
ON GROUPS OF RECTANGLE EXCHANGE
TRANSFORMATIONS

YVES CORNULIER AND OCTAVE LACOURTE

Abstract. We study a generalization Recd of the group IET of interval ex-
change transformations in every dimension d ≥ 1, called the rectangle exchange
transformations group. The subset of restricted rotations in IET is a generat-
ing subset and we prove that a natural generalization of these elements, called
restricted shuffles, form a generating subset of Recd. We denote by Td the
subset of Recd made up of those transformations that permute two rectangles
by translations. We prove that the derived subgroup is generated by Td. We
also identify the abelianization of Recd.
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1. Introduction

Let us define a rectangle exchange transformation as an invertible self-
transformation of the cube [0, 1[d that consists in cutting the square into finitely
many rectangles and moving these rectangles by translations to get another par-
tition of the square (see Figure 1). See Section 2 for a rigorous definition.
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Figure 1. A rectangle exchange transformation in dimension d = 2.

For d = 1, this reduces to the widely studied group IET of interval exchange
transformations.

Historically, H. Haller [11] introduced 2-rectangle exchange transformations in
1981 and it is mainly ergodic properties of a single 2-rectangle exchange transfor-
mation which are studied. More generally, dynamics of piecewise isometries on
polytopes are studied, in particular by A. Goetz [9], however the group itself is
rarely considered. The larger groups of piecewise affine self-homeomorphisms of
some affine manifolds were recently considered in particular by D. Calegari and
D. Rolfsen [3].

Here our goal is to initiate the study of Recd as a group, beyond the case d = 1.
Our main results describe the abelianization homomorphism and establish that
the derived subgroup is a simple group. Such results make use of the description
of suitable generating subsets, which are also interest for their own sake.

We introduce two kinds of special elements in Recd (see Figure 2 for pictures
and Definition 2.4 for rigorous definitions).

Definition 1.1. A restricted shuffle (depicted in Figure 2) is an element of
Recd that is identity outside some rectangle R1∪R2, where R1 and R2 are “consec-
utive” rectangles (have disjoint interior and share a common facet), and “shuffles”
R1 and R2.

A rectangle transposition is the map, given (interior-)disjoint rectangles
R1, R2 that are translates of each other, exchanges them by translation, and is
identity elsewhere.

Theorem 1.2. The set of all restricted shuffles is a generating subset of Recd.

For d = 1, restricted shuffles are known as restricted rotations. It is a well-
known observation that they form a generating subset of IET: after encoding an
interval exchange transformation as a permutation with given interval lengths,
this is an easy consequence of the fact that the symmetric group Sn is generated
by transpositions (i, i + 1) for 1 ≤ i < n. This argument falls apart for d ≥
2, as the combinatorics of a rectangle exchange is not always well-encoded by
a permutation, and conversely because rearranging rectangles does not always
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Figure 2. Left: Examples of restricted shuffles in dimension 2 in both
directions. Right: Example of a rectangle transposition in Rec2.

define a rectangle exchange. The proof of Theorem 1.2 is indeed significantly
more involved. For d = 2 a variant of the proof, providing a combinatorial
refinement of Theorem 1.2, is performed in Section 6.

The various next results actually make a crucial use of Theorem 1.2.
Thanks to Theorem 1.2 we obtain that the derived subgroup D(Recd) is gen-

erated by conjugates of commutators of two restricted shuffles. With this result
we prove the following theorem:

Theorem 1.3. The derived subgroup D(Recd) is simple and generated by its
subset of rectangle transpositions. It is contains every nontrivial normal subgroup
of Recd.

Arnoux-Fathi and independently Sah exhibited a surjective homomorphism
from IET = Rec1 onto the abelian group Λ2

QR, the second exterior algebra of
R over Q, which is now known as SAF homomorphism. Moreover, Sah proved
(see [1, 16]) that it induces an isomorphism from the abelianization of IET onto
Λ2

QR.
Our next contribution is to exhibit the suitable analogue of the SAF homo-

morphism in the context of Recd. We denote by R⊗k the k-th tensor power of R
over Q.

Theorem 1.4. There is a natural surjective group homomorphism from Recd
onto (R⊗(d−1)⊗(∧2

Q R))d, called the generalized SAF-homomorphism, whose ker-
nel is the derived subgroup D(Recd).

Let us partially describe this abelianization homomorphism here. In Rd, define
a rectangle as a product ∏d

i=1[ai, bi[ of left-closed right-open bounded intervals.
Define a multirectangle as a finite union of rectangles. We define the tensor
volume vol⊗d (M) of a multirectangle in Rd as follows: vol⊗d (∏d

i=1[ai, ai + ti[) =
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t1 ⊗ · · · ⊗ td ∈ R⊗d (tensor product over Q), and vol⊗d is additive under disjoint
unions. This is well-defined, by a simple argument (Proposition 3.4).

Then the abelianization homomorphism can essentially be described as a (non-
surjective) homomorphism τ = (τ1, . . . , τd) into (R⊗(d+1))d, where τi is defined
by

τi(f) =
∑
x∈Rd

vol⊗d
(
(f − id)−1({x})

)
⊗ xi.

The main substance of the proof consists in proving that every element in the
kernel of τ is a product of commutators. We have found it convenient to rewrite
the proof of the original IET case (d = 1), using Lemma 9.1 which identifies
some abelian group defined by a suitable infinite presentation. This approach
allows to avoid relying on too many computations, and especially performs these
computations in a context disjoint from IET. The general case then relies on
an elaboration of this combinatorial algebraic lemma. The image of τ is easy to
described (and coincides with⊕d

i=1 Im(τi)); we use a simple change of coordinates
to describe it more smoothly in §9.2.

As an application, in Section 9.3 we consider the subgroup GtGd of Recd gen-
erated by the subset IETd ∪Td (where the group IETd acts coordinate-wise and
Td is the set of rectangle transpositions). Obviously GtG1 = Rec1. In contrast,
a consequence of Theorem 1.4 (along with the description of the abelianization
homomorphism) for d ≥ 2 is:
Corollary 1.5. The group GtGd is a proper normal subgroup of Recd, which
strictly contains D(Recd).

For d ≥ 1, let Rec./d be the group of “rectangle exchanges with flips” (acting
on rectangles with piecewise isometries whose linear part are diagonal with ±1
diagonal entries, see §10).
Corollary 1.6. For every d ≥ 1, the group Rec./d is a simple group.

This is known for d = 1 (proved in Arnoux’s thesis [2] and reproduced in the
appendix of [10]). The result in general follows with little effort from the previous
results.

An observation (Proposition 10.2) is that Rec./d can be embedded in Recd. A
general construction of Nekrashevych can be used in this context to yield the
following (see Section 12).
Theorem 1.7. There exists an explicit infinite finitely generated subgroup of
Rec./3 (and hence of Rec3) that is infinite and torsion.

It is explicit in the sense that it is generated by 3 explicit elements of order 2.
When d = 2 do not know whether Recd contains any infinite finitely generated

torsion subgroup (for d = 1 this is a well-known open question).
Let us now consider a slightly more general, and more natural, framework. IfM

is a multirectangle in Rd, define Recd(M) as the group of rectangle exchange self-
transformations ofM . Thus Recd = Recd([0, 1[d). For d = 1, it is straightforward
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to see that all such groups are isomorphic (for M nonempty). In dimension ≥ 2
this is probably false. (See also §7.2 for Recd(T ) when T is a torus, that is, the
quotient of Rd by a lattice.)

Note that even in the study of Recd, such groups unavoidably appear: if M ⊂
[0, 1[d is a multirectangle, the group Recd(M) can be viewed as a subgroup of
Recd, namely those elements that are identity outside M . Note that for M,M ′

homothetic, Recd(M) and Recd(M ′) are isomorphic. Hence, for any nonempty
multirectanglesM,M ′ in Rd, the groups Recd(M) and Recd(M ′) embed into each
other.
Corollary 1.8. For every d ≥ 1 and nonempty multirectangle M in Rd, the
group Recd(M) has a simple derived subgroup.
Corollary 1.9. For every d ≥ 1 and multirectangle M in Rd with connected
interior, the group Recd(M) is generated by restricted rotations.

(Note that connectedness of the interior is an obvious necessary condition.)
Let us now pass to mostly open questions.
A natural question is to classify the groups Recd(M) up to isomorphism.
The action of Recd(M) preserves the tensor volume of multirectangles, and

actually this determines orbits of the action on the set of sub-multirectangles:
Proposition 1.10. For multirectangles M1,M2 ⊆ M there exists f ∈ Recd(M)
such that f(M1) = M2 if and only of vol⊗d (M1) = vol⊗d (M2).

Define the monomial group as the subgroup of GLd(R) generated by diagonal
and permutation matrices, and denote it by Mond(R) (it is isomorphic to R∗do
Sd). For g ∈ Mond(R), one easily sees that g conjugates Recd(M) to Recd(g(M)).
Combining with the previous proposition, we deduce:
Proposition 1.11. For multirectanglesM1,M2 in Rd, if vol⊗d (M1) and vol⊗d (M2)
are in the same orbit under the canonical Mond(R)-action on R⊗d, then Recd(M1)
and Recd(M2) are isomorphic.

Our main open question is whether the converse holds.
Question 1.12. Conversely, for nonempty multirectangles Mi ∈ Rdi , i = 1, 2,
if Recd1(M1) and Recd2(M2) are isomorphic, does it follow that d1 = d2 and
vol⊗d (M1) = vol⊗d (M2)?

If we only focus on the dimension issue, one can ask about a stronger rigidity:
Question 1.13. For nonempty multirectangles Mi ∈ Rdi , i = 1, 2, if Recd1(M1)
(or its derived subgroup) embeds as a subgroup of Recd2(M2), does it follow that
d1 ≤ d2?

Question 1.12 asks about the existence of isomorphisms. The following asks
about a precise description of isomorphisms, and would imply a positive answer
to Question 1.12.



6 YVES CORNULIER AND OCTAVE LACOURTE

Question 1.14. For multirectanglesM1,M2 in Rd, and an isomorphism f : Recd(M1)→
Recd(M2), does there exist g ∈ Mond(R) such that, g∗ denoting the isomorphism
Recd(M2)→ Recd(g(M2)) induced by g, the composite map g∗ ◦ f is induced by
a Rec-isomorphism from M1 into g(M2)?

