & /f(h)lB(hlx)dh 0

< A{h: f(h)1p(h™'z) #0}) =0
s A{h:1p(h™'z) #0}) =0

IThe Hahn-Banach Theorem works because we are working with the weak topology (and
not the weak-star). This is the reason why we need all the measures v; to have density with
respect to a given measure . We are not able to bypass this argument.
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(since f does not vanish) and this condition does not depend on f, pro-
vided f > 0. Thus we have

pix f(B)=0 < pw(f*1lp)=0
& w({z: f*lp(x) #0}) =0

and this condition does not depend on f. So u;* f and p;* f’ are equivalent
measures.
e (PQ)=(P) is trivial.

Let us justify the statement about nets and sequences for (P) (the proof for
(PQ) being the same). Since G is assumed o-compact, there is an increasing
sequence (K,) of compact subsets whose interiors cover G. In view of Lemma
11, Condition (P) can be written as: for every € > 0 and every n, there exists a
Borel probability ji,. on A — {1} such that [ x(a)dui(x) >1—cfor all a € K,.
So the sequence (i, 1/,) satisfies the required properties.

For the last statement, first observe that the proof of (=T)=- (P) works without
assuming that A is part of a semidirect decomposition. Now all properties except
(=T) only refer to the action on A, so their equivalence follows from the theorem
applied to the semidirect product (G x A, A). O

Proof of Corollary 2. We use Characterization (M). The “if” part is trivial. Con-
versely, suppose that (H; X A, A) does not have Property T. So there exists an
H,-invariant mean on £2(A), with m(lgy) = 0 and m = lim,, v, with v,(V,) =0
for some neighbourhood V;, of 1. Consider the restriction m’ of m to UCy(A).
Since the action of H on UCy(A) is separately continuous (that is, the orbital
maps H — UCy(A) are continuous), the action on (UCx(A), weak*) is contin-
uous as well. So the stabilizer of m’ is closed in H; since it contains the image
of Hy in H, this shows that m' is H-invariant. Fix f € C.(H); 4. Thanks to

~

Lemma 10, we can define, for ¢ € L>*(A),
m"(¢) = m'(f * ¢).

Clearly, m” is an H-invariant mean on A. Moreover, m"(1gy) = m/(f x 1gy) =
m/(1f13) = 0, so m” is not the Dirac measure at 1. Finally we have m” = lim,, v/,
in the weak-star topology, where v/ (¢) = v,(f * ¢), and v/, is a probability on
A—{1}.

For the second statement, assume that (H x A, A) has Property T. There exists
a compact normal subgroup K in G = H x A such that G/K is separable [Com,
Theorem 3.7]. Consider a countable subgroup S of G whose image into G/K 1is
dense, and let T" be the closure of S in G. Set K/ = K/(AN K). Then G/K' is
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generated by T/ K’ and K/K’. Since K/K' centralizes A/K’, the means preserved
by G and by T on the Pontryagin dual of A/K" are the same. This Pontryagin
dual is an open subgroup of A, so the means preserved by G and by 1" at the
neighbourhood of 1 in A are the same. Therefore (T'x A, A) has Property T. Now
by the first statement of the Corollary, if S is endowed with the discrete topology,
then (S x A, A) has Property T. Finally by [Cor, Theorem 2.5.2], there exists a
finitely generated subgroup I' of S such that (I" x A, A) has Property T. O

Proof of Corollary 3. We first deal with the case when A is not o-compact. First,
this condition easily implies (=T) (see for instance [Cor, Lemma 2.5.1]). It also
implies (P). Indeed, let (G;) be an increasing net of open, o-compact subgroups of
G and A; = G;NA, H; = A;NG;. Let pu; be the Haar measure on the orthogonal
of 4; in A; note that p; is Hy-invariant and j4;({1}) = 0 since A; has infinite index
in A. So (p;) satisfies (P).

Now suppose that A is o-compact. If either (=T) or (P) is true for H x A, then
it also holds for Lix A for any open subgroup L of H. Let us check that conversely,
if it fails for H x A, then it fails for some o-compact open subgroup L x A, so that
the corollary reduces to the o-compact case from the theorem. This is immediate
for (P). For (=T), if (H x A, A) has Property T, by [Cor, Theorem 2.5.2], there
exists an open compactly generated subgroup L of H, containing A, such that
(L, A) has Property T. O

Proof of Theorem 4. In either case, suppose that the first condition is satisfied.
We have a net (g;) of positive definite functions on G, converging to 1 uniformly
on compact subsets of GG, satisfying some additional condition on X. The proof
of (=T)=(P) of Theorem 7 constructs a net of Borel measures (j;) on A, with
fii = ppa and ||p; — || — 0. So we exactly get the second condition.

Conversely, suppose that the second condition is satisfied. Let I' be the sub-
group generated by an arbitrary finite subset S of H. Denote by T' the average
operator by S. Then ﬂz = Tu. If g7 is Cyp on X and X is H-invariant, then
f/?i is also Cy and T'u; is also I'-quasi-invariant, we can then follow the proof of
(PQ)=-(—T) of Theorem 7 to obtain a net (¢;) of positive definite functions on
I' x A whose restriction to A is fi;.

On the other hand, suppose that the convergence of j1; to 1 is not uniform on
X. Then the convergence of 7/772 to one is also non-uniform on X (by an obvious
positivity argument using that positive definite functions are bounded by one).
Again, apply the proof of (PQ)=-(—=T) to obtain the desired net.

In both cases, we obtain a net on a subgroup of the form I' x A. These functions
can be extended to positive definite functions [BHV, Exercise C.6.7] on H x A
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by taking the value zero elsewhere. If we define the resulting functions as a net

indexed by both the indices ¢+ and I', the resulting net exactly gives the relative

Haagerup Property for (G, X), resp. the negation of relative Property T. O
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