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Abstract. This (quasi-)survey addresses the quasi-isometry classification of lo-
cally compact groups, with an emphasis on amenable hyperbolic locally compact
groups. This encompasses the problem of quasi-isometry classification of homoge-
neous negatively curved manifolds. A main conjecture provides a general descrip-
tion; an extended discussion reduces this conjecture to more specific statements.

In the course of the paper, we provide statements of quasi-isometric rigidity for
general symmetric spaces of noncompact type and also discuss accessibility issues
in the realm of compactly generated locally compact groups.

19.1. Introduction

19.1.1. Locally compact groups as geometric objects. It has long been well
understood in harmonic analysis (notably in the study of unitary representations)
that locally compact groups are the natural objects unifying the setting of connected
Lie groups and discrete groups. In the context of geometric group theory, this is still
far from universal. For a long period, notably in the 70s, this unifying point of view
was used essentially by Herbert Abels, and, more occasionally, some other people
including Behr, Guivarc’h, Houghton. The considerable influence of Gromov’s work
paradoxically favored the bipolar point of view discrete vs continuous, although
Gromov’s ideas were applicable to the setting of locally compact groups and were
sometimes stated (especially in [Gr87]) in an even greater generality.

If a locally compact group is generated by a compact subset S, it can be endowed
with the word length with respect to S, and with the corresponding left-invariant
distance. While this distance depends on the choice of S, the metric space (G, dS)
— or the 1-skeleton of the corresponding Cayley graph — is uniquely determined by
G up to quasi-isometry, in the sense that if T is another compact generating subset,
the identity map (G, dS)→ (G, dT ) is a quasi-isometry.

We use the usual notion of Gromov-hyperbolicity [Gr87] for geodesic metric
spaces, which we simply call “hyperbolic”; this is a quasi-isometry invariant. A
locally compact group is called hyperbolic if it is compactly generated and if its
Cayley graph with respect to some/any compact generating subset is hyperbolic.

This paper is mainly concerned with the quasi-isometric classification and rigidity
of amenable hyperbolic locally compact groups among compactly generated locally
compact groups. Within discrete groups, this problem is not deep: the answer is
that it falls into two classes, finite groups and infinite virtually cyclic groups, both
of which are closed under quasi-isometry among finitely generated groups. On the
other hand, in the locally compact setting it is still an open problem. In order to
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tackle it, we need a significant amount of nontrivial preliminaries. Part of this paper
(esp. Sections 19.3 and 19.4) appears as a kind of survey of important necessary
results about groups quasi-isometric to symmetric spaces of noncompact type and
trees, unjustly not previously stated in the literature but whose proofs gather various
ingredients from existing work along with minor additional features. Although only
the case of rank 1 and trees is needed for the application to hyperbolic groups, we
state the theorems in a greater generality.

19.1.2. From negatively curved Lie groups to focal hyperbolic groups. In
1974, in answer to a question of Milnor, Heintze [He74] characterized the connected
Lie groups of dimension at least 2 admitting a left-invariant Riemannian metric
of negative curvature as those of the form G = N o R where R acts on N as a
one-parameter group of contractions; the group N is necessarily a simply connected
nilpotent Lie group; such a group G is called a Heintze group. He also showed that
any negatively curved connected Riemannian manifold with a transitive isometry
group admits a simply transitive isometry group; the latter is necessarily a Heintze
group (if the dimension is at least 2). The action of a Heintze group G = N o R
on the sphere at infinity ∂G has exactly two orbits: a certain distinguished point ω
and the complement ∂Gr {ω}, on which the action of N is simply transitive. This
sphere admits a visual metric, which depends on several choices and is not canonical;
however its quasi-symmetric type is well-defined and is a functorial quasi-isometry
invariant of G. The study of quasi-symmetric transformations of this sphere was
used by Tukia, Pansu and R. Chow [Tu86, Pa89m, Ch96] to prove the quasi-isometric
rigidity of the rank one symmetric spaces of dimension at least 3. Pansu also initiated
such a study for other Heintze groups [Pa89m, Pa89d].

On the other hand, hyperbolic groups were introduced by Gromov [Gr87] in 1987.
The setting was very general, but for many reasons (mainly unrelated to the quasi-
isometric classification), their subsequent study was especially focused on discrete
groups with a word metric. In particular, a common belief was that amenability is
essentially incompatible with hyperbolicity. This is not true in the locally compact
setting, since there is a wide variety of amenable hyperbolic locally compact groups,
whose quasi-isometry classification is open at the moment. One purpose of this note
is to describe the state of the art as regards this problem.

In 2005, I asked Pierre Pansu whether there was a known characterization of
(Gromov-) hyperbolic connected Lie groups, and he replied me that the answer could
be obtained from his Lp-cohomology computations [Pa07] (which were extracted
from an unpublished manuscript going back to 1995) combined with a vanishing
result later obtained by Tessera [Te09]; an algebraic characterization of hyperbolic
groups among connected Lie groups, based on this approach, was finally given in
[CT11], namely such groups are either compact, Heintze-by-compact, or compact-
by-(simple of rank one). This approach consisted in proving, using structural results
of connected Lie groups, that any connected Lie group not of this form cannot be
hyperbolic, by showing that its Lp-cohomology in degree 1 vanishes for all p.

In [CCMT15], using a more global approach, namely by studying the class of focal
hyperbolic groups, this was extended to a general characterization of all amenable
hyperbolic locally compact groups, and more generally of all hyperbolic locally com-
pact groups admitting a cocompact closed amenable subgroup (every connected
locally compact group, hyperbolic or not, admits such a subgroup).
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Theorem 19.1 ([CCMT15]). Let G be a non-elementary hyperbolic compactly gen-
erated locally compact group with a cocompact closed amenable subgroup. Then ex-
actly one of the following holds

(a) (focal case) G is amenable and non-unimodular. Then G is isomorphic to a
semidirect product N oZ or N oR, where the noncompact subgroup N is com-
pacted by the action of positive elements t of Z or R, in the sense that there
exists a compact subset K of N such that tKt−1 ⊂ K and

⋃
n≥1 t

−nKtn = N .
(b) G is non-amenable. Then G admits a continuous, proper isometric, boundary-

transitive (and hence cocompact) action on a rank 1 symmetric space of non-
compact type, or a finite valency tree with no valency 1 vertex and not reduced
to a line (necessarily biregular).

Groups in (a) are precisely the amenable non-elementary hyperbolic locally com-
pact groups, and are called focal hyperbolic locally compact groups.

We assumed for simplicity that G is non-elementary in the sense that its boundary
has at least 3 points (and is indeed uncountable), ruling out compact groups and
2-ended locally compact groups (which are described in Corollary 19.39). It should
be noted that any group as in (b) admits a closed cocompact subgroup of the form
in (a), but conversely most groups in (a) are not obtained this way, and are actually
generally not quasi-isometric to any group as in (b), see the discussion in Section
19.6.3. This is actually a source of difficulty in the quasi-isometry classification:
namely those groups in (a) that embed cocompactly in a non-amenable group bear
“hidden symmetries”; see Conjecture 19.104 and the subsequent discussion.

For the discussion below, it is natural to split the class of focal hyperbolic locally
compact groups G into three subclasses (see §19.2.3 for more details):

• G is of connected type if its boundary is homeomorphic to a positive-dimensional
sphere, or equivalently if it admits a continuous proper cocompact isometric
action on a complete negatively curved Riemannian manifold of dimension
≥ 2;
• G is of totally disconnected type if its identity component is compact, or

equivalently if its boundary is a Cantor space, or equivalently if it admits
a continuous proper cocompact isometric action on a regular tree of finite
valency;
• G is of mixed type otherwise; then its boundary is connected but not locally

connected.

19.1.3. Synopsis. We define the commability equivalence between locally compact
groups as the equivalence relation generated by the requirement that any two locally
compact groups G1, G2 with a continuous proper homomorphism G1 → G2 with
cocompact image are commable. Thus G1 and G2 are commable if and only if there
exists an integer k, a family of locally compact groups G1 = H0, H1, . . . , Hk = G2,
and continuous proper homomorphisms fi with cocompact image, either from Hi

to Hi+1 or from Hi+1 to Hi. Obviously, commable compactly generated locally
compact groups are quasi-isometric (the converse is not true: after I asked about
a counterexample, Carette and Tessera checked that some free products of suitable
lattices in Lie groups with Z are indeed quasi-isometric but not commable, see
§19.5.2).

A general study of commability is not an easy matter, as it is difficult in general
to describe in a satisfactory way, given a locally compact group G (e.g. a Baumslag-
Solitar group as given in Remark 19.55), those locally groups H in which G embeds
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as a cocompact subgroup. A study of commability in the realm of focal hyper-
bolic locally compact groups is carried out in Section 19.5, with a comprehensive
description (except in the totally disconnected case). Actually, the Mostow rigidity
theorem [Mos73] was maybe the first time that quasi-isometries were used, to solve
a commability problem.

A comprehensive study of commability in the realm of focal hyperbolic locally
compact groups is carried out in Section 19.5.

Section 19.6 addresses the quasi-isometry classification of focal hyperbolic groups,
discussing, using the results of all the previous sections, around the following:

Conjecture 19.2. mainc[Main conjecture] Two hyperbolic locally compact groups
G,H with G focal are quasi-isometric if and only if they are commable.

This conjecture can be split between the internal case (H focal) and the external
case (H non-focal), providing more explicit reformulations, which may seem unre-
lated at first sight. Notably, the external part of Conjecture 19.86 has the following
equivalent restatement:

Conjecture 19.3. anaqi[slightly restated] A focal hyperbolic locally compact group
is quasi-isometric to a non-focal hyperbolic locally compact group if and only if it is
quasi-isometric to a rank 1 symmetric space of noncompact type or a 3-regular tree.

Because of the very special role played by rank 1 symmetric spaces and trees,
and because the extensive literature about them is not formulated in the context
of locally compact groups, the important results concerning their quasi-isometric
rigidity are surveyed (and slightly extended) in Sections 19.3 and 19.4.

In the external part, the totally disconnected type of Conjecture 19.86 is a bit at
odds with the other type because there is a complete understanding of the quasi-
isometric classification in this case (Section 19.4), so it is rather a question about
commability itself. See §19.5.6 (esp. Question 19.78). After being asked in a first
version of this survey, it has been solved by M. Carette [Ca13].

The internal part of Conjecture 19.86 (H focal) can be split into three cases,
according to the type of the focal group G (see §19.2.5). Here the totally discon-
nected case is an easy theorem rather than a conjecture, since all focal hyperbolic
locally compact groups of totally disconnected are in the same commability class
(Proposition 19.74). The remaining cases are the mixed type and the connected
type.

Recall that a purely real Heintze group is a Heintze group N o R as above, for
which the action of R on the Lie algebra of N has only real eigenvalues. Heintze
groups are focal of connected type, and actually every focal group of connected type
is commable to a purely real Heintze group, unique up to isomorphism (see §19.5.3).
This gives a reduction of the internal connected type case of Conjecture 19.86 to the
following simpler statement:

Conjecture 19.4. Any two purely real Heintze groups are quasi-isometric if and
only if they are isomorphic.

The mixed type case can also be reduced to a similar statement (Conjecture 19.92),
by finding, in each commability class of focal hyperbolic locally compact group of
mixed type, a given group H[$, q], depending on three independent “parameters”:
a purely real Heintze group H, a non-power integer q, and a positive real number
$.
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It turns out (see Theorem 19.94 extracted from [Co15]) that the quasi-isometry
class of H[$, q]

• determines the quasi-isometry class of H (by a simple argument based on
the boundary);
• determines the real number $, using a computation of Lp-cohomology in

degree one by the author and Tessera [CT11], strongly inspired by Pansu
[Pa07];
• and finally also determines the non-power integer q, by a recent result of Dy-

marz about the large-scale geometry of focal groups of mixed type, relying
on the study of the fine metrical structure of their boundary.

General remark. This paper may seem to reduce, for expository matters, the
study of the quasi-isometry equivalence relation between hyperbolic groups to the
determination of quasi-isometry classes. It should by no means be the only point
of view; the study of quasi-isometry invariants, such as various kinds of dimensions
and more refined ones, allows to shed light on the fine geometric structure of many
groups. For this reason, the large-scale study of real Heintze groups should not be
reduced to aiming at proving Conjecture 19.88 (which reduces the QI-classification
to a classification up to isomorphism, which is, in a certain sense, a wild problem),
and even a proof of the latter would not supersede the relevance of the study of
these invariants.

Here is an outline of the sequel.

• Section 19.2 contains some preliminary material, notably relying on [CCMT15].
• In Section 19.3, we give the quasi-isometric rigidity statements for symmet-

ric spaces of noncompact type in the locally compact setting. These results
are especially due to Kleiner-Leeb, Tukia, Pansu, R. Chow, Casson-Jungreis
and Gabai.
• In Section 19.4, we give the quasi-isometric rigidity statements for trees

in the locally compact setting, emphasizing on the notion of accessibility
(in its group-theoretic and its graph-theoretic versions). These results are
notably due to Stallings, Dunwoody, Abels, Thomassen-Woess, Mosher-
Sageev-Whyte, and Krön-Möller.
• Section 19.5 provides a detailed description of commability classes between

focal groups, and between focal and non-focal groups;
• The core of this paper is Section 19.6. It contains a discussion about the

main conjecture, the link with its specifications, and surveys the main known
cases; the first of which being due to P. Pansu, while recent progress have
notably been made by X. Xie and T. Dymarz.

Acknowledgements. I thank Tullia Dymarz, Pierre Pansu, and Romain Tessera
for useful discussions, comments, and corrections.
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19.2. Preliminaries

We freely use the shorthand LC-group for locally compact group, and CGLC-
group for compactly generated LC-group.

19.2.1. Quasi-isometries.

The large-scale language
Recall that a map f : X → Y between metric spaces is a large-scale Lipschitz

map if there exist µ > 0 and α ∈ R such that

d(f(x1), f(x2)) ≤ µd(x1, x2) + α ∀x1, x2 ∈ X;

we then say f is (µ, α)-Lipschitz. Maps f : X → Y are at bounded distance, denoted
f ∼ f ′ if supx∈X d(f(x), f ′(x)) < ∞; if this supremum is bounded by α we write

f
α∼ f ′.
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A quasi-isometry f : X → Y is a large-scale Lipschitz map such that there exists
a large-scale Lipschitz map f ′ : Y → X such that f ◦ f ′ ∼ idY and f ′ ◦ f ∼ idX ; the
map f ′ is called an inverse quasi-isometry to f ; it is unique modulo ∼.