Rubin’s theorem [15, Corollary 3.5] ensures that each such isomorphism is in-
duced by conjugation by a homeomorphism M̄1 → M̄2. Here, roughly, M̄ denotes
M with each point blown-up to 2n points (one choice for each direction). More
precisely, R̄ means R with each point x replaced with a pair {x−;x+}, with the
order topology. Then M̄ ⊂ R̄d means the interior of the set of points mapping
to the closure of M . So the question is whether such a homeomorphism is nec-
essarily composition of a Rec-isomorphism and a monomial map. This question
is not only relevant to classify the groups Recd(M) up to isomorphism (when M
varies), but also (when M1 = M2 = M) to understand the automorphism group
of the groups Recd(M). Question 1.14 has a positive answer when d = 1, where
essentially it asserts that the outer automorphism group of IET has order 2, a
result of Novak [14].

Another question would be to describe a presentation of Recd using the set of
restricted shuffles as set of generators. Of course this question is imprecise, or
has a trivial answer: take all relations as set of relators. The point is rather to
exhibit a natural family of relators. Specifically, we can ask the following, which
even for d = 1 is unknown:

Question 1.15. Is Recd boundedly generated over the set of restricted shuffles?
That is, does there exists N such there is presentation of Recd with all restricted
shuffles as set of generators, and relators of length ≤ N?

A possible motivation for exhibiting “nice” presentations would be to solve the
following, even for d = 1:

Question 1.16. What is the second homology group H2(Recd)? is H2(D(Recd))
reduced to {0}?

Last and not least, let us ask:

Question 1.17. Is Recd amenable? Does it fail to contain any non-abelian free
subgroup?

For d = 1 these are well-known questions; the amenability question is raised
in [4] and the question of (non)-existence of a free subgroup is due to A. Katok.
In this direction, let us mention the easy:

Proposition 1.18. The group Recd has no infinite subgroup with Property FM.
In particular, it has no infinite subgroup with Kazhdan’s Property T.

See Section 11 for the short proof. Recall that a group Γ has Property FM [5] if
every Γ-set with an invariant mean has a finite orbit. In particular, an amenable
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group with Property FM has to be finite. Proposition 1.18 was obtained in the
IET case (d = 1) in [7, Theorem 6.1] (stated for Property T, but using only
Property FM).
Outline. The main definitions are given in §2. In §3 we establish some basic

facts based on a classical theorem of Eliott about totally ordered abelian groups.
We then proceed to the proof of Theorem 1.2: after some easy cases in §4, we
describe the general procedure in §5 (eventually boiling down to these easy basic
cases). In §6, we prove a “jigsaw” refinement of Theorem 1.2 in dimension 2.
We extend Theorem 1.2 to multirectangles in §7, exhibiting, along the way, some
maximal subgroups of Recd. In §8, we notably prove simplicity of the derived
subgroup of Recd. In §9, we describe the generalized SAF-homomorphism and
prove that it is indeed the abelianization homomorphism. In §10, we address
rectangle exchanges with flips, notably establishing the simplicity of this group.
Finally, in §12, we exhibit a infinite, finitely generated torsion subgroup in Rec3.

2. Precise main definitions

We recall that the group IET is the group consisting of all permutations of
[0, 1[ continuous outside a finite set, right-continuous and piecewise a translation.

We study a generalization of IET in higher dimension. Let d ≥ 1 be an
integer. We denote by X = [0, 1[d the left half-open square of dimension d.
Let B = {e1, e2, . . . , ed} be the canonical basis of Rd and we denote by λ the
Lebesgue measure on R. For 1 ≤ i ≤ d, let pri be the orthogonal projection
on Vect(ei) and pr⊥i be the orthogonal projection on the hyperplane e⊥i . For an
element x ∈ Rd we use the notation xi = pri(x). A natural way to generalize left
half-open intervals is to consider elements of the form I1 × . . .× Id where Ii is a
left half-open subinterval of [0, 1[. They are called left half-open d-rectangles. In
the following, every d-rectangle is supposed to be left half-open.

We define the rectangle exchange transformations group of dimension d, de-
noted by Recd, as the set of all permutations f of [0, 1[d such that there exists a
finite partition of [0, 1[d into d-rectangles such that f is a translation on each of
these d-rectangles. Elements of Recd are called d-rectangle exchange trans-
formations.

In the sequel, all partitions are meant to be finite. The simplest partitions into
rectangles are the following:
Definition 2.1. A partition P of [0, 1[d into rectangles is called a grid-pattern
if for every 1 ≤ i ≤ d, there exists a partition Qi of [0, 1[ into half-open intervals
such that P = Q1 ×Q2 × . . .×Qd.

Obviously, every partition of [0, 1[d a rectangle into rectangles can be refined
into a grid pattern.
Definition 2.2. Let f ∈ Recd and P be a partition of X into rectangles. We say
that P is a partition associated with f if for every K ∈ P the restriction of f
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to K is a translation. Then the set f(P) := {f(K) | K ∈ P} is a new partition
of X into rectangles called the arrival partition of f with P . We denote by Πf

the set of all partitions associated with f . If P is a grid-pattern, it is said to be
a grid-pattern associated with f .

Remark 2.3. The fact that Recd is a group under composition is immediate. One
can see that if f, g ∈ Recd and P ∈ Πf ,Q ∈ Πg, then there exists a partition R
into d-rectangles that refines both f(P) and Q. Thus f−1(R) is a partition into
d-rectangles such that g ◦ f acts on every d-rectangle of f−1(R) by translation.

In the following, the “d” of d-rectangle may be omitted whenever there is no
possible confusion.

Definition 2.4. (See Figure 2 in the introduction.)
A restricted shuffle in direction i is an element σR,s,i of Recd where R is a

(d− 1)-subrectangle of e⊥i and s is a restricted rotation, defined by:
(1) if pr⊥i (x) /∈ R, σR,s,i(x) = x;
(2) if pr⊥i (x) ∈ R:

(a) for j 6= i, σR,s,i(x)j = xj;
(b) σR,s,i(x)i = s(xi).

For disjoint translation-isometric rectangles P,Q ⊂ [0, 1[d, define the rectan-
gle transposition τP,Q as the element of Recd defined as the identity outside
P ∪ Q, and as a translation on each of P,Q, exchanging them. The set of all
rectangles transpositions in Recd is denoted by Td.

Notation 2.5. If I and J are the two intervals associated with s then the
d-rectangles P1 and P2, defined by pri(P1) = I, pri(P2) = J and pr⊥i (P1) =
pr⊥i (P2) = R, are two rectangles which partitioned the support of f and where f
is continuous on both of them. We say that f shuffles this two rectangles.

3. Setwise freeness, Eliott’s theorem and the tensor volume

3.1. Eliott’s theorem. At various places, we need a general fact on totally or-
dered abelian groups. A submonoid S of an abelian group is said to be simplicial
if it is generated, as a submonoid, by a finite Z-independent subset. It is said
to be ultrasimplicial if every finite subset of S is contained in a simplicial sub-
monoid of S. An ordered abelian group is said to be ultrasimplicially ordered
if its positive cone (the submonoid of elements ≥ 0) is ultrasimplicial.

Theorem 3.1 (Eliott [8]). Every totally ordered abelian group is ultrasimplicially
ordered.

(For real numbers, this statement was rediscovered as Lemma 4.1 of Vorobets
in [17], who was the first to use it in the context of interval exchanges.)
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3.2. Setwise Q-freeness. We fix d ≥ 1; in a first reading, one can assume d = 2.
In fact we will need some rigidity on partitions associated with an element of

Recd. For this we want to have some objects to be Q-free.

Definition 3.2. Let P be a partition into rectangles of [0, 1[d. For every 1 ≤ i ≤ d
we denote by Fi the set {λ(pri(K)) | K ∈ P}. If for every 1 ≤ i ≤ d the set Fi
is Q-linearly independent then we say that P is a setwise Q-free partition.

Warning. The required Q-independence is that of the set {λ(pri(K)) | K ∈
P}, and not the family (λ(pri(K)))K∈P . So the setwise freeness condition says,
roughly speaking, that the only Q-linear dependence relations among the λ(pri(K)),
for K ∈ P (for each fixed K) are equalities.

The previous warning, as well as the following proposition are illustrated in
Figure 3.

Proposition 3.3. Let Q be a grid-pattern. There exists a setwise Q-free grid-
pattern Q′ that refines Q.

Proof. Write Q = Q1× . . .×Qd where Qi is a partition into intervals of [0, 1[ and
let Fi := {λ(I) | I ∈ Qi}. By Theorem 3.1, there exists a Q-free subset F ′i of
positive reals such that every element of Fi belongs to the additive subsemigroup
generated by F ′i . Hence we can refine each Qi as a partition Q′i. Then Q′ :=
Q′1 × . . .×Q′d is a setwise Q-free grid-pattern which refines Q. �

Figure 3. Left: A grid-pattern that is not setwise Q-free. Right:
A setwise Q-free grid-pattern which refines the left-hand grid-pattern.
(We assume that {a, b} and {c, d} and setwise Q-free subsets of R.)

3.3. Tensor volume.

Proposition 3.4 (Tensor volume). There is a unique map vol⊗d from the set of
multirectangles in Rd to R⊗d that is additive under disjoint unions, and maps
each rectangle ∏d

i=1[ai, ai + ti[ to t1 ⊗ · · · ⊗ td.
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Proof. The uniqueness is clear since every multirectangle is a disjoint union of
rectangles.

For the existence, we first check additivity when a rectangle is decomposed onto
rectangles according to partitions in each direction (call this a regular partition).
This is straightforward from multilinearity. Next, we need to show that if a
multirectangle is a finite disjoint union of rectangles in two ways then the resulting
computation of its tensor measure yields the same result. Indeed, there exists
a common refinement of these two partitions that is a regular partition of each
of the rectangles in both partition. Hence, the equality follows from the above
particular case of additivity. �

Proposition 1.10 follows from the following:
Lemma 3.5. Let R,R′ be multirectangles in Rd. Then there exists a Rec-
isomorphism R→ R′ if and only if vol⊗d (R) = vol⊗d (R′).
Proof. Since vol⊗d is preserved by translations and is additive under disjoint
unions, it is preserved by REC-isomorphisms, so the condition is necessary. Con-
versely, suppose vol⊗d (R) = vol⊗d (R′). Choose finite partitions of R and R′ into
rectangles, called constituting rectangles. Let Hi be the subsemigroup of R gen-
erated by i-sizes of constituting rectangles. By Eliott’s theorem (Theorem 3.1),
Hi is contained in the subsemigroup generated by some Q-free subset Si of R>0.
Hence, refining the partitions, we can suppose that all i-sizes of constituting rect-
angles are in Si. For s = (s1, . . . , sd) ∈ S1× · · · × Sd, let n(s) (resp. n′(s)) be the
number of rectangles in R (resp. R′) of size (s1, . . . sd). Also write s̄ = s1⊗· · ·⊗sd.
Then∑s n(s)s̄ = vol⊗d (R) = vol⊗d (R′) = ∑

s n
′(s)s̄. Since the s̄ form a Q-free fam-

ily when s ranges over S1×· · ·×Sd, we deduce that n(s) = n′(s) for all s. Hence
there is a shape-preserving bijection between the set of constituting rectangles of
R and R′. Such a bijection induces a REC-isomorphism R→ R′. �

The last part of the argument also provides the following statement about
partitions of a given multirectangle, which will be used in the sequel.
Lemma 3.6. Let R be a multirectangle in Rd. For every 1 ≤ i ≤ d, let Fi be a
setwise Q-free subset of R+. Let P and P ′ be two partitions into d-rectangles of
R such that for every K ∈ P ∪ P ′ we have λ(pri(P )) ∈ Fi. Then, there exists a
bijection δ between P and P ′ such that for every K ∈ P, the rectangles K and
δ(K) are translation-isometric. If K ∈ P ∩ P ′ we can also ask δ(K) = K.