A large-scale Lipschitz map X → Y is coarsely proper if, using the convention
inf ∅ = +∞, the function F (r) = inf{d(f(x1), f(x2)) : d(x1, x2) ≥ r} satisfies
lim+∞ F = +∞.

Every CGLC-group G can be endowed with the left-invariant distance defined
by the word length with respect to a compact generating subset. Given any two
such distances, the identity map is a quasi-isometry, and therefore the notions of
large-scale Lipschitz map, quasi-isometry, etc. from or into G are independent of the
choice of a compact generating set.

Hyperbolicity
A geodesic metric space is hyperbolic if there exists δ ≥ 0 such that for every

triple of geodesic segments [ab], [bc], [ac] and x ∈ [bc] we have d(x, [ab] ∪ [ac]) ≤ δ.
To be hyperbolic is a quasi-isometry invariant among geodesic metric spaces. Thus
a locally compact group is called hyperbolic if it is compactly generated and the
1-skeleton of its Cayley graph with respect to some/any compact generating subset
is hyperbolic. By [CCMT15, §2], this holds if and only if it admits a continuous
proper cocompact isometric action on a proper geodesic hyperbolic metric space.

Metric amenability
A locally compact group with left Haar measure λ is amenable (resp. metrically
amenable) if for every compact subset S and ε > 0 there exists a compact subset F
of positive Haar measure such that λ(SFrF )/λ(F ) ≤ ε, resp. λ(FSrF )/λ(F ) ≤ ε.

Note that for a left-invariant distance, FS is the “1-thickening” of F and justifies
the adjective “metric”. The following lemma is [Te08, Theorem 2], see also [CH,
§4.C].

Lemma 19.5. We have

(a) A locally compact group is metrically amenable if and only if it is both amenable
and unimodular;

(b) to be metrically amenable is a quasi-isometry invariant among CGLC-groups.
�

Let us emphasize that being amenable is not a quasi-isometry invariant, in view
of the cocompact inclusion R o R ⊂ SL2(R). The problem asking which amenable
CGLC-groups are quasi-isometric to non-amenable ones is a very challenging one,
it will be addressed in the context of hyperbolic LC-groups in §19.6.3.

19.2.2. Cayley-Abels graph. For a compactly generated locally compact group,
the Cayley graph with respect to some compact generating subset is often conve-
nient, but has the drawback, when G is not discrete, to have infinite valency and in
addition the action of G on its Cayley graph is not continuous.

Definition 19.6. A Cayley-Abels graph for G is a continuous, proper and cocompact
action of G on a nonempty finite valency connected graph.

Of course, if G admits a Cayley-Abels graph, then it admits an open compact
subgroup, namely the stabilizer of some vertex. The converse is the following ele-
mentary fact due to Abels [Ab74, Beispiel 5.2] (see [Mo01, §11.3]).

Proposition 19.7 (Abels). Let G be a locally compact group with a compact open
subgroup (i.e., G is compact-by-(totally disconnected)). Then G admits a Cayley-
Abels graph, which can be chosen to be vertex-transitive. �
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19.2.3. Types of hyperbolic groups. Gromov [Gr87, §3.1] splits isometric group
actions on hyperbolic spaces into 5 types: bounded, horocyclic, lineal, focal, and
general type, see [CCMT15, §3], from which we borrow the terminology. When
specifying this to the action of a CGLC-group G on itself (or any continuous proper
cocompact isometric action of G) we get four out of these five types, the first 2 of
which are called elementary and the last 2 are called non-elementary:

• ∂G is empty, G is compact;
• ∂G has 2 elements, G admits Z as a cocompact lattice (see Corollary 19.39

for more characterizations)
• ∂G is uncountable and has a G-fixed point: G is called a focal hyperbolic

group;
• ∂G is uncountable and the G-action is minimal: G is called a hyperbolic

group of general type.

Among hyperbolic LC-groups, focal groups can be characterized as those that
are amenable and non-unimodular, and general type groups can be characterized
as those that are not amenable. Most hyperbolic LC-groups of general type (e.g.,
discrete ones) do not admit cocompact amenable subgroups, the exceptions being
listed in Theorem 19.1.

Focal hyperbolic groups soon disappeared from the literature after [Gr87], because
the focus was made on proper actions of discrete groups, for which the applications
were the most striking1. Except in the connected or totally disconnected case (and
with another point of view), they reappear in [CT11], before they were given a
structural characterization in [CCMT15].

19.2.4. Boundary. Let X be a proper geodesic hyperbolic space and ∂X its bound-
ary. Then X = X ∪ ∂X has natural compact topology, for which X is open and
dense.

If X and Y are proper geodesic hyperbolic spaces, every quasi-isometric embed-
ding f : X → Y has a unique extension f̂ : X → Y that is continuous on ∂X. This
extension f̂ maps ∂X into ∂Y and is functorial in f . Let f̄ : ∂X → ∂Y denote
the restriction of f̂ . Then f̄ = ḡ whenever f and g are at bounded distance; in
particular, every for every quasi-isometry, f̄ is a homeomorphism ∂X → ∂Y whose
inverse is ḡ, where g is any inverse quasi-isometry for f .

The boundary carries a so-called visual metric. For such metrics, the homeomor-
phic embedding f̄ above is a quasi-symmetric embedding in the sense that there
exists an increasing function F : [0,∞[→ [0,∞[ such that

d(f(x), f(y))

d(f(y), f(z))
≤ F

(
d(x, y)

d(y, z)

)
, ∀x 6= y 6= z ∈ X.

19.2.5. Focal hyperbolic groups. We say that an automorphism α of a locally
compact group N is compacting (or is a compaction) if there exists a compact subset
K of N such that α(K) ⊂ K and

⋃
n≥0 α

−n(K) = N ; we say that an action of Z or

R by automorphisms (αn)n∈Z or (αt)t∈R on N is compacting if α1 is compacting.

Focal hyperbolic groups of connected type

1There was a semantic shift in the meaning of “elementary”, when the terminology from post-
Gromov papers, which was only fit for proper actions of discrete groups, was borrowed instead of
referring to the general setting duly considered by Gromov.
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Recall that Lie groups are not assumed connected and thus include discrete
groups; a locally compact group is by definition compact-by-Lie if it has a compact
normal subgroup so that the quotient is Lie. This is equivalent to (connected-by-
compact)-by-discrete.

We say that a focal hyperbolic group is of connected type if it is compact-by-Lie.
The following proposition is contained in [CCMT15, Theorem 7.3].

Proposition 19.8. Let G be a focal hyperbolic LC-group. Equivalences:

• G is of connected type;
• the kernel of its modular function is connected-by-compact;
• it admits a continuous, proper cocompact isometric action on a homogeneous

simply connected negatively curved manifold of dimension ≥ 2.
• G has a maximal compact normal subgroup W and G/W is isomorphic to

a semidirect product N oZ or N oR, where N is a virtually connected Lie
group and the action of Z or R is compacting. �

Focal hyperbolic groups of totally disconnected type

Similarly we say that a focal hyperbolic group is of totally disconnected type if its
identity component is compact. From [CCMT15, Theorem 7.3] we can also extract
the following proposition.

Proposition 19.9. Let G be a focal hyperbolic LC-group. Equivalences:

• G is of totally disconnected type;
• the kernel of its modular function has a compact identity component;
• it admits a continuous, proper cocompact isometric action on a regular tree

of finite valency greater than 2.
• it is isomorphic to a strictly ascending HNN-extension over a compact group

endowed with an injective continuous endomorphism with open image.

Focal hyperbolic groups of mixed type

Finally, we say that a focal hyperbolic group is of mixed type if it is of neither
connected nor totally disconnected type. For instance, if p is prime and λ ∈ ]0, 1[,
then the semidirect product (R ×Qp) o Z, where the positive generator of Z acts
by multiplication by (λ, p) on the ring R×Qp.

Specifying once again [CCMT15, Theorem 7.3], we obtain

Proposition 19.10. Let G be a focal hyperbolic LC-group. Equivalences:

• G is of mixed type;
• the kernel of its modular function is neither connected-by-compact, nor

compact-by-(totally disconnected);
• it admits a continuous, proper cocompact isometric action on a pure mille-

feuille space (see §19.2.6).
• it has a maximal compact normal subgroup W such that G/W has an open

subgroup of finite index isomorphic to a semidirect product (N1 ×N2) o Z,
where Z acts on N1×N2 by compaction preserving the decomposition, N1 is
a connected Lie group, N2 is totally disconnected, and N1 and N2 are both
non-compact.

As far as I know, it seems that focal groups of mixed type (including examples)
were not considered before [CT11].
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19.2.6. Millefeuille spaces and amenable hyperbolic groups. We here recall
the definition of millefeuille spaces.

Given a metric space X, define a Busemann function X → R as a limit, uniform
on bounded subsets of X, of functions of the form x 7→ d(x, x0) + c0 for x0 ∈ X and
c0 ∈ R. By Busemann metric space, we mean a metric space (X, b) endowed with a
Busemann function; a shift-isometry of (X, b) is an isometry f of X preserving b up
to adding constants, i.e. such that x 7→ b(f(x))− b(x) is constant. A homogeneous
Busemann metric space means a Busemann metric space with a transitive group of
shift-isometries.

Let (X, b) be a complete CAT(κ) Busemann space (−∞ ≤ κ ≤ 0). For k a
non-negative integer, let Tk be a (k+ 1)-regular tree (identified with its 1-skeleton),
endowed with a Busemann function denoted by b′ (taking integer values on vertices).
Note that the Busemann space (Tk, b

′) is uniquely determined by k up to combina-
torial shift-isometry. The millefeuille space X[b, k], introduced in [CCMT15, §7], is
by definition the topological space

{(x, y) ∈ X × Tk | b(x) = b′(y)}.

Call vertical geodesic in Tk, a geodesic in restriction to which b′ is an isometry. Call
vertical leaf in X[b, k] a (closed) subset of the form X[b, k] ∩ (X × V ) where V is a
vertical geodesic. In [CCMT15, §7], it is observed that there is a canonical geodesic
distance, defining the topology, and such that in restriction to any vertical leaf,
the canonical projection to X is an isometry. Moreover X[b, k] is CAT(κ), and is
naturally a Busemann space, the Busemann function mapping (x, y) to b(x) = b′(y).
Note that X[b, 0] = X.

We have the following elementary well-known lemma

Lemma 19.11. Let X be a homogeneous connected negatively curved Riemannian
manifold of dimension ≥ 2. Then exactly one of the following holds:

(a) Isom(X) fixes a unique point in ∂X.
(b) X is a rank 1 symmetric space of noncompact type; in particular Isom(X) is

transitive on ∂X.

In particular, Isom(X) has a unique closed orbit on ∂X, which is either a singleton
or the whole ∂X.

Proof. We use that G = Isom(X) is hyperbolic and the action of G on X is quasi-
isometrically conjugate to the left action of G on itself. If G is amenable, it is focal
hyperbolic and thus fixes a unique point ωX on the boundary and G is transitive on
Xr{ωX} (see for instance [CCMT15, Proposition 5.5(c)]), thus {ωX} is the unique
closed G-orbit.

Otherwise, it is hyperbolic of general type and virtually connected, and thus,
by a simple argument (see [CCMT15, Proposition 5.10]), is isomorphic to an open
subgroup in Isom(Y ) for some rank 1 symmetric space Y of noncompact type. Let
K ⊂ G be the stabilizer in G of one point x0 ∈ X, by transitivity we have X ' G/K
as G-spaces. Since X is CAT(-1) (up to homothety) and complete, K is a maximal
compact subgroup of G. Thus K is also the stabilizer of one point in Y , and the
identifications X ' G/K ' Y then exchange G-invariant Riemannian metrics on
X and those on Y . Since on Y , G-invariant Riemannian metrics are unique up to
scalar multiplication and are symmetric, this is also true on X. So X is symmetric
and in particular Isom(X) is transitive on ∂X. �
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Definition 19.12. Let X be a homogeneous simply connected negatively curved
Riemannian manifold. A distinguished boundary point is a point in the closed
Isom(X)-orbit in ∂X (see Lemma 19.11). A distinguished Busemann function is
a Busemann function attached to a distinguished boundary point.

Lemma 19.13. Let X be a homogeneous simply connected negatively curved Rie-
mannian manifold. For any two distinguished Busemann functions b, b′ on X, there
exists an isometry from (X, b) to (X, b′), i.e., there exists an isometry f : X → X ′

such that b = b′ ◦ f .

Proof. Let ω and ω′ be the distinguished points associated to b and b′. Since all
distinguished points are in the same Isom(X)-orbit, we can push b′ forward by a
suitable isometry and assume ω′ = ω. Since the stabilizer in Isom(X) of ω is
transitive on X, it is transitive on the set of Busemann functions attached to ω.
Thus there exists f as required. �

Lemma 19.13 allows to rather write X[k] with no reference to any Busemann func-
tion, whenever X is a homogeneous simply connected negatively curved Riemannian
manifold.

The relevance of these spaces is due to the following theorem from [CCMT15, §7]

Theorem 19.14. Let G be a noncompact LC-group. Equivalences:

• G is amenable hyperbolic;
• for some integer k ≥ 1 and some homogeneous simply connected negatively

curved Riemannian manifold of positive dimension d, the group G admits
a continuous, proper and cocompact action by isometries on the millefeuille
space X[k], fixing a point (or maybe a pair of points if (k, d) = (1, 1)) on
the boundary.

Let us now describe the topology of the boundary of ∂X[k].

Proposition 19.15. Let X be homogeneous negatively curved d-dimensional Rie-
mannian manifold (d ≥ 1) endowed with a surjective Busemann function and k ≥ 1.
Then ∂X[k] is homeomorphic to the one-point compactification of

• Rd−1 if k = 1 and d ≥ 2;
• Rd−1 × Z× C if k ≥ 2, where C is a Cantor space.

In particular, its topological dimension is d− 1.

Note that when d = 1 and k ≥ 2, then X[k] is a (k+ 1)-regular tree and ∂X[k] is
homeomorphic to a Cantor space.

Proof of Proposition 19.15. We can pick a group G1 = N1 o Z acting properly co-
compactly on X, shifting the Busemann function by integer values, such that the
action of Z contracts the simply connected nilpotent (d− 1)-dimensional Lie group
N1, and G2 = N2 o Z acting continuously transitively on the (k + 1)-regular tree,
where Z contracts N2. Then G = (N1 × N2) o Z acts properly cocompactly on
X[k], and the action of N1 ×N2 on ∂X[k] r {ω} is simply transitive (see the proof
of [CCMT15, Proposition 5.5]). So X[k] r {ω} is homeomorphic to N1 × N2 and
thus X[k] is its one-point compactification. (This proof makes use of homogeneity
for the sake of briefness, but the reader can find a more geometric proof in a more
general context.) �

Corollary 19.16. The classification of the spaces ∂X[k] up to homeomorphy is
given by the following classes
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• k = 1, d ≥ 1 is fixed: ∂X[k] is a (d− 1)-sphere;
• k ≥ 2 is not fixed, d ≥ 1 is fixed: ∂X[k] is a “Cantor bunch” of d-spheres.