Proof. Let R′ be the union of P ∩P ′. Replacing R with RrR′, we can suppose
that P ∩ P ′ is empty (and act as identity on common rectangles), and hence
ignore the last requirement.

The sequel is similar to the proof of Lemma 3.5. For s = (s1, . . . , sd) ∈ S1 ×
· · · × Sd, let n(s) (resp. n′(s)) be the number of rectangles in P (resp. P ′) of size
(s1, . . . sd), and write s̄ = s1 ⊗ · · · ⊗ sd. Since the s̄ form a Q-free subset, we
deduce that n(s) = n′(s) for every s. Hence there is a bijection as required. �
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4. Generation by restricted shuffles: first observations

We establish some easy particular cases of Theorem 1.2, which asserts that
Recd is generated by restricted shuffles.

We start with the well-known case d = 1:
Proposition 4.1. The group IET is generated by restricted rotations.
Proof. The symmetric group Sn is generated by the transpositions (i i + 1),
1 ≤ i < n. Each IET can be viewed as a permutation of intervals, and therefore
this group is generated by those ones consisting in transposing two consecutive
intervals. These are precisely restricted rotations. �

A direct consequence of the definition of a restricted shuffle, Definition 2.4, and
Proposition 4.1 is the following proposition, which is a first easy particular case
of Theorem 1.2, and a step in its proof.
Proposition 4.2. Every element of IETd is a finite product of restricted shuffles.

�

Here is a second elementary particular case of Theorem 1.2, which will also be
needed.
Proposition 4.3. For all disjoint translation-isometric P,Q rectangles, the rec-
tangle transposition τP,Q is a product of restricted shuffles.
Proof. We first prove this in the special case when there exists 1 ≤ i ≤ d such
that pri(P ) ∩ pri(Q) = ∅ and pr⊥i (P ) = pr⊥i (Q). In this case we obtain it is a
product of two restricted shuffles. Indeed, this is a consequence of the fact that
this lemma is true when d = 1. Let a, b, a′, b′ ∈ [0, 1[ such that pri(P ) = [a, b[ and
pri(Q) = [a′, b′[. Up to change the role of P and Q we can assume that b < a′.
Let R and S be the two rectangles such that pr⊥i (R) = pr⊥i (S) = pr⊥i (P ) and
pri(R) = [b, b′[ and pri(S) = [b, a′[. Let r1 be the restricted shuffle in direction i
that shuffles P with R (this one send P on Q) and r2 be the restricted shuffle in
direction i that permutes P with S. Then the composition r−1

2 r1 is equals to the
rectangle transposition that permutes P with Q.

Now let us prove the general case. Let P and Q be two rectangles which are
translation-isometric such that P ∩ Q = ∅. Let Pi := pri(P ) and Qi := pri(Q)
for every 1 ≤ i ≤ d. Thus P = P1×P2× . . .×Pd and Q = Q1×Q2× . . .×Qd. For
every 1 ≤ i ≤ d−1 let Ri be the rectangle Q1× . . .×Qi×Pi+1× . . .×Pd. We put
R0 = P and Rd = Q. Let ti be the rectangle transposition that permutes Ri−1
with Ri for every 1 ≤ i ≤ d. Then τP,Q = t1 . . . td−1tdtd−1 . . . t1 and by the special
case above, we know that ti is a product of two restricted shuffles in direction i.
Then s is a finite product of restricted shuffles. �

We now consider another special case: that of an element of Recd mapping grid
to grid by translating pieces. Beware (see Remark 4.5) that not every element of
Recd has this form.
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Proposition 4.4. Every element f ∈ Recd such that there exists a setwise Q-free
grid-pattern Q such that f(Q) is a grid-pattern can be written as a finite product
of restricted shuffles.

Proof. Let Q = Q1 × . . .×Qd and f(Q) = Q′1 × . . .×Q′d, where Qi and Q′i is a
partition into intervals of [0, 1[. Thanks to the setwise Q-freeness of Q we know
that f(Q) is setwise Q-free, also for every 1 ≤ i ≤ d and every a ∈ [0, 1[ we have:

Card({I ∈ Qi | λ(I) = a}) = Card({I ∈ Q′i | λ(I) = a})

Hence there exists an element g of IETd such that g(f(Q)) = Q. By Proposition
4.2 we know that g is a finite product of restricted shuffles. Also as g◦f send Q on
itself we deduce that g◦f is a permutation on every maximal subset of translation-
isometric rectangles of Q. Hence it is a product of rectangle transpositions and
by Proposition 4.3 we deduce that f is a finite product of restricted shuffles. �

Remark 4.5. For an element of Recd there does not always exist an associated
grid-pattern that is sent to another grid-pattern. For example this does not exist
in the case of a restricted shuffle σR,s,i of infinite order such that R 6= [0, 1[d−1.

5. Generation by restricted shuffles: bulk of the proof

We now prove Theorem 1.2, which states that Recd is generated by restricted
shuffles. The proof is by induction on the dimension d and the case of the dimen-
sion 1 is already known to be true (Proposition 4.1).

Let d ≥ 2 be the ambient dimension and assume Theorem 1.2 true for Recd−1.
Let f ∈ Recd and Q be a grid-pattern associated with f . Thanks to Proposition
3.3 we can assume that Q is a setwise Q-free grid-pattern.

We will think of the d-th dimension as the “vertical” dimension and others as
“horizontal” dimensions. For every illustration in dimension 2 we use the element
ftest of Rec2 defined in Figure 4. The partition Ptest (on the left of the picture)
is associated with ftest, and is understood to be setwise Q-free. We denote by
P ′test = ftest(Ptest) (on the right of the picture).

We now introduce a number of simple definitions in this setting, which for this
test example is illustrated in the next figures.

Definition 5.1. Let P be a setwise Q-free rectangle partition of [0, 1[d. The
ground of P is the following subset of P :

Grd(P) = {K ∈ P | 0 ∈ prd(K)}.
Let K0 be an element of Grd(P). A tower above K0 is a subset T of P such
that:

(1) K0 ∈ T ;
(2) ∀K ∈ T, pr⊥d (K) = pr⊥d (K0);
(3) The set ⋃

K∈T
prd(K) is a subinterval of [0, 1[.
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Figure 4. Definition of ftest,Ptest and P ′test.

The element K of T which satisfies sup(prd(K)) = sup
( ⋃
K∈T

prd(K)
)
is called the

top of the tower T , denoted by Top(T ). The highest tower above K0, denoted
by T (K0), is the maximal tower above K0 according to the inclusion order.

Definition 5.2. A city of P is a subset of P containing Grd(P), and which is a
union of towers. The highest city of P , denoted by City(P), is the union of all
highest towers above elements of the ground Grd(P). The top of a city V ⊂ P
(see Figure 6) is the set of Top(T ) when T ranges over maximal towers in V . The
sky of P , denoted by Sky(P), is the complement of City(P) in P .

Definition 5.3. The complexity of P is the following subset of ]0, 1[:
C (P) = {min(prd(K)) | K ∈ Sky(P)}.

The set C (P) is empty if and only if P = City(P). Otherwise, the minimum of
the set C (P) is called the working height of P denoted by WHei(P).

The idea is to move pieces of City(P) with horizontal restricted shuffles so that
the new partition P ′ obtained satisfies C (P ′) ⊂ C (P)r {WHei(P)}. For this we
describe more precisely how and where we move pieces.

Definition 5.4. We define the building worksite of P , denoted by Work−(P),
as the following subset of Top(City(P)):

Work−(P) = {K ∈ Top(City(P)) | sup(prd(K)) = WHei(P)}.
Similarly we define the upper building worksite of P , denoted by Work+(P)
(see Figure 6), as the following subset of Sky(P):

Work+(P) = {P ∈ Sky(P) | min(prd(P )) = WHei(P)}.
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Figure 5. Hatched pieces compose the Ground of P ′test, it is also a
city of P ′test. All grey pieces (hatched or not) compose City(P ′test). Full
white pieces represent the sky of P ′test.

We define the site of P (see Figure 7) as the subset of e⊥d define as the following:
Site(P) =

⋃
K∈Work−(P)

pr⊥d (K).

α

2α

2α+ β

γ

γ + 2α

α+ β + γ

Figure 6. The set of all grey pieces represents Top(City(P ′test)) and
the set of all hatched pieces represents Work+(P).
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Figure 7. In dimension 3, illustration of a city of a partition where
the hatched space represents the site of the partition.

The proof of Theorem 1.2 is done by induction on the cardinal c of C (P). The
case c = 0 is treated in the following lemma.

Lemma 5.5. Let P be a setwise Q-free partition such that C (P) = ∅. Then
there exists a product r of vertical restricted shuffles such that P is associated
with r and r(P) is a grid-pattern. (See Figure 9.)

Proof. A consequence of WHei(P) = ∅ is that City(P) = P , that is, highest
towers form a partition of P . In particular, we have a partition D of e⊥d such that
for every x ∈ [0, 1[ we have {pr⊥d (K) | K ∈ P , and x ∈ prd(P )} = D. Also the
set {prd(K) | K ∈ P} is setwise Q-free, thus for every a ∈ [0, 1[, the number of
rectangles K such that λ(prd(K)) = a is the same in every tower T ⊂ City(P).
Then, using Proposition 4.1 in each tower, by using only restricted shuffles in
direction d, we can move pieces inside the tower T ⊂ City(P) to reorder them
according to the length of their projection on Vect(ed). The image of P by the
product of these restricted shuffles is a grid-pattern. �

We now consider the induction step for c > 0.

Lemma 5.6. Let P be a setwise Q-free partition such that C (P) 6= ∅. There
exists a product g of horizontal restricted shuffles (i.e., in direction 6= d) such
that P ∈ Πg and:

C (g(P)) ⊂ C (P) r {WHei(P)}.

Proof. For every 1 ≤ i ≤ d define Fi = {λ(pri(K)) | K ∈ P}; it is a setwise
Q-free subset of R+. Define Ω− = {pr⊥d (K) | K ∈ Top(City)(P)} and Ω+ =
{pr2(K) | K ∈Work+ ∪Top(City(P)) r Work−}. By definition, Ω− and Ω+ are
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two partitions of [0, 1[d−1 such that for every K ∈ Ω−∪Ω+ and every 1 ≤ i ≤ d we
have λ(pri(K)) ∈ Fi. Then, by Lemma 3.6 we deduce that there exists δ ∈ Recd−1
such that Ω− ∈ Πδ (for every element K of Ω−, the restriction of δ to K is a
translation) and δ(Ω−) = Ω+ and for every K ∈ Ω−∩Ω+ we have δ(K) = K. As
we assumed Theorem 1.2 in dimension d − 1, we know that δ can be written as
the product of restricted shuffles of Recd−1. Then we define g ∈ Recd such that:

g(x) =
{

(δ × Id)(x) if pr2(x) < WHei(P)
x else.

From this definition we obtain that g is the product of restricted shuffles in
Recd with direction in {1, 2 . . . , d − 1}. Also by definition of δ we obtain that
for every K ∈ Grd(P) we have g(T (K)) ⊂ T (g(K)) and g(Sky(P)) = Sky(P).
This implies C (g(P)) ⊂ C (P). Also as δ(Ω−) = Ω+ we deduce that for every
K ∈ Sky(P) such that min(prd(K)) = WHei(P) there exists QK ∈ Grd(P) such
that δ(pr⊥d (QK) = pr⊥d (K). Hence we have K ∈ T (g(QK)) and this implies that
WHei(P) /∈ C (g(P)). �

Then by induction on the cardinal of the complexity we deduce the following
proposition:

Proposition 5.7. Let Q be a setwise Q-free grid-pattern of [0, 1[d. For every
f ∈ Recd such that Q ∈ Πf , there exists a finite product rf of restricted shuffles
such that f(Q) ∈ Πrf

and C (rf (f(Q))) = ∅.

Thanks to Proposition 5.7 and Proposition 5.5 we deduce Theorem 1.2.
The mains steps in the proof are illustrated in Figure 8.
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Figure 8. Iterations to find a product r of restricted shuffles such that
P ′test ∈ Πr and Sky(r(P ′test)) = ∅. On each left picture, all grey pieces
represent the highest city, all grey hatched pieces represent towers whose
top’s height is the complexity of the partition and all white hatched
pieces represent pieces of sky of the partition which are also in the
upper work.
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Figure 9. Illustration of what looks like a setwise Q-free partition with
an empty sky and how moving pieces inside each tower can lead to a
setwise Q-free grid-pattern.

6. Generation by restricted shuffles: a refinement for Rec2

Here we establish a more precise and concrete statement in dimension 2. The-
orem 1.2 says every element f in Recd can be obtained as a composition of
restricted shuffles. It is tempting to improve this statement by fixing a setwise
Q-free partition P ∈ Πf , and then shuffling rectangles in f(P) without changing
the partition. The proof seems at first sight to provide this, but the induction step
forces to change the partition. In dimension 2, we can avoid this, see Theorem
6.2 below.

In this case we can be more precise than Theorem 1.2.

Definition 6.1. Let P be a partition into rectangles of [0, 1[d. A restricted
shuffle on P is a restricted shuffle which shuffles two rectangles of P . For
n ∈ N∗, a n-sequence of restricted shuffles on P is a sequence (r1, . . . , rn)
of restricted shuffles such that for every 1 ≤ i ≤ n the element ri is a restricted
shuffle on ri−1 ◦ . . . ◦ r1(P). The partition rn ◦ . . . ◦ r1(P) is called the image of
P by this sequence.

Here is the refined version of Theorem 1.2, in dimension 2

Theorem 6.2. Suppose d = 2. For every f ∈ Recd and for every setwise Q-free
partition P ∈ Πf , there exists a sequence of restricted shuffles (r1, . . . , rn) on P
such that f = rn ◦ . . . ◦ r1.

Remark 6.3. To motivate the setwise Q-free property, we illustrate with a parti-
tion which is in the image by Recd of a grid-pattern Q, and which is not setwise
Q-free. Indeed if we do not allow to cut pieces of Q then for every sequence of
restricted shuffles on Q, the image of Q by this sequence is always Q.
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b

b

2a

a a

Q

Figure 10. Left: A grid-pattern Q which is not setwise Q-free.
Right: A rearrangement of Q which is not the image of Q by a se-
quence of restricted shuffles on Q.

Theorem 6.2 in dimension 1 is Proposition 4.1. In dimension 2, we begin with
two refinements of Proposition 4.4 and Lemma 5.5 obtained with immediate
changes.

Lemma 6.4. Let d ∈ N∗, let f ∈ Recd such that there exists a setwise Q-free
grid-pattern Q such that f(Q) is a grid-pattern. Then there exists a sequence
(r1, . . . , rn) of restricted shuffles on Q such that the image of Q by this sequence
is f(Q), in particular we have f = rn ◦ . . . ◦ r1. �

Lemma 6.5. Let P be a setwise Q-free partition such that C (P) = ∅. Then
there exists a sequence of restricted shuffles on P such that the image of P by
this sequence is a grid-pattern. �

With these two results, the proof of Theorem 6.2 is the same as the one of The-
orem 1.2 until Lemma 5.6, where we proved the following refinement in dimension
2:

Lemma 6.6. Suppose d = 2. Let P be a setwise Q-free partition. There exists
a product g of restricted shuffles in direction inside {1, 2, . . . , d − 1} such that
P ∈ Πg and:

C (g(P)) ⊂ C (P) r {WHei(P)}.
Also there exists a sequence (r1, . . . , rn) of restricted shuffles on P such that g =
rn ◦ . . . ◦ r1.

Proof. First we rearrange every tower of City(P) such that pieces of every tower
is ordered by increasing order about their length of their 2-projection.

We recall that Ω− = {pr⊥d (K) | K ∈ Top(City(P))} and Ω+ = {pr⊥d (K) |
K ∈ Work+ ∪Top(City(P)) r Work−}. by Lemma 3.6 we deduce that there
exists δ ∈ Recd−1 such that Ω− ∈ Πδ (for every element K of Ω−, the restriction
of δ to K is a translation) and δ(Ω−) = Ω+ and for every K ∈ Ω− ∩ Ω+ we
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have δ(K) = K. The main argument is that every connected component C of
Site(P) = ⊔

K∈Ω−
K is a left half-open interval and there exists Ω−C ⊂ Ω− which

partitions C. Similarly we can define the subset Ω+
C of Ω+ which partitions

C. Then by Q-freeness we can also ask δ to send Ω−C on Ω+
C . Then we define

gC ∈ Rec2 such that:

gC(x) =
{

(δ × Id)(x) if pr2(x) < WHei(P) and pr1(x) ∈ C
x else

We can see that gC only moves towers of City(P). And as these towers are
rearrange such that pieces of every tower is ordered by increasing order about their
length of their 2-projection. We deduce that there exists a sequence (r1, . . . , rn)
of restricted shuffle on P such that gC = rn ◦ . . . ◦ r1. Let g be the product of
every gC where C ranges over the set of all connected components of Site(P). It
satisfies the statement of the lemma. �

At this point we are unable to prove Theorem 6.2 for arbitrary d. Here are
some possible step towards a proof.

Definition 6.7. Define (Sδ) as the following statement. For every R be finite
union of rectangles in [0, 1[δ. Let P ,Q be rectangle partitions of R. Suppose that
for each i there is a Q-free subset Fi of ]0, 1[ such that for every K ∈ P ∪ Q,
we have λ(pri(K)) ∈ Fi. Then one can change Q into P by a finite sequence of
shuffles.

Then the statement Sd−1 implies Theorem 6.2 in dimension d, the argument
being an immediate adaptation of the above one.

Indeed, we know that S1 holds. Here R is just a disjoint union of intervals, and
the difficulty is that components of R can have complicated shapes in general.
Note that proving (Sδ) immediately reduces to the case when R is connected;
however it sounds convenient not to assume R connected in order to set up a
proof (e.g., by induction on the number of the rectangles).

7. Rectangle exchanges in multirectangles

7.1. Generation by restricted shuffles. Fix the dimension d ≥ 1. Let R =
A t B be a multirectangle in Rd, with A,B non-empty disjoint multirectangles.
Let Γ{A,B} (resp. Γ(A,B)) be the subgroup of Rec(R) preserving the partition
{A,B} (resp. preserving A and B).

Lemma 7.1. The subgroup Γ({A,B}) is a maximal proper subgroup of Rec(R). If
A,B are Rec-isomorphic then the only proper subgroup strictly containing Γ(A,B)
is its overgroup of index 2 in Γ{A,B} (while if they are not Rec-isomorphic, then
Γ(A,B) = Γ{A,B}).

Note that Γ(A,B) ' Rec(A)× Rec(B).
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Proof. Let X ⊂ A, Y ⊂ B be multirectangles and f an isomorphism A → B.
Define an involutive element σf as equal to f on X, f−1 on Y , and identity
elsewhere. Let E be the set of all such involutive elements (for all possible X, Y ,
f). We first claim that Rec(R) = Γ(A,B)E.

Fix u ∈ Rec(R). Define A1 = A∩u−1(A), A2 = A∩u−1(B), B1 = B ∩u−1(A),
B2 = B∩u−1(B). Clearly A = A1tA2 and B = B1tB2. Also A = u(A1)tu(B1).
Hence vol⊗d (A2) = vol⊗d (A) − vol⊗d (A1) = vol⊗d (A) − vol⊗d (u(A1)) = vol⊗d (u(B1)).
Hence, by Lemma 3.5, there is a Rec-isomorphism ξ : A2 → u(B1). Similarly,
there is a Rec-isomorphism B1 → u(A2), which we still denote by ξ (since A2 and
B1 are disjoint this is harmless). Then define w as equal to u on A1 tB2 and to
ξ on A2 ∪B1. Then w is bijective, hence belongs to Γ(A,B). Define v = w−1 ◦ u.
Then v(A1) = A1, v(B2) = B2, and v exchanges A2 and B1. Hence v ∈ E. So
u = wv ∈ Γ(A,B)E.