Proof. The homeomorphy type of the space ∂X[k] detects d, since d− 1 is its topo-
logical dimension. Moreover, it detects whether k = 1 or k ≥ 2, because ∂X[k] is
locally connected in the first case and not in the second. �

Corollary 19.17. Let ω be the distinguished point in ∂X[k] (the origin of its dis-
tinguished Busemann function). Consider the action of Homeo(∂X[k]) on ∂X[k].
Then

• if min(k, d) = 1 then this action is transitive;
• if min(k, d) ≥ 2 then this action has 2 orbits, namely the singleton {ω} and

its complement ∂X[k] r {ω}.

Proof. The space ∂X[k]r {ω} is homogeneous under its self-homeomorphisms, and
thus any transitive group of self-homeomorphisms extends to the one-point com-
pactification. It remains to discuss whether ω belongs to the same orbit.

• If min(k, d) = 1, then ∂X[k] is a Cantor space or a sphere and thus is
homogeneous under its group of self-homeomorphisms.
• If min(k, d) ≥ 2, and x ∈ ∂X[k], then X[k] r {x} is connected if and only

if x 6= ω. In other words, ω is the only cut-point in ∂X[k] and thus is fixed
by all self-homeomorphisms. �

Corollary 19.18. Among focal hyperbolic LC-groups, the three classes of focal
groups of connected, totally disconnected and mixed type are closed under quasi-
isometry.

Proof. If G is a focal hyperbolic LC-group, it is of connected type if and only if its
boundary is locally connected, and of totally disconnected type if and only if its
boundary is totally disconnected. �

Remark 19.19. Another natural topological description of the visual boundary
∂X[k] is that it is homeomorphic to the smash product ∂X ∧ ∂T of the boundary
of X and the boundary of T , and is thus homeomorphic to the (d− 1)-fold reduced
suspension of ∂T , where d = dim(X). Actually, this allows to describe the whole

compactification X[k] = X[k]∪∂X[k] as the smash product of T and a (d−1)-sphere.

Remark 19.20. The dimension dim(X) can also be characterized as the asymptotic
dimension of X[k], giving another proof that it is a QI-invariant of X[k].

Let us call pure millefeuille space a millefeuille spaceX[k] such that min(dimX, k) ≥
2, i.e. that is neither a manifold nor a tree; equivalently, its isometry group is focal
of mixed type.

Proposition 19.21. A hyperbolic LC-group G is focal of mixed type if and only if
∂G contains a point fixed by every self-homeomorphism of ∂G.

Proof. The “only if” part follows from Corollary 19.17
Conversely, assume that the condition is satisfied. Then G cannot be of general

type. The condition also implies that the boundary is nonempty and hence rules
out compact groups. Otherwise G is 2-ended or focal. But if G is 2-ended, or
focal of connected or totally disconnected type, its boundary is a nonempty sphere
or a Cantor space, which have at least 2 elements and transitive homeomorphism
groups. �
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Figure 1. The boundary of H2
R[2]. Except at the singular point, it

is locally modeled on the product of a dyadic Cantor space and a line.

Corollary 19.22. A focal hyperbolic LC-group of mixed type (or equivalently a pure
millefeuille space) is not quasi-isometric to any hyperbolic LC-group of general type.
In particular, it is not quasi-isometric to any vertex-transitive connected graph of
finite valency.

Proof. The first statement is a particular case of Proposition 19.21. For the second
statement, observe that the isometry group of a such a vertex-transitive graph would
be focal of totally disconnected type or of general type (by Lemma 19.5), but we
have just excluded the general type case and the focal case is excluded by Corollary
19.18. �

19.2.7. Carnot groups. Recall that a Heintze group is a Lie group of the form
N o R, where N is a simply connected nilpotent Lie group, and the action of
positive reals contracts N . It is purely real if it only has real eigenvalues in the
adjoint representation, or equivalently in the action of R on the Lie algebra of N .

Definition 19.23. Let us say that a purely real Heintze group is of Carnot type
if it admits a semidirect decomposition N o R such that, denoting by (N i)i≥1 the
descending central series, it satisfies one of the three equivalent conditions

(i) the action of R on N/[N,N ] is scalar;
(ii) the action of R on N i/N i+1 is scalar for all i;
(iii) there is a linear decomposition of the Lie algebra n =

⊕∞
j=1 vj such that, for

some λ ∈ Rr{0}, the action of every t ∈ R on vj is given by multiplication
by exp(jλt) for all j ≥ 1 and such that

⊕
j≥i vj = ni.

We need to justify the equivalence between the definitions. The trivial implica-
tions are (iii)⇒(ii)⇒(i). To get (ii) from (i), observe that as a module (for the action
of the one-parameter subgroup), ni/ni+1 is a quotient of (n/[n, n])⊗i, so if the action
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on n/[n, n] is scalar then so is the action on ni/ni+1. To get (iii) from (ii), use a
characteristic decomposition of the action of the one-parameter subgroup.

Remark 19.24. If a purely real Heintze group G = N o R is of Carnot type then
N is a Carnot gradable2 nilpotent group, in the sense that its Lie algebra admits
a Carnot grading, i.e. a Lie algebra grading n =

⊕
i≥1 vi such that nj =

⊕
i≥j vi

for all j. The converse is not true: for instance most purely real Heintze groups of
the form R2 o R are not of Carnot type. Nevertheless, if N is Carnot gradable,
then up to isomorphism it defines a unique purely real Heintze group of Carnot
type Carn(N) of the form N oR. This is because a simply connected nilpotent Lie
group N is gradable if and only if its Lie algebra n is isomorphic to the graded Lie
algebra grad(n) defined as

⊕
i≥1 n

i/ni+1 (where the bracket is uniquely defined by

factoring the usual bracket ni× nj → ni+j), so that if n is Carnot gradable then any
two Carnot gradings define the same graded Lie algebra up to graded isomorphism.

19.3. Quasi-isometric rigidity of symmetric spaces

19.3.1. The QI-rigidity statement. The general QI-rigidity statement for sym-
metric spaces of noncompact type is the following. Recall that a Riemannian sym-
metric space of noncompact type has a canonical decomposition as a product of
irreducible factors; we call the metric well-normalized if all homothetic irreducible
factors are isometric; this can always be ensured by a suitable factor-wise rescaling
(for instance, requiring that the infimum of the sectional curvature on each factor
is −1).

Theorem 19.25. Let X be a symmetric space of noncompact type with a well-
normalized metric. Let G be a compactly generated locally compact group, quasi-
isometric to X. Then G has a continuous, proper cocompact action by isometries
on X.

This statement is mostly known in a weaker form, where G is assumed to be
discrete and sometimes in an even much weaker form, where one allows to pass to
a finite index subgroup. Still, it is part of a stronger result concerning arbitrary
cocompact large-scale quasi-actions on X of arbitrary groups (with no properness
assumption) which, up to a minor continuity issue, is due to Kleiner and Leeb; see
§19.3.2.

Before going into the proof, let us indicate some corollaries of Theorem 19.25.
They illustrate the interest of having a statement for CGLC-groups instead of
only finitely generated groups, even when studying discrete objects such as vertex-
transitive graphs.

Corollary 19.26. Let X be a symmetric space of noncompact type with a well-
normalized metric. Let Y be a vertex-transitive, finite valency connected graph.
Assume that Y is quasi-isometric to X. Then there exists a cocompact lattice Γ ⊂
Isom(X) and an extension W ↪→ Γ̃ � Γ with W compact, such that Γ̃ admits
a proper vertex-transitive action on Y ; moreover there exists a connected graph Z
on which Γ acts properly and transitively, with a surjective finite-to-one 1-Lipschitz
equivariant quasi-isometry Y → Z.

2In the literature, “Carnot gradable” is usually referred to as “graded” but this terminology
is in practice a source of confusion, inasmuch as nilpotent Lie algebras may admit other relevant
gradings.
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Proof. Let Γ̃ be the automorphism group of Y ; this is a totally disconnected LC-
group; since Y is vertex-transitive, it is compactly generated and quasi-isometric to
Y and hence to X. By Theorem 19.25, there is a proper continuous homomorphism
with cocompact image Γ̃→ Isom(X). Since Isom(X) is a Lie group, this homomor-
phism has an open kernel K, compact by properness. So the image is a cocompact
lattice Γ.

To obtain Z, observe that the K-orbits in Y have uniformly bounded diameter,
so Z is just obtained as the quotient of Y by the K-action. �

Corollary 19.27. Let X be a symmetric space of noncompact type with a well-
normalized metric. Let M be a proper, homogeneous geodesic metric space quasi-
isometric to X. Then there exists a closed, connected cocompact subgroup H of
Isom(X) and an extension W ↪→ H̃ � H with W compact, and a faithful proper
isometric transitive action of H̃ on M . If moreover M is contractible then W = 1
and there is a diffeomorphism M → X intertwining the H-action on M with the
original H-action on X.

Proof. The argument is similar to that of Corollary 19.26; here H̃ will be the identity
component of the isometry group of M . This proves the first statement.

Fix a point m0 ∈ M and let K be its stabilizer in H̃. Then K is a compact
subgroup. The image of K in H fixes a point x0 in X. So the homomorphism
H̃ → Isom(X) induces a continuous map j : M = H̃/K → X mapping m0 to x0.
Since H is connected and closed cocompact, its action on X is transitive; it follows
that j is surjective.

Under the additional assumption, let us check that j is injective; by homogeneity,
we have to check that j−1({x0}) = {m0}. This amounts to check that if g ∈ H̃
fixes x0 then it fixes m0. Indeed, the stabilizer of x0 in H̃ is a compact subgroup
containing K; since M is contractible, K is maximal compact (see [An11]) and this
implies the result. Necessarily W = 1, because it fixes a point on X and being
normal it fixes all points, so also acts trivially on M ; since H̃ acts by definition
faithfully on M it follows that W = 1. �

19.3.2. Quasi-actions and proof of Theorem 19.25. We use the large-scale
language introduced in §19.2.1.

The following powerful theorem is essentially due to Kleiner and Leeb [KL09],
modulo the formulation, a continuity issue, and the fact we have equivariance instead
of quasi-equivariance. It is stronger than Theorem 19.25 because no properness
assumption is required.

If G is a locally compact group and acts, not necessarily continuously, by isome-
tries on a metric space X, we say that the action is locally bounded if for some/every
x ∈ X and every compact subset K ⊂ G, the subset Kx ⊂ X is bounded; in partic-
ular if the action is continuous, then it is locally bounded. We say that the action
is proper if for every compact subset B of X, the set {g ∈ G : gB ∩ B 6= ∅} has
a compact closure in G. The action is cobounded if there exists x ∈ X such that
supy∈X d(y,Gx) <∞.

Theorem 19.28. Let X be a symmetric space of noncompact type with a well-
normalized metric (as defined before Theorem 19.25). Let G be a locally compact
group with a locally bounded and cobounded isometric action ρ on a metric space
Y quasi-isometric to X. Then there exists an isometric action of G on X and a
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G-equivariant quasi-isometry Y → X. Moreover, the latter action is necessarily
continuous, cocompact, and if ρ is proper then the action is proper.

For the continuity issue, we need the following lemma.

Lemma 19.29. Let H be a locally compact group with a continuous isometric action
on a metric space X. Assume that the only element of H acting on X as an isometry
with bounded displacement is the identity. (For instance, X is a minimal proper
CAT(0)-space with no Euclidean factor and H is the full isometry group.) Let G
be a locally compact group with an action of G on X given by a locally bounded
homomorphism ϕ : G→ H. Assume that the action of G on X is cobounded. Then
ϕ (and hence the action of G on X) is continuous.

Proof. Let w ∈ H be an accumulation point of ϕ(γ) when γ → 1. Fix compact
neighborhoods ΩG,ΩH of 1 in G and H. Fix g ∈ G. There exists a neighborhood
Vg of 1 in G such that γ ∈ Vg implies g−1γg ∈ ΩG. Moreover, if we define

Cg = {γ ∈ G : ϕ(γ)−1w ∈ ϕ(g)ΩHϕ(g)−1},
then 1 belongs to the closure of Cg. Hence Vg ∩ Cg 6= ∅, so if we pick γ in the
intersection we get

ϕ(g)−1ϕ(γ)ϕ(g) ∈ ϕ(ΩG); ϕ(g)−1ϕ(γ)−1wϕ(g) ∈ ΩH ,

so we deduce, for all g ∈ G
ϕ(g)−1wϕ(g) ∈ ϕ(ΩG)ΩH ,

Since the action is locally bounded, ϕ(ΩG) is bounded. This shows that for a given
x ∈ X, the distance d(wϕ(g)x, ϕ(g)x) is bounded independently of g. Since G acts
coboundedly, this shows that w has bounded displacement, so w = 1. Since H is
locally compact, this implies that ϕ is continuous at 1 and hence is continuous. �

We need to deduce Theorem 19.25 from Theorem [KL09, Theorem 1.5]. For this
we need to introduce all the terminology of quasi-actions. We define a quasi-action
of a group G on a set X as an arbitrary map G → XX , written as g 7→ (x 7→ gx).
If x ∈ X, let ix : G→ X be the orbital map g 7→ gx.

If G is a group and X a metric space, a uniformly large-scale Lipschitz (ULSL)
quasi-action of G on X is a map ρ : G→ XX , such that for some (µ, α) ∈ R>0×R,
every map ρ(g), for g ∈ G is a (µ, α)-Lipschitz map (in the sense defined in §19.2.1),

and satisfying ρ(1)
α∼ id and ρ(gh)

α∼ ρ(g)ρ(h) for all g, h ∈ G. Note that for a
ULSL quasi-action, all ix are pairwise ∼-equivalent.

The quasi-action is cobounded if the map ix has a cobounded image for every
x ∈ X. If G is a locally compact group, a quasi-action is locally bounded if ix
maps compact subsets to bounded subsets for all x (if G is discrete this is an empty
condition). The quasi-action is coarsely proper if for all x ∈ X, inverse images of
bounded subsets by ix have compact closure.

Given quasi-actions ρ and ρ′ of G on X and X ′, a map q : X → X ′ is quasi-
equivariant if it satisfies

sup
g∈G,x∈X

d
(
q(ρ(g)x), ρ(g)q(x)

)
<∞.

The ULSL quasi-actions are quasi-isometrically quasi-conjugate if there is a quasi-
equivariant quasi-isometry X → X ′; this is an equivalence relation.

Lemma 19.30. Let (X, d) be a metric space and G a group. Then
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(a) If Y is a metric space with an isometric action of G and with a quasi-isometry
q : Y → X, then there is a ULSL quasi-action of G on X so that q is a quasi-
isometric quasi-conjugacy.

(b) Conversely, if ρ is a ULSL quasi-action of G on X, then there exists a metric
space Y with an isometric G-action and a quasi-equivariant quasi-isometry Y →
X.

Proof. We begin by the easier (a). Let s : X → Y be a quasi-isometry inverse to
q and define a quasi-action of G on X by ρ(g)x = q(g · s(x)); it is straightforward
that this is a ULSL quasi-action and that q is a quasi-isometric quasi-conjugacy.

For (b), first, let Y ⊂ X be a maximal subset for the property that the ρ(G)y, for
y ∈ Y , are pairwise disjoint. Let us show that ρ(G)Y is cobounded in X. Indeed,
denoting, by abuse of notation a ≈ b if |a− b| is bounded by a constant depending
only on the ULSL constants of ρ, if x ∈ X by maximality there exists y ∈ Y0 and
g ∈ G such that ρ(g)x = ρ(h)y. Then, denoting by dX the distance in X

dX(x, ρ(g−1h)y) ≈ dX(x, ρ(g−1)ρ(h)y) ≈ dX(ρ(g)x, ρ(h)y) = 0,

so ρ(G)Y is cobounded.
Consider the cartesian product G× Y , whose elements we denote by g � y rather

than (g, y) for the sake of readability. Define a pseudometric on G× Y by

d(g � y, h � z) = sup
k∈G

dX(ρ(kg)y, ρ(kh)z)

If G×Y is endowed with the G-action k · (g � y) = (kg � y), then this pseudo-metric
is obviously G-invariant. Consider the map j : (g � y) 7→ ρ(g)y. Let us check that
j is a quasi-equivariant quasi-isometry (G × Y, d) → X. We already know it has a
cobounded image. We obviously have

(19.3.1) d(g � y, h � z) ≥ dX(ρ(g)y, ρ(h)z) = dX(j(g � y), j(h � z)),

and conversely, writing a � b if a ≤ Cb + C where C > 0 is a constant depending
only of the ULSL constants of ρ

d(g � y, h � z) = sup
k∈G

dX
(
ρ(kg)y, ρ(kh)z

)
≈ sup

k∈G
dX
(
ρ(k)ρ(g)y, ρ(k)ρ(h)z

)
�dX(ρ(g)y, ρ(h)z) = dX(j(g � y), j(h � z)).

This shows that j is a large-scale bilipschitz embedding. Thus it is a quasi-isometry.
It is also quasi-equivariant, as

dX
(
j(h · (g � y)), ρ(h)j(g � y)

)
= dX

(
ρ(hg)y), ρ(h)ρ(g)y)

)
≈ 0.

So we obtain the conclusion, except that we have a pseudo-metric; if we identify
points in G× Y at distance zero, the map j factors through the quotient space, as
follows from (19.3.1) and thus we are done. �

Proof of Theorem 19.28. The statement of [KL09, Theorem 1.5] is the following: Let
X be a symmetric space of noncompact type with a well-normalized metric. Let G
be a discrete group with a ULSL quasi-action ρ on X. Then ρ is QI quasi-conjugate
to an isometric action.

By Lemma 19.30, this can be translated into the following: Let X be as above
and let G be a discrete group with an isometric action ρ on a metric space Y quasi-
isometric to X. Then there exists an isometric action of G on X and a G-quasi-
equivariant quasi-isometry q : Y → X.
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To get the theorem, we need a few improvements. First, we want the quasi-
isometry to be equivariant (instead of quasi-equivariant). Starting from q as above,
we proceed as follows. Fix a bounded set Y0 ⊂ Y containing one point in each
G-orbit. For y0 ∈ Y0, let Gy0 be its stabilizer. Since Gy0{y0} = {y0} and q is
quasi-equivariant, we see that Gy0{q(y0)} has its diameter bounded by a constant
C depending only on q (and not on y0). By the centre lemma, Gy0 fixes a point
at distance at most C of q(y0), which we define as q′(y0). For y ∈ Y arbitrary,
we pick g and y0 ∈ Y0 (y0 is uniquely determined) such that gy0 = y and define
q′(y) = gq′(y0). By the stabilizer hypothesis, this does not depend on the choice of
g, and we see that q′ is at bounded distance from q. So q′ is a quasi-isometry as
well, and by construction is G-equivariant.

Now assume that G is locally compact. Applying the previous result to G endowed
with the discrete topology, we get all the non-topological conclusions. Now from the
additional hypothesis that the action is locally bounded, we obtain that the action on
X is locally bounded. We then invoke Lemma 19.29, using that X has no non-trivial
bounded displacement isometry, to obtain that the G-action on X is continuous. It
is clear that the action on X is cobounded, and that if ρ is metrically proper then
the action on X is proper. �

Proof of Theorem 19.25. Fix a left-invariant word metric d0 on G. Then (G, d) is
quasi-isometric toX and the action ofG on (G, d) is locally bounded. So by Theorem
19.28, there exists a continuous isometric proper cocompact action on X. �

Theorem 19.25 was initially proved in the case of discrete groups, for symmetric
spaces with no factor of rank one by Kleiner-Leeb [KL97] and in rank one using
different arguments by:

• Pansu in the case of quaternionic and octonionic hyperbolic spaces;
• R. Chow in the case of the complex hyperbolic spaces [Ch96], ;
• Tukia for real hyperbolic spaces of dimension at least three [Tu86];
• In the case of the real hyperbolic plane, Tukia [Tu88], completed by, inde-

pendently Casson-Jungreis [CJ94] and Gabai [Ga92].

The synthesis for arbitrary symmetric spaces is due to Kleiner-Leeb [KL09], where
they insightfully consider actions of arbitrary groups, not considering any topol-
ogy but with no properness assumption. This generality is essential because when
considering a proper cocompact locally bounded action of a non-discrete LC-group,
when viewing it as an action of the underlying discrete group, we lose the properness.

19.4. Quasi-isometric rigidity of trees

19.4.1. The QI-rigidity statement. The next theorem is the locally compact ver-
sion of the result that a finitely generated group is quasi-isometric to a tree if and
only if it is virtually free, which is a combination of Bass-Serre theory [Ser77],
Stallings’ theorem and Dunwoody’s result that finitely presented groups are acces-
sible [Du85], a notion we discuss below.

Theorem 19.31. Let G be a compactly generated locally compact group. Equiva-
lences:

(i) G is quasi-isometric to a tree;
(ii) G is quasi-isometric to a bounded valency tree;

(iii) G admits a continuous proper cocompact isometric action on a locally finite
tree T , or a continuous proper transitive isometric action on the real line;
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(iv) G is topologically isomorphic to the Bass-Serre fundamental group of a finite
connected graph of groups, with compact vertex and edge stabilizers with open
inclusions, or has a continuous proper transitive isometric action on the real
line.

Proof (first part). Let us mention that the equivalence between (iii) and (iv) is just
Bass-Serre theory [Ser77]. Besides, the trivial implications are (iii)⇒(ii)⇒(i).

Let us show (i)⇒(ii); let G be compactly generated and let f : T → G be a quasi-
isometry from a tree T (viewed as its set of vertices). We can pick a metric lattice
J inside G and assume that f is valued in J ; the metric space J has finite balls of
cardinality bounded by a constant depending only on their radius. We can modify
f to ensure that f−1({j}) is convex for every j ∈ J . Since f is a quasi-isometry
the convex subsets f−1({j}) have uniformly bounded radius. We define a tree T ′′

by collapsing each convex subset f−1({j}) (along with the edges joining them) to
a point. The collapsing map T ′ → T ′′ is a 1-Lipschitz quasi-isometry and thus f
factors through an injective quasi-isometry T ′′ → G. It follows that T ′′ has balls of
cardinal bounded in terms of the radius; this implies in particular that T ′′ has finite
(indeed bounded) valency.

We postpone the proof of (ii)⇒(iv), which is the deep part of the theorem. �

Remark 19.32. Another characterization in Theorem 19.31 is the following: G is
of type FP2 and has asymptotic dimension ≤ 1. Here type FP2 means that the
homology of the Cayley graph of G with respect to some compact generating subset
is generated by loops of bounded length. Indeed, Fujiwara and Whyte [FW07]
proved that a geodesic metric space satisfying these conditions is quasi-isometric to
a tree.

By essential tree we mean a nonempty tree with no vertex of degree 1 and not
reduced to a line. By reduced graph of groups we mean a connected graph of groups
in which no vertex group is trivial, and such that for every oriented non-self edge,
the target map is not surjective. We call a reduced graph nondegenerate if its Bass-
Serre tree is not reduced to the empty set, a point or a line, or equivalently if it is
not among the following exceptions:

• The empty graph;
• A single vertex with no edge;
• A single vertex and a single self-edge so that both target maps are isomor-

phisms;
• 2 vertices joined by a single edge, so that both target maps have image of

index 2.

Corollary 19.33. Let G be a compactly generated locally compact group. Equiva-
lences:

(i) G is quasi-isometric to an unbounded tree not quasi-isometric to the real
line;

(ii) G is quasi-isometric to the 3-regular tree;
(iii) G admits a continuous proper cocompact action on an essential locally finite

nonempty tree T ;
(iii’) G admits a continuous proper cocompact isometric action on nonempty tree

T of bounded valency, with only vertices of degree ≥ 3;
(iv) G is topologically isomorphic to the Bass-Serre fundamental group of a fi-

nite nondegenerate reduced graph of groups, with compact vertex and edge
stabilizers, and open inclusions. �
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19.4.2. Reminder on the space of ends. Recall that the set of ends of a geodesic
metric space X is the projective limit of π0(X − B), where B ranges over bounded
subsets of X1 and π0 denotes the set of connected components. Each π0(X−B) being
endowed with the discrete topology, the set of ends is endowed with the projective
limit topology and thus is called the space of ends E(X).

If X, Y are geodesic metric spaces, any large-scale Lipschitz, coarsely proper map
X → Y canonically defines a continuous map E(X)→ E(Y ). Two maps at bounded
distance induce the same map. This construction is functorial. In particular, it maps
quasi-isometries to homeomorphisms.

If G is a locally compact group generated by a compact subset S, the set of ends
[Sp50, Ho74] of G is by definition the set of ends of the 1-skeleton of its Cayley
graph with respect to S. It is compact. Since the identity map (G,S1) to (G,S2)
is a quasi-isometry, the space of ends is canonically independent of the choice of S
and is functorial with respect to continuous proper group homomorphisms.

In the case when G is hyperbolic, it is not hard to prove that the space of ends
is canonically homeomorphic to the space π0(∂G) of connected components of the
visual boundary.

We note for reference the following elementary lemma, due to Houghton. It is a
particular case of [Ho74, Th. 4.2 and 4.3].

Lemma 19.34. Let G be a CGLC-group with G0 noncompact. Then G is (1 or 2)-
ended; if moreover G/G0 is not compact then G is 1-ended.

Let us also mention, even if it will be not be used here, the following theorem
of Abels [Ab77]: if a compactly generated LC-group has at least 3 ends, the action
of G on E(G) is minimal (i.e., all orbits are dense) unless G is focal hyperbolic of
totally disconnected type (in the sense of §19.2.5).

19.4.3. Metric accessibility.

Definition 19.35 (Thomassen, Woess [TW93]). Let X be a bounded valency con-
nected graph. Say that X is accessible if there exists m such that for every two
distinct ends of X, there exists an m-element subset of the 1-skeleton X that sep-
arates the two ends, i.e. so that the two ends lie in distinct components of the
complement.

Accessibility is a quasi-isometry invariant of connected graphs of bounded valency.
Although not needed in view of Theorem 19.31, we introduce the following definition,
which is more metric in nature.

Definition 19.36. Let X be a geodesic metric space. Let us say that X is diameter-
accessible if there exists m such that for every two distinct ends of X, there exists a
subset of X of diameter at most m that separates the two ends.

This is obviously a quasi-isometric invariant property among geodesic metric
spaces. Obviously for a bounded valency connected graph, diameter-accessibility
implies accessibility. The reader can construct, as an exercise, a connected planar
graph of valency ≤ 3 that is accessible (with m = 2) but not-diameter accessible.

Theorem 19.37 (Dunwoody). Let X be a connected, locally finite simplicial 2-
complex with a cocompact isometry group. Assume that H1(X,Z/2Z) = 0 (e.g., X
is simply connected). Then X is diameter-accessible.
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On the proof. This statement is not explicit, but is the contents of the proof of
[Du85] (it is quoted in [MSW03, Theorem 15] in a closer way). This proof consists
in finding, denoting by G = Aut(X), an equivariant family (Ci)i∈I , indexed by a
discrete G-set I with finitely many G-orbits, of pairwise disjoint compact subsets of
X homeomorphic to graphs and each separating X (each X rCi is not connected),
called tracks, so that each component of Xr

⋃
Ci has the property that its stabilizer

in G acts coboundedly on it, and is (at most 1)-ended. Thus any two ends of X are
separated by one of these components, which have uniformly bounded diameters. �

19.4.4. The locally compact version of the splitting theorem. The following
theorem is the locally compact version of Stallings’ theorem; it was proved by Abels
(up to a minor improvement in the 2-ended case).

Theorem 19.38 (Stallings, Abels). Let G be a compactly generated, locally compact
group. Then G has at least two ends if and only if splits as a non-trivial HNN-
extension or amalgam over a compact open subgroup, unless G is 2-ended and is
compact-by-R or compact-by-Isom(R).

On the proof. The main case is when G is a closed cocompact isometry group of a
vertex-transitive graph; this is [Ab74, Struktursatz 5.7]. He deduces the theorem
[Ab74, Korollar 5.8] when G has at least 3 ends in [Ab74, Struktursatz 5.7], the
argument also covering the case when G has a compact open subgroup (i.e. G0 is
compact) in the case of at least 2 ends.