Let us now improve the claim. Say that a rectangle W in A is small if there
exists a translate of W in A disjoint from W and sharing a face with W perpen-
dicular to the first coordinate; similarly define a small rectangle in B. Let E ′ be
the set of elements f of E exchanging one nonempty small rectangle X of A and
a small rectangle Y of B through a translation (thus note f = ψX,Y ).

The second claim is that for every ψ ∈ E ′ we have Rec(R) = 〈Γ(A,B), ψ}. By
the first claim, it is enough to prove that every σ ∈ E, we have σ ∈ 〈Γ(A,B), σ}.
Decomposing σ into a product with disjoint support, we can suppose that σ ∈
E ′, say σ = ψX′,Y ′ . Cut the rectangle X ′ along the first direction into two
isomorphic rectangles X ′1, X ′2. After conjugating by an element of Γ(A,B) (and
possibly exchanging the names of X ′1 and X ′2), we can suppose that X ′1 ⊂ X and
X ′2 ∩ X = ∅. Similarly, conjugating by an element of Γ(A,B), we can suppose
that Y ′1 ⊂ Y and Y ′2 ∩ Y = ∅. Define q = ψX′1,X′2ψY ′1 ,Y ′2 ∈ Γ(A,B). Then
σ = (qψq−1)ψ ∈ 〈Γ(A,B), ψ〉 and the second claim is proved.

Now, to prove the lemma, we have to prove that 〈Γ(A,B), f〉 = Rec(R) for
every f /∈ Γ{A,B}. Indeed, up to switch A and B, we have A ∩ f−1(A) and
A ∩ f−1(B) non-empty. Choose nonempty rectangles U, V in these two subsets,
translate of each other, on each of which f is a translation. Choosing U, V small
enough, we can ensure that f(U) and f(V ) are small in A and B respectively.
Define ψU,V ∈ Γ(A,B). Then fτf−1 = ψf(U),f(V ) ∈ 〈Γ(A,B), f〉. By the second
claim, we deduce that 〈Γ(A,B), f〉 = Rec(R). �

Remark 7.2. Keeping Corollary 9.11 in mind, the above proof also shows the same
statement in restriction to the derived subgroup: if f ∈ D(Rec(R)) r Γ{A,B}
then 〈D(Rec(A)), D(Rec(B)), f〉 = D(Rec(R)).

Corollary 7.3. For every multirectangleM written as unionM = M1∪M2 of two
non-disjoint multirectangles M1,M2, we have 〈Rec(M1),Rec(M2)〉 = Rec(M).

Proof. Let H be the subgroup generated by Rec(M1) ∪ Rec(M2). Write M3 =
M2rM1. IfM1 orM3 is empty the conclusion is trivial, hence suppose otherwise.
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So M is the disjoint union M1 t M3. If by contradiction H 6= Rec(M), by
Lemma 7.1 we have H ⊂ Γ{M1,M3}. Let C be a rectangle strictly contained in
M1 ∩M2 with a translate C ′ strictly contained in M3, and let f be the rectangle
transposition exchanging C and C ′. Then f ∈ Rec(M2), so f ∈ H. But clearly
f /∈ Γ{M1,M3}. We obtain a contradiction. �

Corollary 7.4. For every multirectangle M with connected interior, Rec(M) is
generated by restricted shuffles.

Proof. We first assume that we can writeM as a finite disjoint union of rectangles
R1 t · · · tRn, where for each k ≥ 2, the multirectangle (R1 t · · · tRk−1) ∩Rk is
non-empty. Then the result follows from Corollary 7.3 (and the case n = 1) by
an immediate induction on n.

To show that we can write M in this way, we can write M as a finite disjoint
union of rectangles R1t · · · tRn, where for each k, R1t · · · tRk has a connected
interior. For each k with 2 ≤ k ≤ n, let Ck ⊂ R be a rectangle such that Ck meets
bothR′ = R1∪. . . Rk−1 andRk (see Figure 11). ThenR = R1∪C2∪R2∪. . . Cn∪Rn

R′

Rk

Ck

Figure 11. R′, Rk and Ck

is a description satisfying the previous requirement. �

Remark 7.5. The connectedness assumption is necessary: in general let U1, . . . , Un
the connected components of the interior of R. Each Ui is the interior of some
multirectangle Ri, and R is the disjoint union of the Ri; then every restricted
shuffle preserves each Ui. Actually it follows from Corollary 7.4 that the subgroup
generated by restricted shuffles equals ∏i Rec(Ri), the component-wise stabilizer
of the decomposition R = ⊔n

i=1Ri.

7.2. Rectangle exchange transformations in tori. Let Λ be a lattice in Rd.
We can define a rectangle in the torus Rd/Λ as the image of a rectangle in Rd,
and define accordingly Recd(Rd/Λ).

Proposition 7.6. For every lattice Λ in Rd there exists a multirectangle M that
is a fundamental domain for Λ, in the sense that Rd is the disjoint union of all
M + ω for ω ranging over Λ.

Proof. Let R be a rectangle such that R + Λ = Rd. Choose an invariant total
ordering on Λ and write Λ+ = {ω ∈ Λ : ω > 0}. Define M = {x ∈ R : ∀ω ∈
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Λ+ : x − ω /∈ R}. We claim that M is a multirectangle, and is a fundamental
domain. First observe that M = Rr

(⋃
ω∈Λ+ Rr (R + ω)

)
. And indeed since R

is bounded and Λ acts properly on Rd, this union is a finite union. Hence M is a
multirectangle. If ω ∈ Λ+ then M ∩ (M +ω) is empty. Since the order is total, it
follows that the Λ-translates of M are pairwise disjoint. Finally, for x ∈ Rd, the
set of ω ∈ Λ such that x+ω ∈ R is nonempty and finite. Let ω be its maximum.
Then we see that x+ ω ∈M . Hence M + Λ = Rd. �

Hence, in a sense, the Recd of tori are particular cases of Recd of multirectan-
gles. However, it can be useful to see them as tori. For instance, if we choose
Λ such that the group of diagonal matrices preserving Λ is infinite (this occurs
for some Λ, but not for Λ = Z2), we obtain somewhat exotic automorphisms of
Recd(Rd/Λ).

Remark 7.7. For any lattice Λ, one can define vol⊗d (Rd/Λ) as vol⊗d (M) for some
fundamental domain M as above: this does not depend on M . For the lattice
Λ with basis ((a, b), (c, d)) (for real numbers a, b, c, d, with ad− bc > 0) we have
observed experimentally that vol⊗2 (R2/Λ) equals a⊗ d− c⊗ b.

8. The derived subgroup

Fix a nonempty multirectangle M in Rd. Let Td(M) be the subset of all
rectangle transpositions in Recd(M). In this section, we prove that Td(M) is a
generating subset of D(Recd(M)), and that the latter is a simple group.

We start with some preliminary observations.

Lemma 8.1. Every element of order 2 in Recd(M) is a product of rectangle
transpositions with pairwise disjoint support.

Proof. Let f ∈ Recd be an element of order 2. For v ∈ Rd, define Xv = {x :
f(x) − x = v}. Note that Xv ∪ X−v is f -invariant. Choose a subset V+ of
Rd of elements called “positive elements”, such that Rd is the disjoint union
V+t−V+t{0}. For v positive, choose a finite partitionWv of Xv into rectangles,
and letW be the union, for v positive, of allWv. Then f is the (disjoint support)
product of all τK,f(K) for K ranging over W . �

Lemma 8.2. (a) Td(M) ⊂ D(Recd(M)).
(b) If D(Recd) is simple then it is generated by Td.

Proof. (a) Let f ∈ Td and P and R be the two rectangles switched by f . We can
decompose P = P1 tP2 such that P1 and P2 are translation-isometric. Let f1 be
the element that switches P1 with f(P1) and let f2 be the element that switches
P1 with P2 and f(P1) with f(P2). Then we have f = [f1, f2].

(b) From Lemma 8.1, it follows that the subgroup N generated by Td(M)
coincides with the subgroup generated by elements of order 2. By (a), N ⊂
D(Recd). Hence, if D(Recd) is simple, it follows that N = D(Recd). �
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For d = 1, simplicity of D(Recd) = D(IET) was proved by Sah [16] and
it follows that D(Rec1) is generated by rectangle transpositions. Vorobets [17]
more recently reproved simplicity of D(Rec1), by first proving that it is generated
by transpositions. Our approach for arbitrary d ≥ 1 is inspired by the latter.

Definition 8.3. For every ε > 0 we define T ε
d (M) as the set of all rectangle

transpositions τK,L such that each of K, L is contained in a square of length ε
contained in M .

Proposition 8.4. (a) The subset Td(M) generates D(Recd(M)).
(b) For every ε > 0, the subset T ε

d (M) generates D(Recd(M)).
(c) For every nonempty multirectangle U ⊂ M , the group D(Recd(M)) is nor-

mally generated by Td(U).

Proof. (a) First suppose that M has connected interior. So by Corollary 7.4,
Recd(M) is generated by restricted shuffles. From usual commutator formulas
it follows that in a group, every commutator [a1a2 . . . , b1b2 . . . ] is a product of
conjugates of the [ai, bj]. We deduce that every commutator of elements in Recd
can be written as the product of conjugates of commutators of restricted shuffles.
Hence thanks to Lemma 8.1 we deduce that it is enough to prove that every
commutator of restricted shuffles is a product of elements of order 2. We already
saw that this statement is true in dimension 1. Let i, j ∈ {1, 2 . . . , d} and s, s′ be
two restricted rotations and R,R′ be two (d − 1)-subrectangles of [0, 1[d−1. We
have different cases:
(1) If i = j then for every x ∈ [0, 1[d and for every k ∈ {1, . . . , d} with k 6= i, we

have [σR,s,i, σR′,s′,i](x)k = xk. Also pr⊥i (x) /∈ R∩R′ we have [σR,s,i, σR′,s′,i](xi) =
xi and if pr⊥i (x) ∈ R ∩ R′ we have [σR,s,i, σR′,s′,i](x)i = [s, s′](xi). Then by
using the result in dimension 1 we deduce that [σR,s,i, σR′,s′,i] is a product of
elements of order 2.

(2) Let assume i 6= j. We remark that if R = R1 t R2 then σR,s,i = σR1,s,i ◦
σR2,s,i. Then by using again the equality between commutators we deduce
that it is enough to show that the commutator [σR,s,i, σR′,s′,i] is a product of
elements of order 2, where R and R′ are as small as we want. In particular
as i 6= j we can assume that R and R′ are small enough such that for every
x ∈ Supp(σR,s,i) ∩ Supp(σR′,s′,i) we have both σR,s,i(x) /∈ Supp(σR′,s′,i) and
σR′,s′,i(x) /∈ Supp(σR,s,i). Then in this case the commutator [σR,s,i, σR′,s′,i]
permutes cyclically three disjoint rectangles by translations. Hence it is a
product of two rectangle transpositions.

In general, there exists a rectangle isomorphism of M onto a multirectangle M ′

with connected interior. So Recd(M) ' Recd(M ′), and by the previous case,
Recd(M ′) and hence Recd(M) is generated by elements of order 2. By Lemma
8.1, we deduce that Recd(M) is generated by Td(M).

(b) This immediately follows from (a) by writing a rectangle transposition as
product of rectangle transpositions with pairwise disjoint, small enough support.
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(c) Let U contain a cube of length ε. The group D(Recd(M)) is, by (b),
generated by T ε/2

d (M). Each element of T ε/2
d (M) is conjugate to an element of

Td(U). Whence the result. �

We deduce the simplicity of the derived subgroup D(Recd(M)):
Theorem 8.5. LetM be a nonempty multirectangle in Rd. Every nontrivial sub-
group of Recd normalized by D(Recd(M)) contains D(Recd(M)). In particular:

a) The group D(Recd(M)) is simple.
b) The group D(Recd(M)) is contained in every nontrivial normal subgroup

of Recd(M).
Proof. Let N be a nontrivial subgroup of Recd(M) normalized by D(Recd(M)).
Let f be a non-identity element of N . For some ε, there exists a square K of
length ε contained in M , such that f is a translation on K and such that K and
f(K) are disjoint.

Let us prove that every rectangle transposition τP,Q with P ∪Q ⊂ K belongs
to N . By Proposition 8.4 (c) this yields the conclusion.

Cut P and Q in two equal halves according to the d-coordinate: let P1 and Q1
be their lower halves, and P2, Q2 their upper halves. Then [f, τP1,Q1 ] permutes
P1 and Q1 by translations, permutes f(P1) and f(Q1) by translations, and is
identity elsewhere. Let s permute P2 and f(P1) by translations, Q2 and f(Q1)
by translations, and be identity elsewhere. Then s[f, τP1,Q1 ]s−1 = τP,Q. Hence
τP,Q ∈ N . �

Thus the group Recd is monolithic, in the sense that the intersection of all
nontrivial normal subgroups is nontrivial.

9. Abelianization of Recd
9.1. The case d = 1 revisited. For expositional purposes, it is convenient to
reprove the case d = 1 and then write down the necessary elaboration. The SAF
homomorphism is defined as follows: for f ∈ IET, define

S(f) =
∑
x∈R

λ
(
(f − id)−1({x})

)
⊗ x ∈ R⊗2.

By a direct verification, S is a group homomorphism, called SAF homomor-
phism (or scissors congruence homomorphism). For a restricted rotation of
size b on an interval of size a, it takes the value a ⊗ b − b ⊗ a. Hence the
image contains Λ2

QR, and since restricted rotations generate IET, the image
is equal to Λ2

QR (which we identify to the kernel of the canonical projection
R⊗2 → S2R). The SAF homomorphism factors through a surjective group ho-
momorphism S̄ : IETab → Λ2

QR. This was independently observed by Sah and
Arnoux–Fathi. Sah [16] then proved that S̄ is injective, that is, this is precisely
the abelianization homomorphism (the proof was then reproduced in [1]), that
is, the inclusion D(IET) ⊆ Ker(S) is an equality; we now reprove this.
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We need the following purely group-theoretic lemma, which is the key algebraic
fact, and is not explicit in the original proof given in [1]. It will be used when we
deal with arbitrary d ≥ 1.
Lemma 9.1. Consider the (additive) abelian group V with presentation: gen-
erated by the ua,b, 0 < b < a ≤ 1, subject to the relators (whenever they make
sense):

(1) ua+a′,b = ua,b + ua′,b;
(2) ua,b+b′ = ua,b + ua,b′;
(3) 2ua,b + u2b,a = 0.

(“Whenever. . . ” means 0 < b < min(a, a′), a + a′ ≤ 1 in (1), 0 < min(b, b′),
b+ b′ < a ≤ 1 in (2), and 0 < b < a < 2b ≤ 1 in (3).)

Then the assignment ua,b 7→ a ∧ b induces a group isomorphism from V to∧2
Q R.
Fix k ≥ 0. For w,w′, w′′ ∈ Rk, we say that w′′ is a 1-coordinate sum of w and

w′ if there exists i such that wj = w′j = w′′j for all j 6= i and w′′i = wi +w′i (hence
denoting w̄ = w1⊗ . . . wk, we have w̄′′ = w̄+ w̄′). Note that the 1-coordinate sum
of w,w′ is not always defined and not always unique. Lemma 9.1 is the particular
case (for k = 2) of (3) of the next lemma.
Lemma 9.2. Consider the abelian group Wk with generators vw, w ∈ ]0, 1]k and
relators vw′′ = vw + vw′ for all w,w′, w′′ ∈ ]0, 1[k such that w′′ is a 1-coordinate
sum of w and w′. Then

(1) The group homomorphism f : Wk → R⊗k mapping vw to w̄, is a group
isomorphism.

(2) If, for k ≥ 2, we define W ′
k by the same presentation, but only considering

those generators vw for which wk−1 > wk, then the resulting canonical map
W ′
k → R⊗k is also an isomorphism.

(3) For k ≥ 2, starting from the presentation defining W ′
k, define W ′′

k by
modding out by the elements of the form 2vw1,...,wk−2,a,b + vw1,...,wk−2,2b,a
for w1, . . . , wk−2, a, b ∈ ]0, 1] such that b < a < 2b. Then the resulting
canonical map W ′

k → R⊗(k−2) ⊗ ∧2 R is an isomorphism.
Proof. Start with (1). The case k = 1, which underlies the general case, is very
standard and left to the reader.

We prove only k = 2 as the case d ≥ 3 is strictly similar. We write vx,y rather
than v(x,y). Define, for arbitrary y ∈ R∗ and x ∈ ]0, 1[, vx,y as nvx,y/n where n is
the number of smallest absolute value such that 0 < y/n < 1, and define vx,0 = 0.
Applying the case d = 1 for fixed x ∈ ]0, 1[, we see that y 7→ vx,y is an injective
group homomorphism. We now do the same for fixed y ∈ R and thus define vx,y
for arbitrary x, y ∈ R2, so that (x, y) 7→ vx,y is Z-bilinear. Hence it induces a
surjective group homomorphism v : R⊗2 → Wk (where the tensor product is over
Z, or equivalently over Q). We have f ◦ v = idR⊗2 . Since v is surjective, this
implies that f is an isomorphism.
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(We used that the canonical homomorphism R⊗kZ → R⊗kQ is an isomorphism.
This holds because R⊗kZ is a torsion-free divisible group. In turn, this holds
because for every n ≥ 1, multiplication by n is invertible, namely with inverse
(x1 ⊗ · · · ⊗ xk) 7→ ((x1/n)⊗ x2 ⊗ · · · ⊗ xk).)

For (2), we also suppose k = 2 to simplify the notation, the proof in general
being the same. In W ′

k, for a, b with 0 < a < b ≤ 1/2 we have 2va/2,b = va,b. It
follows that for arbitrary a, b ∈ ]0, 1], the element 2nv2−na,b is well-defined for n
large enough, and independent of n, and moreover equals va,b when a < b. We
therefore denote it va,b as well. Then the va,b satisfy the same additivity relators
without the restriction a < b. Indeed, for n large enough,

va+a′,b = 2nv2−n(a+a′),b = 2nv2−na,b + 2nv2−na′,b = va,b + va′,b

and
va,b+b′ = 2nv(2−na, b+ b′) = 2nv(2−na, b) + 2nv(2−na, b′) = va,b + va,b′ .

For (3), using the isomorphism of (2), the additional relators correspond to
modding out by the elements 2(c⊗a⊗ b+ c⊗ b⊗a) for 0 < b < a < 2a ≤ 1 and c
of the form w1⊗. . . wk−2 with 0 < wi ≤ 1. An arbitrary element c⊗a⊗b+c⊗b⊗a
(a, b ∈ R, c of the same form with wi arbitrary real numbers) is a Z-linear
combination of such elements. Hence the given map W ′

k → R⊗(k−2) ⊗ ∧2 R
defines an isomorphism V → ∧2 R. �

Proposition 9.3. For 0 ≤ b ≤ a ≤ 1, let Ra,b ∈ IET be the restricted rotation
“+b modulo a” on [0, a[, identity elsewhere. Explicitly, it is given by x 7→ x + b
on [0, a − b[, x 7→ x − a + b in [a − b, a[, and identity on [a, 1[. Then in the
abelianization of IET, they satisfy all relators of Lemma 9.1.

Proof. We write multiplicatively. Relator (2) is clear, as the equality even holds
in IET.

For the relator (1), first consider the conjugate R[a]
a′,b of Ra′,b by Ra+a′,a: it is thus

identity outside [a, a+a′[; it acts as x 7→ x+b on [a, a+a′−b[, and x 7→ x+b−a′
on [a+a′− b, a+a′[. A direct computation shows that R[a]

a′,b ◦Ra,b ◦R−1
a+a′,b equals

the “transposition” that permutes by translations the disjoint intervals [0, b[ and
[a, a+ b[; this is a commutator. Hence (1) holds in the abelianization.

For (3), we compute that R2
a,b = Ra,2b−a, and then R2

a,b ◦R2b,a is the “transpo-
sition” that permutes by translations the disjoint intervals [0, 2b− a[ and [a, 2b[.
Hence this is a commutator. �

By Lemma 9.1 and Proposition 9.3, there is a well-defined group homomor-
phism F : Λ2

QR → IETab such that for all 0 < b < a ≤ 1, F (a ∧ b) = π(Ra,b),
where π is the projection IET→ IETab.