Assume now that G0 is noncompact. By Lemma 19.34, if G/G0 is noncompact
then G is 1-ended, so assume that G/G0 is compact. Then G has a maximal compact
subgroup K so that G/K admits a G-invariant structure of Riemannian manifold
diffeomorphic to a Euclidean space ([Mo55, Theorem 3.2] and [MZ55, Theorem 4.6]);
the only case where this manifold has at least two ends is when it is one-dimensional,
hence isometric to R, whence the conclusion. �

This yields the following corollary, which we state for future reference. The char-
acterization (iv) of 2-ended groups is contained in Houghton [Ho74, Theorem 3.7];
the stronger characterization (v) is due to Abels [Ab74, Satz B]; the stronger ver-
sions (vi) or (vii) can be deduced directly without difficulty; they are written in
[CCMT15, Proposition 5.6].

Corollary 19.39. Let G be a compactly generated, locally compact group. Equiva-
lences:

(i) G has exactly 2 ends;
(ii) G is hyperbolic and #∂G = 2;

(iii) G is quasi-isometric to Z;
(iv) G has a discrete cocompact infinite cyclic subgroup;
(v) G has an open subgroup of index ≤ 2 admitting a continuous homomorphism

with compact kernel onto Z or R;
(vi) G admits a continuous proper cocompact isometric action on the real line;

(vii) G has a (necessarily unique) compact open normal subgroup W such that
G/W is isomorphic to one of the 4 following groups: Z, Isom(Z), R,
Isom(R).

Proof. The implications (vii)⇒(vi)⇒(v)⇒(iv)⇒(iii)⇒(ii)⇒(i) are clear. Assume
(i). Then, by Theorem 19.38, either (vii) holds explicitly or G splits as a non-trivial
HNN-extension or amalgam over a compact open subgroup; the only cases for which
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this does not yield more than 2 ends is the case of a degenerate HNN extension (given
by an automorphism of the full vertex group) or an amalgam over a subgroup of
index 2 in both factors. Thus G maps with compact kernel onto Z or the infinite
dihedral group Isom(Z). �

19.4.5. Accessibility of locally compact groups. It is natural to wonder whether
the process of applying iteratively Theorem 19.38 stops. This motivates the follow-
ing definition.

Definition 19.40. A CGLC-group G is accessible if it has a continuous proper
transitive isometric action on the real line, or satisfies one of the following two
equivalent conditions

(i) either G admits a continuous cocompact action on a locally finite tree T
with (at most 1)-ended vertex stabilizers and compact edge stabilizers;

(ii) G is topologically isomorphic to the Bass-Serre fundamental group of a finite
graph of groups, with compact edge stabilizers with open inclusions and (at
most 1)-ended vertex groups.

The equivalence between the two definitions is Bass-Serre theory [Ser77]. For ei-
ther definition, trivial examples of accessible CGLC groups are (at most 1)-ended
groups. Also, by Theorem 19.38, 2-ended CGLC groups are accessible, partly us-
ing the artifact of the definition. A non-accessible finitely generated group was
constructed by Dunwoody in [Du93], disproving a long-standing conjecture of Wall.

19.4.6. Metric vs group accessibility and proof of Theorem 19.31. The met-
ric notion of accessibility, which unlike in this paper was introduced after group
accessibility, allowed Thomassen and Woess, using the Dicks-Dunwoody machinery
[DD89], to have a purely geometric characterization of group accessibility (as defined
in Theorem 19.31). The following theorem is the natural extension of their method
to the locally compact setting, due to Krön and Möller [KM08, Theorem 15].

Theorem 19.41. Let X be a bounded valency nonempty connected graph and G
a locally compact group acting continuously, properly cocompactly on X by graph
automorphisms. Then the following are equivalent

(i) G is accessible (as defined in Definition 19.40);
(ii) X is accessible;

(iii) X is diameter-accessible.

On the proof. The statement in [KM08] is the equivalence between (i) and (ii) when
G is totally disconnected. But actually the easy implication (i)⇒(ii) yields (i)⇒(iii)
without change in the proof, as they check that X is quasi-isometric to a bounded
valency graph with a cocompact action, with a G-equivariant family of “cuts”, which
are finite sets, with finitely many G-orbits of cuts, so that any two distinct ends are
separated by one cut. Finally (iii)⇒(ii) is trivial for an arbitrary bounded valency
graph. �

End of the proof of Theorem 19.31. It remains to show the main implication of The-
orem 19.31, namely that (ii) implies (iv). Let G be a CGLC-group quasi-isometric
to a tree T . We begin by the claim that G has no 1-ended closed subgroup. Indeed,
if H were such a group, then, being noncompact H, admits a bi-infinite geodesic,
and using the quasi-isometry to T we see that this geodesic has 2 distinct ends in
G. Then these two ends are distinct in H, a contradiction. Let us now prove (iv).
We first begin by three easy cases
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• G is compact. There is nothing to prove.
• G is 1-ended. This has just been ruled out.
• G is 2-ended. In this case Corollary 19.39 gives the result.

So assume that G has at least 3 ends. By Lemma 19.34, G0 is compact, so by
Proposition 19.7, it admits a continuous proper cocompact isometric action on a
connected finite valency graph X. Since X is quasi-isometric to a tree, it is diameter-
accessible. By Theorem 19.41, we deduce that G is accessible. This means that it is
isomorphic to the Bass-Serre fundamental group of a graph of groups with (at most
1)-ended vertex groups and compact open edge groups. As we have just shown that
G has no closed 1-ended subgroup, it follows that vertex groups are compact. So
(iv) holds. �

19.4.7. Cobounded actions. There is a statement implying Theorem 19.31, es-
sentially due to Mosher, Sageev and Whyte, concerning cobounded actions with no
properness assumption. In a tree, say that a vertex is an essential branching vertex
if its complement in the 1-skeleton has at least 3 unbounded components. Say that a
tree is bushy if the set of essential branching vertices is cobounded. We here identify
any tree to its 1-skeleton.

Theorem 19.42. Let G be a locally compact group. Consider a locally bounded,
isometric, cobounded action of G on a metric space Y quasi-isometric to a bushy
tree T of bounded valency. Then there exists a tree T ′ of bounded valency with a
continuous isometric action of G and an equivariant quasi-isometry T → T ′.

Remark 19.43. It is not hard to check that a bounded valency non-bushy tree
T quasi-isometric to a metric space with a cobounded isometry group, is either
bounded or contains a cobounded bi-infinite geodesic.

Remark 19.44. Theorem 19.42 is not true when T is a linear tree (the Cayley graph
of (Z, {±1})). Indeed, taking G to be R acting on R (which is quasi-isometric to
T ), there is no isometric cobounded action on any tree quasi-isometric to Z. Indeed
this action would preserve a unique axis, while there is no nontrivial homomorphism
from R to Isom(Z). In this case, we can repair the issue by allowing actions on R-
trees. But here is a second more dramatic counterexample: the universal covering

G = S̃L2(R) (endowed with either the discrete or Lie topology) admits a locally
bounded isometric action on the Cayley graph of (R, [−1, 1]) (see [CCMT15, Exam-
ple 3.12]), but admits no isometric cobounded action on any R-tree quasi-isometric
to Z, because by the same argument, this action would preserve an axis, while there

is no nontrivial homomorphism of abstract groups S̃L2(R)→ Isom(R).

On the proof of Theorem 19.42. The statement of [MSW03, Theorem 1] is in terms
of quasi-actions, see the conventions in §19.3.2. It reads: Let G be a discrete group.
Suppose that G has a ULSL quasi-action on a bushy tree T of bounded valency.
Then there exists a tree T ′ of bounded valency with a continuous isometric action of
G and a quasi-equivariant quasi-isometry T → T ′.

By Lemma 19.30, it can be translated as: (*) Let G be a discrete group. Consider
a locally bounded, isometric, cobounded action of G on a metric space Y quasi-
isometric to a bushy tree T of bounded valency. Then there exists a tree T ′ of bounded
valency with an isometric action of G and a quasi-equivariant quasi-isometry T →
T ′.

To get the statement of Theorem 19.42, apply (*) to the underlying discrete group;
the action on T ′ we obtain is then locally bounded. Since T ′ has at least 3 ends, the
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only isometry with bounded displacement is the identity, so we deduce by Lemma
19.29 that the action on T ′ is continuous.

Let us now sketch the proof of (*) (which is the discrete case of Theorem 19.42), as
the authors of [MSW03] did not seem to be aware of the Thomassen-Woess approach
and repeat a large part of the argument.

Start from the hypotheses of (*). A trivial observation is that we can suppose Y
to be a connected graph. Namely, using that T is geodesic, there exists r such that
if we endow Y with a graph structure by joining points at distance ≤ r by an edge,
then the graph is connected and the graph metric and the original metric on Y are
quasi-isometric through the identity. The difficulty is that Y need not be of finite
valency.

The construction of an isometric action of G on a connected finite valency graph Z
quasi-isometrically quasi-conjugate to the original quasi-action is done in [MSW03,
§3.4] (this is the part where it is used that the tree is bushy). It is given by a
homomorphism G→ Isom(Z). By Theorem 19.31, Isom(Z) has a continuous proper
cocompact action on a tree T ′. Note that the actions of Isom(Z) on both Z and T ′ are
quasi-isometrically conjugate to the left action of Isom(Z) on itself, so there exists
a quasi-isometry Z → T ′ which is quasi-equivariant with respect to the Isom(Z)-
action, and therefore is quasi-equivariant with respect to the G-action. Finally, to
get equivariance instead of quasi-equivariance, we use the same argument (based on
the center lemma, which holds in T ′) as in the proof of Theorem 19.28. �

19.4.8. Accessibility of compactly presented groups. Recall that a CGLC-
group is compactly presented if has a presentation with a compact generating set
and relators of bounded length. If it has a compact open subgroup, it is equivalent
to require that G has a continuous proper cocompact combinatorial action on a
locally finite simply connected simplicial 2-complex (see Proposition 19.47).

Let us also use the following weaker variant: G is of type FP2 mod 2 if G is quo-
tient of a compactly presented LC-group by a discrete normal subgroup N such that
Hom(N,Z/2Z) = 0. If G has a compact open subgroup, it is equivalent (see Propo-
sition 19.49) to require that G has a continuous proper cocompact combinatorial
action on a locally finite connected 2-complex X such that H1(X,Z/2Z) = 0.

By Lemma 19.34, if G0 is not compact then G is (at most two)-ended and thus
is accessible by Corollary 19.39. Otherwise if G0 is compact (i.e., G has a compact
open subgroup), the restatement of the definition shows that as a consequence of
Theorems 19.37 and 19.41, we have the following theorem, whose discrete version
was the main theorem in [Du85].

Theorem 19.45. If G is a compactly generated locally compact group of type FP2

mod 2 (e.g., G is compactly presented) then G is accessible. �

Corollary 19.46. Every hyperbolic locally compact group is accessible. �

Proposition 19.47. Let G be a locally compact group with G0 compact. Equiva-
lences:

(i) G is compactly presented, that it, it has a presentation with a compact gen-
erating set and relators of bounded length;

(ii) G has a presentation with a compact generating set and relators of length
≤ 3;

(iii) G has a continuous proper cobounded combinatorial action on a simply con-
nected simplicial 2-complex X.
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(iv) G has a continuous proper cocompact combinatorial action on a locally finite
simply connected simplicial 2-complex X.

Proof. Trivially we have (iv)⇒(iii) and (ii)⇒(i).
(iii)⇒(ii). Let A be a connected bounded closed subset of X such that the G-

translates of A cover X. Then if S = {g ∈ G | gA ∩ A 6= ∅}, then S is compact by
properness, and by [Ko65, Lemma p. 26], G is generated by S and relators of length
≤ 3. So (ii) holds.

(i)⇒(iv). Let S be a compact symmetric generating subset with relators of
bounded length; enlarging S if necessary, we can suppose that S contains a com-
pact open subgroup K and that S = KSK. The Cayley-Abels graph (Proposition
19.7) is a graph with vertex set G/K and an unoriented edge from gK to g′K if
g−1g′ ∈ S r K. This is a G-invariant locally finite connected graph structure on
G/K. Define a simplicial 2-complex structure by adding a triangle every time its
2-skeleton appears.

Define a simplicial 2-complex structure on the Cayley graph of G with respect to
S in the same way. Then the projection G→ G/K has a unique extension between
the 2-skeleta, affine in each simplex (possibly collapsing a simplex onto a simplex of
smaller dimension). The Cayley 2-complex of G is simply connected, because the
relators of length ≤ 3 define the group.

It remains to check that the simplicial 2-complex on G/K is simply connected.
Indeed, given a loop based at 1, we can homotope it to a combinatorial loop on the
1-skeleton. We can lift such a loop to a combinatorial path (1 = g0, g1, . . . , gk) on
G and ending at the inverse image of 1, namely K. If k = 0 there is nothing to do,
otherwise observe that gk−1 ∈ KS ⊂ S. So we can replace gk by 1, thus the new
lifted path is a loop. This loop has a combinatorial homotopy to the trivial loop,
which can be pushed forward to a combinatorial homotopy of the loop on G/K. So
the simplicial 2-complex on G/K is simply connected. Thus (iv) holds. �

Lemma 19.48. Let G be a compactly presented locally compact group with G0 com-
pact. Then G has a continuous proper cocompact combinatorial action on a locally
finite simply connected simplicial 2-complex X with no inversion (i.e. for each g ∈ G,
the set of G-fixed points is a subcomplex) and with a main vertex orbit, in the sense
that every g ∈ G fixing a vertex, fixes a vertex in the main orbit, and if an element
is the identity on the main orbit then it is the identity. Moreover, the main vertex
orbit can be chosen as G/K for any choice K of compact open subgroup.

Sketch of proof. The proof is essentially a refinement of the proof of (i)⇒(iv) of
Proposition 19.47, so we just indicate how it can be adapted to yield the lemma.
We start with the same construction, but using oriented edges (without self-loops),
and then we add, each time we have 3 oriented edges (e1, e2, e3) forming a triangle
with 3 distinct vertices (with compatible orientations, i.e. the target of e1 is the
source of e2, etc.), we add a triangle. Because of the double edges, this is not yet
simply connected; so for any two adjacent vertices x, y we glue two bigons indexed
by (x, y) and (y, x) (note that the union of these 2 bigons is homeomorphic to a
2-sphere). The resulting complex is simply connected. Then the action of G has
the required property. The problem is that because of bigons, we do not have a
simplicial complex. To solve this, we just add vertices at the middle of all edges
and all bigons, split the bigons into 4 triangles by joining the center to all 4 vertices
(thus pairs of opposite bigons now form the 2-skeleton of a octahedron), and split
the original triangles into 4 triangles by joining the middle of the edges. We obtain
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a simplicial 2-complex; the cost is that we have several vertex orbits, but then G/K
is the “main orbit” in the sense of the proposition. �

Proposition 19.49. Let G be a locally compact group with G0 compact. Let A be
a discrete abelian group. Equivalences:

(i) G is isomorphic to a quotient G̃/N with G̃ compactly presented, N a discrete
normal subgroup of G̃, and Hom(N,A) = 0;

(ii) G has a continuous proper cocompact combinatorial action on a locally finite
simplicial 2-complex X with H1(X,A) = 0.