Lemma 9.4. F ◦ S = π. In particular, F ◦ S̄ = id, and thus S̄ is a group
isomorphism.
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Proof. Let H be the subgroup of IET consisting of those f such that F ◦ S(f) =
π(f). This is a subgroup of IET containing the derived subgroup, and hence is
a normal subgroup. Hence, since IET is normally generated by the Ra,b, it is
enough to check that Ra,b ∈ H. Indeed, F (S(Ra,b)) = F (a ∧ b) = π(Ra,b). �

9.2. The general case d ≥ 1: generalized SAF homomorphism. The gen-
eralized SAF homomorphism was briefly described in the introduction. To de-
scribe its image, it is convenient to perform a simple change of variables. Let σi
be the linear automorphism of R⊗d transposing the i-th and d-th coordinates.
Define vol⊗d,i = σi ◦ vol⊗d , where vol⊗d is the tensor volume (Section 3). Thus

vol⊗d,i(I1 × · · · × Id) = λ(I1)⊗ · · · ⊗ λ(Ii−1)⊗ λ(Ii+1)⊗ · · · ⊗ λ(Id)⊗ λ(Ii)
for all left-closed right-open bounded intervals I1, . . . , Id.

For f ∈ Recd, define

Ti(f) =
∑
x∈Rd

vol⊗d,i
(
(f − id)−1({x})

)
⊗ xi

=
∑
α∈R

vol⊗d,i
(
(f − id)−1

i ({α})
)
⊗ α ∈ R⊗(d+1),

and T (f) = (T1(f), . . . , Td(f)) ∈ (R⊗(d+1))d, and call it generalized SAF homo-
morphism.

By a computation similar to the 1-dimensional one (using that the “measure”
vol⊗d,i is invariant under elements of Recd), we obtain that Ti is a group homo-
morphism, and hence so is T .

Fix i ∈ {1, . . . , d}. For 0 < b < a ≤ 1 and c ∈ ]0, 1]d−1, first define c](i,a) =
(c1, . . . , ci−1, a, ci, . . . , cd−1) ∈ Rd (beware of the shift of coordinates). Define
Ri,c,a,b as being identity outside Ka

c,i = ∏d
j=1[0, c](i,a)

j [, and shuffling by b on the i-
coordinate inside Ka

c,i: Ra,b on the i-coordinate and identity on other coordinates.
More explicitly, it is given by translation by bei on Ka−b

c,i and translation by
(b− a)ei on (a− b)ei +Kb

c,i.
Then Tj(Ri,c,a,b) = 0 for j 6= i, while Ti(Ri,c,a,b) = c⊗ (a⊗ b− b⊗ a).
Since the Ri,c,a,b generate Recd as a normal subgroup (as consequence of The-

orem 1.2), it follows that the image of T is exactly
(
R⊗(d−1) ⊗ ∧2 R

)d
.

It remains to prove that the inclusion D(Recd) ⊆ Ker(T ) is an equality. From
Proposition 9.3, when i is fixed as well as c, the elements Ri,c,a,b satisfy the relators
of Lemma 9.1. We need a simple elaboration of that lemma, when c is allowed
to vary, namely Lemma 9.5 below.

The following is essentially a restatement of Lemma 9.2(3).

Lemma 9.5. Consider the (additive) abelian group Vk with presentation: gener-
ated by the uw,a,b, 0 < b < a ≤ 1, w ∈ ]0, 1]k, subject to the relators of Lemma
9.1 for fixed w [that is, whenever meaningful, (1) uw,a+a′,b = uw,a,b + uc,a′,b, (2)
uw,a,b+b′ = uw,a,b + uc,a,b′, (3) 2uw,a,b + uw,2b,a = 0], and the additional relators:
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(4) uw′′,a,b = uw,a,b + uw′,a,b if w′′ is a 1-coordinate sum of w,w′, whenever it
makes sense 0 < b < a ≤ 1.

Then the homomorphism mapping uw,a,b 7→ w̄⊗ (a∧ b) from V to R⊗k⊗∧2
Q R

is a group isomorphism. �

Therefore, there is a group homomorphism Mi : R⊗(d−1) ⊗ ∧2 R → (Recd)ab
such that for all c ∈ ]0, 1]d and all 0 < b < a ≤ 1 we have Mi(c ⊗ (a ∧ b)) =
π(Ri,c,a,b). By Z-linearity this defines a homomorphismM : (R⊗(d−1)⊗∧2 R)d →
(Recd)ab by M(η1, . . . , ηd) = ∑d

i=1Mi(ηi).
Here is the analogue of Lemma 9.4.

Lemma 9.6. M ◦ T = π. In particular, M ◦ T̄ = id, and thus T̄ is a group
isomorphism.

Proof. Let H be the subgroup of Recd consisting of those f such thatM ◦T (f) =
π(f). This is a subgroup of Recd containing the derived subgroup, and hence is
a normal subgroup. Hence, since Recd is normally generated by the Ri,c,a,b, it is
enough to check that Ri,c,a,b ∈ H. Indeed,

M(T (Ri,c,a,b)) =M
(∑

j

Tj(Ri,c,a,b)
)

= M(Ti(Ri,c,a,b)) = Mi(c⊗ (a ∧ b)) = π(Ri,c,a,b). �

Corollary 9.7. Let G be the subgroup of Rec2 generated by those restricted shuf-
fles that consist of shuffling a square inside a rectangle (e.g., those elements
Rb,a,b). Then G is a proper subgroup, containing the derived subgroup.

Proof. We have T1(R1,b,a,b) = (b⊗ (a ∧ b), 0) (and similarly for T2) and hence all
“square” restricted shuffles have an image of this form. If (ai)i∈I is a Q-basis of
R and we fix a total order on I, we see that T1(G) has the basis ai⊗ (ai ∧ aj) for
i 6= j, and ai⊗ (aj ∧ak)−ak⊗ (ai∧aj), aj⊗ (ak∧ai)−ak⊗ (ai∧aj) for i < j < k.
(And T (G) = T1(G) × T2(G).) In particular, ai ⊗ (aj ∧ ak) is not in the image.
In particular, whenever (a, b, c) is Q-free with 0 < b < a ≤ 1, 0 < c ≤ 1, we have
R1,c,a,b /∈ G. �

9.3. A normal subgroup larger than the derived subgroup.
We denote by GtGd the subgroup of Recd generated by IETd ∪Td (where IETd

acts component-wise).

Corollary 9.8. The group GtGd is a normal subgroup of Recd and containing
D(Recd); for d ≥ 2 both inclusions D(Recd) ⊂ GtGd ⊂ Recd are strict.

Proof. For 0 ≤ b ≤ a, denote by Ra,b the restricted rotation (as defined in
Proposition 9.3), and R

(i)
a,b (for 1 ≤ i ≤ d) the element of IETd acting as Ra,b

on the ith component and identity on other components. Then Ti(R(i)
a,b) =

1⊗(d−1)⊗(a∧b) and Tj(R(i)
a,b) = 0 for j 6= i. Hence T (GtGd) contains the subgroup
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({1⊗(d−1)} ⊗Q
∧2

Q R)d, which is not trivial: this already shows that the inclusion
D(Recd) ⊂ GtGd is proper. In addition, since T vanishes on Td and since the
R

(i)
a,b (for varying a, b, i) normally generate IETd, it follows that this inclusion is an

equality. For d ≥ 2, {1⊗(d−1)}⊗∧2 R is a proper subgroup of R⊗(d−1)⊗∧2 R (all
tensor products being over Q) and it follows that GtGd is a proper subgroup. �

Remark 9.9. The notation GtGd is for “Grid-to-Grid”. Let S be the subset of
Recd consisting of elements f such that there exists a grid-pattern associated Q
such that f(Q) is still a grid-pattern. Then S contains IETd ∪Td but is not equal
to GtGd. However the normal closure in Recd of S is GtGd.
9.4. Generalized SAF homomorphism on an arbitrary multirectangle.
(Recall that all tensor products are over Q.)

LetM ⊆ Rd be a multirectangle. The definition of generalized SAF-homomorphism
in §9.2 works without any change, yielding a homomorphism T : Recd(M) →(
R⊗(d−1) ⊗ ∧2 R

)d
. It is surjective for the same obvious reason.

Proposition 9.10. The kernel of T : Recd(M)→
(
R⊗(d−1) ⊗ ∧2 R

)d
equals the

derived subgroup of Recd(M).
Proof. It is enough to prove that the kernel of T is contained in the derived
subgroup, the other inclusion being obvious.

It is convenient to consider the whole group Rec�d as the union over all M of
Recd(M). That is, these are compactly supported Rec-automorphisms of Rd.

We let R∗ act on R⊗(d+1) by t · (x1 ⊗ · · · ⊗ xd+1) = (tx1 ⊗ · · · ⊗ txd+1). This
induces an action on its subspace R⊗(d−1)⊗∧2 R and hence on

(
R⊗(d−1)⊗∧2 R

)d
.

Let s be an affine homothety of Rd, i.e., an affine automorphism whose linear
part is the nonzero scalar multiplication by θs. For f ∈ Rec�d , we readily see that
T (s◦f ◦ s−1) = s ·T (f). Now M being given, fix an affine homothety s such that
s(M) ⊂ [0, 1[d.

Let f be such that T (f) = 0. Then s ◦ f ◦ s−1 ∈ Recd, and T (s ◦ f ◦ s−1) =
s · T (f) = 0. By the case of [0, 1[d, we deduce that s ◦ f ◦ s−1 is a product of
commutators [gi, hi] in Recd. Hence f is the product of commutators [s−1 ◦ gi ◦
s, s−1 ◦ hi ◦ s] in Recd(M). �

The fact that the abelianization homomorphism is “independent” ofM has the
following consequence on derived subgroups.
Corollary 9.11. For nonempty multirectangles M ⊆ M ′ in Rd, denoting G =
Recd(M ′) and H = Recd(M), we have HD(G) = G and H ∩D(G) = D(H). �

10. Rectangle exchanges with flips

There is an issue in defining the group of interval exchange with flips, due
to the fact that this group does not really act on the interval: this is only an
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action modulo indeterminacy on finite subsets, and that it cannot be realized as
an action on the interval is proved in [6].

Define a small subset in Rd as a subset that is contained in a finite union of
affine hyperplanes (here we could content ourselves with hyperplanes of the form
xi = c). Consider the set E of maps [0, 1[d → [0, 1]d that are left-continuous in
each variable, such that there is a finite partition of [0, 1[d into rectangles such
that on each cube, it is given by an affine map whose linear part is diagonal
with ±1 diagonal coefficients. Define Rec./d as the set of elements in E that are
injective outside a small subset. If f, g ∈ Rec./d , then g ◦ f is defined outside a
small subset, and coincides with a unique element of Rec./d , which we define as
gf . This makes Rec./d a group (we omit the routine details), which for d = 1 is
known as group of interval exchanges with flips.

Proposition 10.1. The group Rec./d is simple.