Proof. Suppose (i) and let us prove (ii). We can suppose G0 = {1}. Choose K to
be a compact open subgroup with K ∩ N = {1}. Consider an action α of G̃ on a
2-complex X as in Lemma 19.48 and main vertex orbit G/K. Then the action of
N on X is free: indeed, if an element of N fixes a point, then it fixes a vertex in the
main orbit and hence it has some conjugate in N ∩K, thus is trivial.

So G = G̃/N acts continuously properly cocompactly on N\X, which is a simpli-
cial 2-complex as N acts freely on X. Now we have, fixing an implicit base-point in
X

(19.4.1) H1(X,A) ' Hom(π1(N\X), A)

Since π1(N\X) ' N , we deduce that H1(X,A) = 0.
Conversely suppose (ii), denote by α the action of G on X and W its kernel.

Fixing a base-vertex in X, let X̃ be the universal covering. Let H be the group of
automorphisms of X̃ that induce an element of α(G). It is a closed subgroup and is
cocompact on X̃; its projection ρ to α(G) is surjective. Let

G̃ = {(g, h) ∈ G×H | α(g) = ρ(h)} ⊂ G×H
be the fibre product of G and H over α(G). Then it contains W ×{1} as a compact
normal subgroup, and the quotient is canonically isomorphic to H. The kernel of
the projection G̃→ G is equal to {1}×Ker(ρ), which is discrete and consists of deck
transformations of the covering X̃ → X and is in particular isomorphic to π1(X).
Again using (19.4.1), we obtain that Hom(N,A) = {0}. �

Remark 19.50. In case A is the trivial group, both (i) and (ii) of Proposition
19.49 hold. At the opposite, keeping in mind that any nontrivial abelian group B
satisfies Hom(B,Q/Z) 6= 0, the case A = Q/Z of Proposition 19.49 characterizes
locally compact groups with compact identity component that are of type FP2; for
A = Z/2Z it characterizes CGLC-groups with compact identity component that are
of type FP2 mod 2.

19.4.9. Maximal 1-ended subgroups. In a locally compact group, let us call
an M1E-subgroup a compactly generated, 1-ended open subgroup that is maximal
among compactly generated, 1-ended open subgroups.

Lemma 19.51. Let G be a 1-ended CGLC-group. Then every inversion-free con-
tinuous action of G on a nonempty tree with compact edge stabilizers has a unique
fixed vertex.

Proof. We can suppose that the action is minimal. If the tree is not reduced to a
singleton, the action induces a nontrivial decomposition of G as a Bass-Serre funda-
mental group of a graph of groups with compact open edge stabilizers, contradicting
that G is 1-ended. So G fixes a vertex v; if it fixes another vertex v′, then it fixes
every edge in between, contradicting that edge stabilizers are compact. �



ON THE QI CLASSIFICATION OF LC-GROUPS 27

The following lemma is straightforward.

Lemma 19.52. Let G be an LC-group, and p : G → G/W the quotient by some
compact normal subgroup. Then for every M1E-subgroup H of G, p(H) is an M1E-
subgroup of G/W , and for every M1E-subgroup L of G/W , p−1(H) is an M1E-
subgroup of G. �

Lemma 19.53. Let G be a compactly generated accessible LC-group and H a closed
cocompact subgroup. Then

(a) for every M1E-subgroup L of G, the intersection L ∩H is an M1E-subgroup of
H;

(b) every M1E-subgroup of H is contained in a unique M1E subgroup of G.

Proof. (a) Define N = L∩H. Since L is open and H is cocompact, the intersection
N is cocompact in L. So N is 1-ended. By Proposition 19.54, N is contained in an
M1E-subgroup P of H. Let T be a tree on which G acts continuously with compact
edge stabilizers. Then by Lemma 19.51, each of P , L, and N fix a unique vertex in
T , and since P ⊃ N ⊂ L, this unique vertex v is the same for all. Then L ⊂ Gv ⊃ P ,
where Gv is the stabilizer of v. Moreover, Gv is 1-ended and since L is M1E, we
deduce that Gv = L. Thus P ⊂ L. Hence P ⊂ L ∩H = N , and therefore P = N .

(b). Let L be a M1E subgroup of H. By Proposition 19.54, L is contained in a
M1E-subgroup M of G. Since H is cocompact in G and M is open, the intersection
H ∩ M is cocompact in M ; in particular, it is 1-ended and open in H. Since
L ⊂ H ∩M is an M1E-subgroup of G, we deduce that L = H ∩M . Hence L is
cocompact in M , showing the existence. To prove the uniqueness, let M ′ be another
M1E-subgroup of G containing L. As in the previous paragraph, using the inclusions
M ⊃ L ⊂M ′, using a tree with a continuous G-action with compact edge stabilizers
and 1-ended vertex stabilizers, and applying Lemma 19.51, we obtain that all fix
a common vertex v, and since M ⊂ Gv ⊃ M ′ and M,M ′ are M1E-subgroups, we
obtain M = Gv = M ′. �

Proposition 19.54. Let G be an accessible LC-group and H a closed, 1-ended
compactly generated subgroup. Then H is contained in a M1E-subgroup. Moreover,
H is an M1E-subgroup if and only if there is a continuous inversion-free action of G
on a tree, with compact edge stabilizers, such that H is the stabilizer of some vertex.

Proof. Assume that H of some vertex stabilizer in some inversion-free continuous
action on a tree with compact edge stabilizers. Then H is open. Let L be a 1-
ended subgroup containing H. By Lemma 19.51, L fixes some unique vertex v′. By
uniqueness of the vertex fixed by H (again Lemma 19.51), we have v = v′. Since H
is the stabilizer of v, we deduce that H = L. So H is a ME1-subgroup, proving one
implication of the second statement.

Now start again with the assumptions of the proposition. Since G is accessible,
it admits a continuous action on a tree T with no inversion, with compact edge
stabilizers and (at most 1)-ended edge stabilizers. By Lemma 19.51, H is contained
in a vertex stabilizer L. Then L is not compact, hence it is 1-ended. From the
previous paragraph of this proof, we know that L is a M1E-subgroup, which proves
the first statement. If moreover H is M1E, we deduce H = L, which establishes the
converse implication of the second statement. �
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19.5. Commable groups, and commability classification of amenable
hyperbolic groups

Let us recall some definitions and results from [Co15].
For a homomorphism between LC-groups, write copci as a (pronounceable) short-

hand for continuous proper with cocompact image.
We say that a hyperbolic LC-group is faithful if it has no nontrivial compact

normal subgroup. A simple observation [CCMT15, Lemma 3.6(a)] shows that any
hyperbolic LC-group G has a maximal compact normal subgroup W (G); in par-
ticular G/W (G) is faithful. Note that if G is faithful then G◦ is a connected Lie
group.

19.5.1. Generalities. Let us say that two LC-groups G,H are commable if there
exist an integer k and a sequence of copci homomorphisms

(19.5.1) G = G0 −−G1 −−G2 −− . . . −−Gk = H,

where each sign −− denotes an arrow in either direction.
We sometimes use fancy arrows such as ↗, ↖ to make it more readable. For

instance, if there are three copci homomorphisms G ← G1 → G2 ← H, we can
write that G is commable to H through ↖↗↖, or that there is a commability
G↖↗↖ H.

More generally, if D is a class of locally compact groups and G,H ∈ D, we say
that G,H are commable within the class D if the same condition holds with the
additional requirement that the LC-groups Gi in (19.5.1) belong to D.

We will especially consider for D the class of focal (resp. faithful, resp. focal and
faithful) hyperbolic LC-groups.

Remark 19.55. To be compactly generated is invariant by commability among
LC-groups. In particular, any two commable CGLC-groups are quasi-isometric.
The converse is not true, even for finitely generated groups. Examples are Γ1 ∗ Z
and Γ2 ∗ Z, when Γ1,Γ2 are cocompact lattices in SL3(R) that are not abstractly
commensurable, according to an unpublished observation of Carette and Tessera
(see §19.5.2).

Here is a possible other example, of independent interest. Let BS(m,n) be the
Baumslag-Solitar group, defined by the presentation 〈t, x | txmt−1 = xn〉. Then, by a
result of Whyte [Wh01], the groups BS(2, 3) and BS(3, 5) are quasi-isometric; he also
makes the simple observation that these groups do not have isomorphic finite index
subgroups (i.e., since they are torsion-free, are not commable within discrete groups).
I do not know whether BS(2, 3) and BS(3, 5) are commable, but I expect a negative
answer. More generally, it would be of great interest to determine the commability
and quasi-isometry classes (within locally compact groups) of any Baumslag-Solitar
group BS(p, q). Their external quasi-isometry classification is addressed, within
discrete groups, in [MSW11].

Remark 19.56. If G and H are commable, we can define their commability distance
as the least k such that there exists a commability such as in (19.5.1). I do not
know if this can be greater than 4. Anyway, this notion forgets the direction of
the arrows; for instance, to have a commensuration through ↗↖ or ↖↗ are very
different relations.
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Lemma 19.57 (Proposition 2.7 in [Co15]). Any copci homomorphism f : G1 → G2

between LC-groups satisfies f−1(W (G2)) = W (G1). In particular, if W (G1) is com-
pact (e.g., if G1 is hyperbolic), f thus factors through an injective copci homomor-
phism f ′ : G1/W (G1)→ G2/W (G2), which is injective. �

Corollary 19.58. Let F denote the class of focal hyperbolic LC-groups. Given
faithful hyperbolic LC-groups G1 and G2,

• G1 and G2 are commable if and only they are commable within faithful
hyperbolic groups;
• assuming G1 and G2 focal, G1 and G2 are commable within focal hyperbolic

groups if and only they are commable within faithful focal hyperbolic groups.
�

Remark 19.59. We can define strict commability in the same fashion as comma-
bility, but only allowing injective copci homomorphisms. Since a copci homomor-
phism between faithful focal hyperbolic LC-groups is necessarily injective, Corollary
19.58 shows that between faithful hyperbolic LC-groups, commability and strict
commability are the same, and more generally that hyperbolic LC-groups G1, G2

are commable if and only if G1/W (G1) and G2/W (G2) are strictly commable. Sim-
ilar consequences hold for commability within focal hyperbolic LC-groups.

19.5.2. Non-commable quasi-isometric discrete groups. Let us abbreviate to-
tally disconnected to TD; thus compact-by-TD LC-groups are the same as Hausdorff
topological groups with a compact open subgroup. Also, recall that maximal 1-ended
(M1E) subgroups were introduced in §19.4.9.

Lemma 19.60. Let G,H be compactly generated, accessible locally compact groups
with infinitely many ends. Assume that G and H are commable. Then every M1E-
subgroup of G is commable within compact-by-TD subgroups to a M1E subgroup of
H.

Proof. Since G and H have infinitely many ends, they are compact-by-TD as well
as all LC-groups commable to them, and their closed subgroups. The result then
follows, by an immediate induction, from Lemmas 19.52 and 19.53. �

Lemma 19.61. Let Γ be a finitely generated group with no nontrivial finite nor-
mal subgroup. Assume that every compact-by-TD LC-group quasi-isometric to Γ is
compact-by-discrete and has a maximal compact normal subgroup.

Then a compact-by-TD LC-group H is commable to Γ within compact-by-TD LC-
groups if and only if its compact normal subgroup W exists and H/W is commen-
surable (= strictly commable within discrete groups) to Γ.

Proof. Consider a sequence of copci homomorphisms Γ = G0 −−G1 −− . . . −−Gk = H
between compact-by-TD LC-groups. When G is an LC-group, let W(G) denote the
union of all compact normal subgroups; when G admits a maximal compact normal
subgroup, it is equal to W(G). Note that W(Γ) = {1} by the first assumption.
Then any copci homomorphism U → V maps W(U) into W(V ) (this follows from
Proposition 19.57). It follows that the above sequence induces a sequence of ho-
momorphisms Γ −−G1/W(G1) −− . . . −−Gk/W(Gk) = H/W(H), which are copci
homomorphisms since W(Gi) is compact for all i, by the assumptions. All these
groups being discrete, this means that Γ and H/W(H) are commensurable. �

Example 19.62 (Carette-Tessera). Let S be a noncompact connected semisimple
Lie group with trivial center. Let Γ,Λ be non-commensurable cocompact lattices
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in S (this exists unless S is isomorphic to the product of a compact group with
SL2(R)). Then Γ ∗ Z and Λ ∗ Z are quasi-isometric but not commable, as we now
show.

A consequence of Theorem 19.25 is that every LC-group quasi-isometric to S is
compact-by-Lie. In particular, every compact-by-TD LC-group quasi-isometric to S
is compact-by-discrete. Accordingly, the assumption of Lemma 19.61 is satisfied by
Γ, and it follows this lemma that Γ and Λ are not commable within compact-by-TD
LC-groups.

Since S is 1-ended, so are Γ and Λ, and therefore these are M1E-subgroups in
Γ ∗ Z and Λ ∗ Z. Thus, by Lemma 19.60, we deduce that Γ ∗ Z and Λ ∗ Z are not
commable.

To show that Γ ∗ Z and Λ ∗ Z are quasi-isometric, we first need to know that
Γ and Λ are bilipschitz (the result follows by an immediate argument). That they
are bilipschitz follows from a result of Whyte [Wh99] asserting that any two quasi-
isometric non-amenable finitely generated groups are bilipschitz.

The next three subsections address commability within focal groups. See §19.5.6
for the link with commability.

19.5.3. Connected type. We say that a focal hyperbolic group is focal-universal
if it satisfies the following: for every LC-group H, the group H is commable to G
within focal groups if and only if there is a copci homomorphism H → G.

Theorem 19.63 ([Co15]). Let G be a focal hyperbolic LC-group of connected type.

Then G is commable to a focal-universal LC-group Ĝ, which thus satisfies: for
every LC-group H, the group H is commable to G within focal groups if and only
if there is a copci homomorphism H → Ĝ. Moreover, Ĝ is unique up to topological
isomorphism.

Corollary 19.64. Any two commable focal hyperbolic groups of connected type are
commable within focal groups through ↗↖. �

Focal-universal groups of connected type give a canonical set of representatives
of commability classes of focal hyperbolic LC-groups of connected type. However,
another canonical set of representatives, sometimes more convenient (e.g. in view of
the classification small dimension) is given by purely real Heintze groups.

Proposition 19.65. Every focal-universal LC-group of connected type has a unique
closed cocompact subgroup that is purely real Heintze. Every focal hyperbolic group of
LC-type is commable to a purely real Heintze group, unique up to isomorphism. �

Example 19.66. Here is (without proof) the classification of purely real Heintze
groups in dimension 2 ≤ d ≤ 4. For each isomorphy class we give one representative.

• d = 2: the only group is the affine group Carn(R) = RoR, where the action
is given by t · x = etx. It is isomorphic to a closed cocompact subgroup in
Isom(H2

R).
• d = 3: the groups are the Gλ for λ ≥ 1, as well as a certain Gu

1 . All these
groups are defined as a semidirect product R2oR. In Gλ, the action is given
by t · (x, y) = (etx, eλty), while in Gu

1 it is given by t · (x, y) = et(x+ ty, y).
Note that G1 = Carn(R2) is isomorphic to a closed cocompact subgroup of
Isom(H3

R).
• d = 4. It consists of semidirect products R3 o R and Hei3 o R, where
Hei3 is the 3-dimensional Heisenberg group. More precisely, the semidirect
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products R3 o R consist of the Gλ,µ for 1 ≤ λ ≤ µ, with action given

by t · (x, y, z) = (etx, eλty, eµtz), of the G
(u)
λ (λ > 0) for which the ac-

tion is given by t · (x, y, z) = (et(x + ty), ety, eλtz), and of Gu
1 for which

the action is given by t · (x, y, z) = et(x + ty + t2z/2, y + tz, z). If we
use coordinates for the Heisenberg group so that the product is given by
(x, y, z)(x′, y′, z′) = (x+x′, y+y′, z+z′+xy′−x′y) (these are not the standard
matrix coordinates!), the corresponding Heintze groups are Hλ for λ ≥ 1
with action given by t · (x, y, z) = (etx, eλty, e(1+λ)tz), and Hu

1 with action
given by t · (x, y, z) = et(x+ y, y, z). Note that G1,1 = Carn(R3) is isomor-
phic to a closed cocompact subgroup of Isom(H4

R), and H1 = Carn(Hei3) is
isomorphic to a closed cocompact subgroup of Isom(H2

C).
• For d = 5, we do not give the full classification, but just mention that the

groups occurring are semidirect products R4oR, (Hei3×R)oR, or Fil4oR,
for various contracting actions we do not describe, where Fil4 is the filiform
4-dimensional Lie group, whose Lie algebra has a basis (a, e1, e2, e3) so that
[a, ei] = ei+1 for i = 1, 2 and all other brackets between basis elements
vanish. The Carnot groups Carn(Hei3 ×R) and Carn(Fil4) are the smallest
examples of Carnot groups that are not isomorphic to closed cocompact
groups of isometries of rank 1 symmetric spaces of noncompact type.
• For d′ ≤ 6, there are finitely many isomorphism classes of simply connected

Carnot-gradable nilpotent Lie groups of dimension d′ (namely 1,1,2,3,7,21
isomorphism classes for d′ = 1, . . . , 6), while for d′ ≥ 7 there are continuously
many. Hence for d ≤ 7 there are finitely many isomorphism classes of purely
real Heintze groups of Carnot type, and continuously many for d ≥ 8.

19.5.4. Totally disconnected type. Define, for every integer m ≥ 2, FTm as the
stabilizer of a given boundary point in the automorphism group of an (m+1)-regular
tree.

If G is any locally compact group having exactly two (opposite) continuous ho-
momorphisms onto Z (e.g., any focal hyperbolic group not of connected type), for
n ≥ 1 we denote by G[n] the inverse image of nZ by any of these homomorphisms.

By non-power integer we mean an integer q ≥ 1 that is not an integral proper
power of any integer (thus excluding 4, 8, 9, 16, 25, 27, 32, 36, 49 . . . ).

An easy observation (Proposition 19.74) is that any two focal hyperbolic LC-
groups G1, G2 of totally disconnected type are always commable. However, they are
not always commable within focal groups:

Proposition 19.67 ([Co15]). Let G1, G2 be focal hyperbolic LC-groups of totally
disconnected type. The following are equivalent:

(i) G1 and G2 are commable within focal groups;
(ii) ∆(G1) and ∆(G2) are commensurable subgroups of R+ (i.e. ∆(G1)∩∆(G2)

has finite index in both).
(iii) There exists a non-power integer q ≥ 2 such that ∆(G1) and ∆(G2) are both

contained in the multiplicative group 〈q〉 = {qn : n ∈ Z};
(iv) there is a commability within focal groups G1 ↗↖↗↖ G2;
(v) there exists a non-power integer q ≥ 2 and an integer n ≥ 1, such that for

i = 1, 2 there is a there is a commability within focal groups Gi ↗↖ FT[n]
q ;

(vi) there exists a non-power integer q ≥ 2 such that for i = 1, 2, there is a
commability within focal groups with Gi ↗↖↗ FTq;

(vii) there is a commability within focal groups G1 ↖↗↖↗ G2;
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(viii) there exists an integer m ≥ 2, such that for i = 1, 2 there is a there is a
commability within focal groups Gi ↖↗ FTm.

19.5.5. Mixed type. If G is a locally compact group, its elliptic radical G] is its
largest closed elliptic normal subgroup, where elliptic means that every compact
subset is contained in a compact subgroup. If G is focal of mixed type, then G/G]

is focal of connected type.

Definition 19.68 ([Co15]). Let G be a focal hyperbolic LC-group. Consider the
modular functions of G/G◦ and G/G]; by composition they define homomorphisms
∆td
G , ∆con

G : G→ R+, which we call restricted modular functions. Since Hom(G,R)
is 1-dimensional, if G is not of totally disconnected type then ∆con

G is nontrivial and
hence there exists a unique $ = $(G) ∈ R such that log ◦∆td

G = $(log ◦∆con
G ).

Because of the compacting element in G, necessarily $(G) ≥ 0, with equality if
and only if G is of connected type. If G is of totally disconnected type we set
$(G) = +∞.

Definition 19.69. Let H,A be a focal hyperbolic LC-groups, H being of connected
type with a surjective modular function and A being of totally disconnected type.
For $ > 0, define

H
$
× A = {(x, y) ∈ H × A | ∆H(x)$ = ∆A(y)}.

This is a focal hyperbolic LC-group of mixed type, satisfying $(H
$
× A) = $. If

q ≥ 2 is an integer and $ is a positive real number, define in particular

H[$, q] = H
$
× FTq.

Proposition 19.70 ([Co15]). Let G1, G2 be focal hyperbolic LC-groups of mixed
type. Equivalences:

(i) G1 and G2 are commable;
(ii) the following three properties hold:

• G1/G
◦
1 and G2/G

◦
2 are commable within focal groups;

• G1/G
]
1 and G2/G

]
2 are commable within focal groups

• $(G1) = $(G2);
(iii) there is a commability within focal groups G1 ↗↖↗↖ G2;
(iv) there exists a non-power integer q ≥ 2, an integer n ≥ 1, a focal-universal

group of connected type H and a positive real number $ > 0 such that
for i = 1, 2 there is a there is a commability within focal groups Gi ↗↖
H[q,$][n];

(v) there exists a non-power integer q ≥ 2, a focal-universal group of connected
type H and a positive real number $ > 0 such that for i = 1, 2, there is a
commability within focal groups with Gi ↗↖↗ H[$, q];

(vi) there is a commability within focal groups G1 ↖↗↖↗ G2;
(vii) there exists an integer m ≥ 2, a focal-universal group of connected type H

and a positive real number $ > 0 such that for i = 1, 2 there is a there is a
commability within focal groups Gi ↖↗ H[$,m].

In view of Proposition 19.65, we deduce:

Corollary 19.71. Every focal hyperbolic LC-group of mixed type G is commable to
an LC-group of the form H[$, q], for some purely real Heintze group H uniquely
defined up to isomorphism, a unique $ ∈ ]0,∞[, and a unique non-power integer
q. �
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19.5.6. Commability between focal and general type groups. The following
lemma from [Co15] is essentially contained in [CCMT15].

Lemma 19.72. Let G1, G2 be focal hyperbolic LC-groups. Equivalences:

(i) there exists a hyperbolic LC-group G with copci homomorphisms G1 → G←
G2.

(ii) there exists a focal hyperbolic LC-group G with copci homomorphisms G1 →
G← G2. �

Proposition 19.73. Let G be a focal hyperbolic LC-group not of totally discon-
nected type. Let H be a locally compact group commable to G. Then the following
statements hold.

(a) If H is focal, then G and H are commable within focal groups;
(b) if H is non-focal, then there exists a rank 1 symmetric space of noncompact type

X and continuous proper compact isometric actions of G and H on X.

Proof. If G is quasi-isometric to any rank 1 symmetric space X of noncompact type,
then by Theorem 19.25 we have copci homomorphisms G→ Isom(X)← H; if H is
of general type this proves (b); if H is focal then conjugating by some isometry we
can suppose it has the same fixed point in ∂X as G, proving (a).

Assume otherwise that G is not quasi-isometric to any rank 1 symmetric space of
noncompact type. To show the result, it is enough to check that the commability
class of G consists of focal groups. Otherwise, there is a copci homomorphism
G1 → G2 between groups in the commability class of G, such that G1 is focal and
G2 is not focal. By Theorem 19.1(b), it follows that G is quasi-isometric to some
rank 1 symmetric space of noncompact type (which is excluded) or to a tree (which
is excluded since ∂G is positive-dimensional). �

Proposition 19.74 ([Co15]). Two focal hyperbolic LC-groups G1, G2 of totally dis-
connected type are always commable through ↗↖↗↖, and are commable to a
finitely generated free group of rank ≥ 2 through ↗↖.

Proof. There is a copci homomorphism Gi → Aut(Ti) for some regular tree Ti of
finite valency at least 3. For d large enough, Aut(Ti) (i = 1, 2) contains a cocom-
pact lattice isomorphic to a free group of rank k = 1 + d!. Thus we have copci
homomorphisms G1 → Aut(T1)← Fk → Aut(T2)← G2. �

Special groups

Definition 19.75. By special hyperbolic LC-group we mean any CGLC-group
commable to both focal and general type hyperbolic LC-groups. A CGLC-group
quasi-isometric to a special hyperbolic group is called quasi-special.

See Remark 19.79 for some motivation on the choice of terminology. Taking
Theorems 19.25 and 19.31 for granted, we have the following characterizations of
special and quasi-special hyperbolic groups.

Proposition 19.76. Let G be a CGLC-group. Equivalences:

(i) G is special hyperbolic;
(ii) G is commable to the isometry group of a metric space X which is either a

rank 1 symmetric space of noncompact type or to a 3-regular tree.

We also have the equivalences:

(iii) G is quasi-special hyperbolic;
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(iv) G is quasi-isometric to either a rank 1 symmetric space of noncompact type
or to a 3-regular tree;

(v) G admits a continuous proper cocompact isometric action on either a rank 1
symmetric space or nondegenerate tree (see §19.4.1) (which can be chosen
to be regular if G is focal).

Moreover, if G is quasi-special and not special, then it is of general type and quasi-
isometric to a 3-regular tree.

Proof. Let us begin by proving the equivalence (i)⇔(ii), not relying on Theorems
19.25 and 19.31.
(ii)⇒(i) is clear since, denoting by X the space in (ii), it follows that G is commable
to both Isom(X) and Isom(X)ω for some boundary point.
(i)⇒(ii) We can suppose that G is focal. If G is of totally disconnected type, then by
the easy [CT11, Proposition 4.6] (which makes G act on its Bass-Serre tree), G has a
continuous proper cocompact isometric action on a regular tree and thus (ii) holds.
Assume that G is not of totally disconnected type. Let G = H0 −H1 −H2 · · · −Hk

be a sequence of copci arrows (in either direction) with Hk = Isom(X), which is
of general type. Let i be minimal such that Hi is of general type. Then i ≥ 1,
Hi−1 is focal and necessarily the copci arrow is in the direction Hi−1 → Hi. So Hi

is hyperbolic of general type and its identity component is not compact. Thus by
[CCMT15, Proposition 5.10], Hi is isomorphic to an open subgroup of finite index
subgroup in the isometry group of a rank 1 symmetric space of noncompact type,
proving (ii).

Let us now prove the second set of equivalences.
(v)⇒(iv) is immediate, in view of Lemma 19.80.
(iv)⇒(iii) let X be the space as in (iv); then Isom(X) is special since it is of general
type and the stabilizer of a boundary point is focal and cocompact.
(iii)⇒(v): if G is quasi-special, then it is quasi-isometric to a space as in (ii), so (v)
is provided by Theorems 19.25 and 19.31, except the regularity of the tree in the
focal case, in which case we can then invoke the easy [CT11, Proposition 4.6] (which
makes G act on its Bass-Serre tree).

For the last statement, observe that (v)⇒(ii) holds in case in (v) we have a
symmetric space or a regular tree. �

Remark 19.77. In the class of hyperbolic LC-groups quasi-isometric to a non-
degenerate tree (which is a single quasi-isometry class, described in Corollary 19.33),
there is a “large” commability class, including

(i) all focal hyperbolic groups of totally disconnected type (by Proposition
19.74);

(ii) all discrete groups (i.e., non-elementary virtually free finitely generated
groups);

(iii) more generally, all unimodular groups quasi-isometric to a non-degenerate
tree (because they have a cocompact lattice by [BK90]), including all auto-
morphism groups of regular and biregular trees of finite valency;

(iv) non-ascending HNN extensions of compact groups over open subgroups:
indeed the Bass-Serre tree is then a regular tree. Such groups are non-focal
are often non-unimodular.

It is natural to ask whether this “large” class is the whole class:

Question 19.78. Are any two hyperbolic LC-groups quasi-isometric to the 3-regular
tree commable? Equivalently, does quasi-special imply special?
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It is easy to check that any such group is commable to the Bass-Serre fundamental
group of a connected finite graph of groups in which all vertex and edge groups are

isomorphic to Ẑ (the profinite completion of Z). I expect a positive answer to
Question 19.78.

Update. This question was settled positively in full generality by M. Carette
[Ca13] after being asked in a previous version of this survey and in [Co15].

A thorough study of cocompact isometry groups of bounded valency trees is car-
ried out in [MSW02].

Remark 19.79. The adjective “special” indicates that special hyperbolic LC-groups
are quite exceptional among hyperbolic LC-groups, although they are the best-
known. For instance, there are countably many quasi-isometry classes of such
groups, namely one for trees and one for each homothety class of rank 1 symmetric
space of noncompact type (and finitely many classes for each fixed asymptotic dimen-
sion), while there are continuum many pairwise non-quasi-isometric 3-dimensional
Heintze groups.