Proof. Let N be a nontrivial normal subgroup. Let g be a nontrivial element of
Rec./d . There exists a rectangleM that is mapped by g onto a rectangle disjoint of
M by an isometry. Let h be an element of Recd that is a rectangle transposition
between two rectangles that are both contained in M . Then ghg−1 is a rec-
tangle transposition between two rectangles that are contained in g(M). Hence
ghg−1h−1 is a nontrivial element of Recd of order 2. Since Recd has a torsion-
free abelianization and simple derived subgroup, we deduce that N contains the
derived subgroup of Recd.

Consider a restricted shuffle. Since every rotation of the circle is a product of
two reflections, we can write it as a product of two “restricted reflections”. By a
simple argument, every restricted reflection is conjugate in Rec./d to an element if
Recd (necessarily in the derived subgroup). Since restricted reflections generate
Recd, we deduce that N contains Recd.

Every element of Rec./d is obviously the product of an element of Recd and a
product of elements with pairwise disjoint support, each of which is supported by
a single rectangle and acts as a self-isometry of this rectangle. In turn, such an
element can be written as a product of such elements for which the self-isometry is
a reflection according to some coordinate reflection. Such elements are “restricted
reflections” and hence belong to N . Hence N = Rec./d . �

Proof of Corollary 1.6. We only sketch the proof, since it is quite standard once
Theorem 1.3 is granted.

Let N be a nontrivial normal subgroup, and take nontrivial g ∈ N , let R be a
rectangle on which g acts as a single isometry, with g(R) and R disjoint. Let h
be an element of Recd of order 2, consisting of exchanging two small rectangles
contained in R. Then ghg−1 is also of order 2, exchanging two small rectangles
contained in g(R). Since every nontrivial normal subgroup of Recd contains its
derived subgroup Rec′d, we deduce that Rec′d ⊆ N .
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Now let r be a restricted shuffle in Recd, with support R. Write it as r = w2,
with w a restricted shuffle with support R. Let s be the reflection with same
support R and switching the same direction. Then sws−1 = w−1, and hence
wsw−1s−1 = w2 = r. Also, it is not hard to check that s is conjugate to an
element in Recd (we omit the simple argument, which is the same as in the case
d = 1). Hence r = [w, s] belongs to N . Since restricted shuffles generate Recd,
we deduce Recd ⊆ N .

Finally, every element in Rec./d can be written as tu where u ∈ Recd and t
is a product with disjoint support ∏i ti, where each ti is supported by a single
rectangle and is an isometry of this rectangle. Hence ti has order 2 and it is
not hard again to check that ti is conjugate to an element of Recd. Hence N =
Rec./d . �

Proposition 10.2. There exists an injective group homomorphism Rec./d into
Recd. More precisely, denote by C ′ the cube [−1, 1[d. Then the “centralizer”
in Recd(C ′) of the 2-elementary abelian group Bd of order 2d consisting of those
(x1, . . . , xd) 7→ (ε1x1, . . . , εdxd), εi ∈ {±1}, is naturally isomorphic to Rec./d ([0, 1[d).
Here centralizer means those element which commute with these maps outside a
smalle subset (small meaning contained in a finite union of hyperplanes).
Proof. For f ∈ Rec./d and x ∈ ]0, 1[d) at the neighborhood of which f is an
isometry, define df (x) as the differential of f at x (this is a diagonal matrix with
diagonal entries in {±1}). Then define q(f)(x) as df (x)f(x). More generally
define q(f)(Ax) as Adf (x)f(x) for every diagonal matrix A with diagonal entries
in {±1}. Then q(f) ∈ Recd(C ′).

Conversely, for g ∈ Recd(C ′) centralizingBd and x ∈ ]0, 1[d at the neighborhood
of which g is a translation, define dg(x) as the diagonal matrix with diagonal
coefficients in {±1}, such that the sign of dg(x)i,i is the same as the sign of g(x)i.
Then define r(g)(x) = dg(x)g(x), and more generally r(g)(Ax) = Adg(x)g(x) for
any diagonal matrix A with diagonal entries in {±1}.

Then the reader can check that r, q are group homomorphisms and are inverse
to each other. Details are left to the reader since this is essentially the same
argument as the classical case d = 1. �

11. Property FM

Proof of Proposition 1.18. Let Γ be a subgroup of Recd with Property FM. View
Recd as acting on Rd (identity outside [0, 1[d) Property FM forces Γ to be finitely
generated (for the same reason as Property T), see [5, Prop. 5.6]. Let Λ be a dense
finitely generated subgroup of Rd containing all translations lengths of elements
of Γ. Then Γ preserves Λ and acts faithfully on it. Let Wob(Λ) be the group of
bounded displacement permutations of Λ (where Λ is viewed as set of vertices of
its Cayley graph). Then this defines an injective homomorphism Γ → Wob(Λ).
Since the graph Λ has uniform subexponential growth (uniformity being with
respect to the choice of origin), the wobbling group Wob(Λ) contains no infinite
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subgroup with Property FM (this is [5, Theorem 7.1(2)], which follows the lines
of [12, Theorem 4.1], which asserts it for Property T). �

Note that this proof works equally for the whole group of permutations f of
Rd such that {f(x)− x : x ∈ Rd} is finite, and in particular works for the group
of piecewise translations with arbitrary polyhedral pieces.

12. A torsion group in Rec3

We make use of the following result of Nekrashevych [13]1.

Theorem 12.1. Let X be an infinite Stone space (=totally disconnected Haus-
dorff compact space) and ξ ∈ X. Let a, b be self-homeomorphisms of X, with
a2 = b2 = idX , with b(ξ) = ξ; assume that 〈a, b〉 acts minimally on X. Let
X1, . . . , Xn be a b-invariant clopen partition of X r {ξ} such that each Xi ac-
cumulates at ξ. Let bi be the restriction of b to Xi (identity on X r {ξ}). Let
K ' (Z/2Z)n be the subgroup generated by b1, . . . , bn. Let H be a subgroup of K
not containing b, and all of whose n projections are surjective. Then 〈a,K〉 is an
infinite torsion group.

Note that there exists such a subgroup H in (Z/2Z)n with the given conditions
(avoiding the diagonal and with all projections surjective) if and only if n ≥ 3,
and then H can be chosen to be of order 4 (e.g., generated by b1b2 and b2 . . . bn).

To apply the theorem, it is convenient to work in the torus T 3 = R3/Z3 rather
than [0, 1[3: the definition of Rec./3 (T 3) is immediate (using the canonical bijection
[0, 1[3 → T 3).

We start with two involutive self-homeomorphisms a, b of T given by a(x) =
v0 − x and b(x) = −x, where v0 is a fixed totally irrational vector (in the sense
that Z3 + Zv0 is dense in R3). Note that 〈a, b〉 acts minimally (since it contains
a dense cyclic subgroup 〈ab〉 of translations of index 2).

Define T̄ as the Denjoy-doubled circle: this is a copy of the circle in which each
point x has been replaced with a pair {x−, x+}. Endowed with the circular order,
this is a Stone space, and the canonical two-to-one projection T̄ → T is contin-
uous. Then each element of Rec./3 (T 3) canonically lifts to a self-homeomorphism
of T̄ 3. Hence, we obtain two involutive self-homeomorphisms ā, b̄ of T̄ 3, and 〈ā, b̄〉
acts minimally on T̄ 3.

We define a partition of T̄ 3 by cutting (in halves) the cube [−1/2, 1/2]3 into
8 cubes. Formally speaking: define I+ = [0+, (1/2)−], I− = [(−1/2)+, 0−] and
for any signs a, b, c ∈ {+,−}, define Cabc = Ia × Ib × Ic. Then define C0 =
C+++ ∪ C−−−, C1 = C−++ ∪ C+−−, C2 = C+−+ ∪ C−+−, C3 = C++− ∪ C−−+ (so
T̄ 3 = C0 t C1 t C2 t C3).

1The theorem appeared in this way in a first preliminary ArXiv version of [13] (v1) and was
then generalized.



34 YVES CORNULIER AND OCTAVE LACOURTE

Lemma 12.2. There exists intermediate 〈ā, b̄〉-equivariant quotient map T̄ 3 p→
K

π→ T 3, such that K is homeomorphic to a Cantor space, such that π−1({(0, 0)}
is a singleton (denoted 0), and such that the p(Ci), i = 0, 1, 2, 3 are closed subsets
pairwise intersecting at 0.

Granted the lemma, we conclude: defining Pi = p(Ci) r {0}, we obtain the
desired clopen partition of K r {0}, and Theorem 12.1 applies.
Proof of Lemma 12.2. First, let D0, D1 be dense countable subset of R, each
stable under all coordinate actions of a and b and by x 7→ x±1, with 0 ∈ D0 and
0 /∈ D1. Write D = D0 ∪D1.

Let T̄D be the circle with all points in D doubled (i.e., quotient of T̄ by identi-
fying x+ and x− whenever x /∈ D). This is a Cantor space. Then a, b lift to T 3

D.
Next, for every point (x, y, z) in the 〈a, b〉-orbit of (0, 0, 0), identify the 8 preim-
ages of (x, y, z) from T 3

D to get a space K, and the quotient map T 3
D → K → T 3

are 〈a, b〉-equivariant.
It is enough to show that any two points in K are separated by clopen subsets:

this ensures that K is both Hausdorff and totally disconnected. Write p and π for
the projections as in the assertion of the lemma. If the two points have distinct
images by π, this is straightforward: choose a small cube around one point with
coordinates in D1, small enough to avoid the other point.

Now suppose both points have the same image in T 3. Up to permute coordi-
nates, we can suppose that these points have the form (x+, y

′, z′) and (x−, y′′, z′′).
Here either y′, y′′ are the same element of T , or have the form y+ and y− for some
y, similarly for z′, z′′. By assumption, (x, y, z) is not in the orbit of zero. Since
the orbit of zero is the orbit of powers of an irrational rotation, we deduce that
no element (x, y1, z1) closed enough to (x, y, z) is in the orbit of zero. Hence,
[u, x−] × P and [x+, v] × P , for u, v in D1 close enough to x and P is a small
enough 2-dimensional rectangle containing (y, z), with coordinates, in D1.

That the p(Ci) are pairwise disjoint outside zero follows from the fact that
the only element in the orbit of (0, 0, 0) that has a 0 or 1 coordinate is (0, 0, 0)
itself. �

We have thus constructed an infinite finitely generated torsion subgroup in
Rec./3 , and the latter embeds in Rec3 by Proposition 10.2.

Remark 12.3. This construction is a variant of the one in [13, §6.2] (consisting
of “triangle exchanges”), which was suggested by the first-named author to V.
Nekrashevych after reading a first version of [13].
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