Let us mention the following lemma, which is well-known but often referred to
without proof.

Lemma 19.80. Let T be a bounded valency nonempty tree with no vertex of degree
1 and in which the set of vertices of valency ≥ 3 is cobounded. Then T is quasi-
isometric to the 3-regular tree. In particular, if T is a bounded valency tree with a
cocompact isometry group and at least 3 boundary points then it is quasi-isometric
to the 3-regular tree T ′.

Proof. A first step is to get rid of valency 2 vertices. Indeed, since there are no
valency 1 vertex and by the coboundedness assumption, every valency 2 vertex v
lies in a unique (up to orientation) segment consisting of vertices v0, . . . , vn with v0,
vn of valency ≥ 3, and each v1, . . . , vn−1 being of valency 2, and n being bounded
independently of v. If we remove the vertices v1, . . . , vn−1 and join v0 and vn with
an edge, the resulting tree is clearly quasi-isometric to T . Hence in the sequel, we
assume that T has no vertex of valency ≤ 2.

Let s ≥ 3 be the maximal valency of T . Denote by T 0 and T 1 the 0-skeleton and
1-skeleton of T . Let T3 be a 3-regular tree, and fix an edge, called root edge, in
both T and T3, so that the n-ball T (n) means the n-ball around the root edge (for
n = 0 this is reduced to the edge). Let us define a map f : T → T3, by defining it
by induction on the n-ball T (n).

We prescribe f to map the root edge to the root edge, and, for n ≥ 0, we assume
by induction that f is defined on the n-ball of T 0. The convex hull of f(T (n)) is
a finite subtree A(n) of T3. We assume the following property P(n): the subtree
A(n) ⊂ T 0

3 has no vertex of valency 2, and the n-sphere of T 0 is mapped to the
boundary of this subtree A(n). Let v belong to the n-sphere of T . Then v has a
single neighbor not in the (n+ 1)-sphere, and has a number m ∈ [2, s− 1] of other
neighbors, in the (n + 1)-sphere of T . The vertex f(v) has a single neighbor w0

in A(n). (Choosing a root edge instead of a root vertex is only a trick to avoid a
special step when n = 0.)

We use the following claim: in the binary rooted tree of height k ≥ 1 and root o,
for every integer in m ∈ [2, 2k] there exists a finite subset F of vertices of cardinal m
with o /∈ F such that the convex hull of F ∪ {o} has exactly F as set of vertices of
valency 1 and admits only o as set of vertices of valency 2. The proof is immediate:
reducing the value of k if necessary, we can suppose m ≥ 2k−1, and then, writing
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m = 2k−1 + t = 2t+ (2k−1 − t), choose 2k−1 − t vertices of height k − 1, and choose
the 2t descendants (of height k) of the remaining t vertices of height k − 1, to form
the subset F , and it fulfills the claim.

Now choose k = dlog2(s− 1)e, consider the set

Mv = {w ∈ T 0
3 : d(w,w0)− 1 = d(w, f(v)) ≤ k}

(in other words, those vertices at distance ≤ k from f(v) not in the direction of w0);
this is a binary tree, rooted at f(v), of height k. Since m ≤ s−1, and s−1 ≤ 2k, we
have m ≤ 2k and by the claim there is a finite subset Fv ⊂ M r {f(v)} of cardinal
m with the required properties. So the convex hull of f(T (n)) ∪ Fv admits, in M ,
only elements of Fv as vertices of valency 1, and no vertices of valency 1.

Noting that the Mv are pairwise disjoint (v ranging over the n-sphere of T ), we
deduce that the convex hull of f(T (n)) ∪

⋃
v Fv admits no vertex of valency 2 and

admits
⋃
Fv as set of vertices of valency 1. Now extend f to the (n + 1)-ball by

choosing, for every v in the n-sphere of T , a bijection between its set of neighboring
vertices in the (n + 1)-sphere and Fv (recall that they have the same cardinal by
construction). Then P(n+ 1) holds by construction.

By induction, we obtain a map f : T 0 → T 0
3 ; it is injective by construction,

and more precisely d(f(v), f(v′)) ≥ d(v, v′) for all v, v′; moreover f is k-Lipschitz.
In addition, if A(n) is the convex hull of the image of T (n), then an immediate
induction shows that A(n) contains the n-ball T3(n), and every point is at distance
≤ k to the image of f . Thus f is a quasi-isometry T 0 → T 0

3 . �

19.5.7. A few counterexamples.

Groups of connected type with no common cocompact subgroup
We have seen that any two commable focal groups of connected type are commable

through ↗↖. This is not true with ↖↗. The simplest example is obtained as
follows: start from the group G = R o R (the affine group), u = log ◦∆G, G1 =
u−1(Z) and G2 = u−1(λZ) where λ is irrational. Since ∆(G1) ∩∆(G2) = {1}, it is
clear that G1 and G1 are not ↖↗-equivalent.

Focal groups not acting on the same space
We saw that commable focal hyperbolic LC-groups of connected type are commable

through↗↖. This is not true in other types. We give here some examples of totally
disconnected type; examples of mixed type can be derived mechanically by “adding”
a connected part.

Recall from §19.5.4 that all FTn, for n ≥ 2, are commable, and that FTm and
FTn are commable within focal groups if and only if m and n are integral powers of
the same integer. In contrast, we have:

Proposition 19.81 ([Co15]). If 2 ≤ m < n, there exist no hyperbolic LC-group G
with copci homomorphisms FTm → G← FTn. �

Corollary 19.82. If m,n ≥ 2 are distinct, there is no proper metric space with
continuous proper cocompact isometric actions of both FTm and FTn. �

Discrete groups not acting on the same space
This subsection is a little tour beyond the focal case, dealing with discrete ana-

logues of the examples in Proposition 19.81.
Let us mention a consequence of Theorem 19.31, already observed in [MSW03,

Corollary 10] with a slightly different point of view. Let Cn be a cyclic group of order
n. Recall that all discrete groups Cn ∗Cm, for n ≥ 2 and m ≥ 2 are quasi-isometric
to the trivalent regular tree.
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Proposition 19.83. Let (p1, q1) and (p2, q2) be pairs of primes ≥ 3. If {p1, q1} 6=
{p2, q2}, then the groups Cp1 ∗ Cq1 and Cp1 ∗ Cq2 are not isomorphic to cocompact
lattices in the same locally compact group, and thus do not act properly cocompactly
on the same nonempty proper metric space.

Lemma 19.84. Let T be a tree with a cobounded action of its isometry group. Then
it admits a unique minimal cobounded subtree T ′ (we agree that ∅ ⊂ T is cobounded
if T is bounded). Moreover, T = T ′ if and only if T has no vertex of degree 1.

Proof. Let T ′ be the union of all (bi-infinite) geodesics in T ; a straightforward ar-
gument shows that T ′ is a subtree. Observe that any geodesic is contained in every
cobounded subtree: indeed, any point of a geodesic cuts the tree into two unbounded
components. It follows that T ′ is contained in every cobounded subtree; by defini-
tion, T ′ is Isom(T )-invariant.

Let us show that T ′ is cobounded. If T is bounded then T ′ = ∅ and is cobounded
by convention. So let us assume that T is unbounded; then it is enough to show
that T ′ 6= ∅, because then the distance to T ′ is invariant by the isometry group, so
takes a finite number of values by coboundedness. To show that T ′ 6= ∅, it is enough
to show that Isom(T ) has a hyperbolic element: otherwise the action of Isom(T )
would be horocyclic and thus would preserve the horocycles with respect to some
point at infinity, which would prevent coboundedness of the action of Isom(T ).

The last statement is clear from the definition of T ′. �

If p, q ≥ 2 are numbers and m ≥ 1, define a tree Tp,q,m as follows: start from the
(p, q)-biregular tree and replace each edge by a segment made out of m consecutive
edges. Note that if p, q ≥ 3, the unordered pair {p, q} is uniquely determined by the
isomorphy type of Tp,q,m.

Lemma 19.85. Let p, q be primes and let Cp ∗ Cq act minimally properly on a
nonempty tree T with no inversion. Then T is isomorphic to Tp,q,m for some m ≥ 1.

Proof. This gives Cp ∗ Cq as Bass-Serre fundamental group of a finite connected
graph of groups ((Γv)v, (Γe)e) with finite vertex groups. This finite graph X is a
finite tree, because Hom(Cp ∗ Cq,Z) = 0. Let v be a degree 1 vertex of this finite
tree, and let e be the oriented edge towards v. Then the embedding of Γv into Γe is
not an isomorphism, because otherwise the action on the tree would not be minimal
(v corresponding to a degree one vertex in the Bass-Serre universal covering).

Since vertex stabilizers are at most finite of prime order, this shows that such
edges are labeled by the trivial group. This gives a free decomposition of the group
in as many factors as degree 1 vertices in X. So X has at most 2 degree 1 vertices and
thus is a segment, and then shows that other vertices are labeled by the trivial group.
If the number of vertices is m+ 1, this shows that T is isomorphic to Tp,q,m. �

Proof of Proposition 19.83. Note these groups have no nontrivial compact normal
subgroup, so the second statement is a consequence of the first by considering the
isometry group of the space.

Suppose they are cocompact lattices in a single locally compact group G. Then
G is compactly generated and quasi-isometric to a tree, so by Theorem 19.31 acts
properly cocompactly, with no inversion and minimally on a finite valency tree T .
By Lemma 19.84, the action of Cpi ∗ Cqi is minimal for i = 1, 2. By Lemma 19.85,
the tree is isomorphic to Tpi,qi,mi

for i = 1, 2, which implies {p1, q1} = {p2, q2}, a
contradiction. �
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19.6. Towards a quasi-isometric classification of amenable
hyperbolic groups

19.6.1. The main conjecture. We use the notion of commability studied in Sec-
tion 19.5. Here is the main conjecture about quasi-isometric rigidity of focal hyper-
bolic LC-groups.

Conjecture 19.86. Let G be a focal hyperbolic LC-group. Then any compactly gen-
erated locally compact group H is quasi-isometric to G if and only if it is commable
to G.

An LC-group H as in the conjecture is necessary non-elementary hyperbolic. Thus
the conjecture splits into two distinct issues:

• (internal case) when H is focal, in which case the conjecture can be restated
as: two focal hyperbolic LC-groups are quasi-isometric if and only if they
are commable; this is discussed in §19.6.2;
• (external case) when H is of general type; this is discussed in §19.6.3.

The commability classes of focal hyperbolic LC-groups having been fully described
in §19.5 (except in the totally disconnected type), Conjecture 19.87 provides a com-
prehensive description. Note that unlike in the two other types, in the totally dis-
connected type, the quasi-isometric classification is known (and trivial, since there is
a single class) but the commability classification is still an open question (Question
19.78).

19.6.2. The internal classification.

The main internal QI-classification conjecture
Let us repeat the internal part of Conjecture 19.86:

Conjecture 19.87. Let G be a focal hyperbolic LC-group. Then any focal hyperbolic
LC-group H is quasi-isometric to G if and only if it is commable to G.

In other words, any two focal hyperbolic LC-groups are quasi-isometric if and
only if they are commable. The conjecture is stated in a less symmetric formulation
so that it makes sense to state that the conjecture holds for a given G. Note that
any two focal hyperbolic LC-groups of totally disconnected type are commable by
Proposition 19.74, so there is no need to discard them as in Conjecture 19.86.

Note that the “if” part is trivial. Thus the conjecture is a putative description
of the internal quasi-isometry classification of focal hyperbolic groups (and thus of
the spaces associated to these groups), using the description of commability classes,
which is described in a somewhat satisfactory way in Section 19.5.

Conjecture 19.87 can in turn be split into the connected and mixed cases.

Internal QI-classification in connected type
The following was originally stated as a theorem by Hamenstädt in her PhD thesis

[Ha87], who told me to rather consider it as a conjecture:

Conjecture 19.88. Let H be a purely real Heintze group. If a purely real Heintze
group L is quasi-isometric to H, then it is isomorphic to H.

In other words, the conjecture states that two purely real Heintze groups are
quasi-isometric if and only if they are isomorphic. The non-symmetric formulation
of the conjecture is convenient because it makes sense to assert that it holds for a
given H. Note that the same statement holds true for commability, by Corollary
19.71.
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Note that by Corollary 19.64 and Proposition 19.65, an equivalent formulation
of the conjecture consists in replacing both times “purely real Heintze group” by
“faithful focal-universal hyperbolic LC-group of connected type”. We also have

Proposition 19.89. Conjecture 19.87 specified to groups of connected type is equiv-
alent to Conjecture 19.88.

Proof. Assume that Conjecture 19.87 holds for groups of connected type. If H1 is
purely real Heintze and is quasi-isometric to H, by the validity of Conjecture 19.87,
H and H1 are commable; hence by Proposition 19.73 are commable within focal
groups. By Theorem 19.63, there is a faithful focal-universal LC-group G and copci
homomorphisms H → G ← H1. Viewing these homomorphisms as inclusions, by
Proposition 19.65, we obtain that H = H1.

Conversely, suppose that Conjecture 19.88 holds. Let G1, G2 be quasi-isometric
focal hyperbolic groups of connected type. By Proposition 19.65, they are commable
to purely real Heintze groups H1 and H2, which are isomorphic by Conjecture 19.88.
Hence G1 and G2 are commable. �

The results of Section 19.5, or alternatively the more general Gordon-Wilson
approach (see Remark 19.91), shows the following evidence for Conjecture 19.88.

Proposition 19.90. Two purely real Heintze groups admit continuous simply tran-
sitive isometric actions on the same Riemannian manifold if and only if they are
isomorphic.

Proof. If the groups are 1-dimensional, the only possibility is R. Assume they have
dimension ≥ 2; then they are focal hyperbolic of connected type and commable,
hence isomorphic by the results of [Co15] (see Corollary 19.71). �

Remark 19.91. The results of Gordon and Wilson [GW88] show that Proposition
19.90 holds in a much greater generality, namely for purely real simply connected
solvable Lie groups (sometimes called real triangulable groups). Indeed, let H1, H2

be such groups and X the Riemannian manifold. Then H1 and H2 stand as closed
subgroups in the isometry group of the homogeneous Riemannian manifold Isom(X).
Gordon and Wilson define a notion of “subgroup in standard position” in Isom(X).
In [GW88, Theorem 4.3], they show that any real triangulable subgroup is in stan-
dard position, and thus H1 and H2 are in standard position. In [GW88, Theorem
1.11], they show that in Isom(X), all subgroups in standard position are conjugate
(and are actually equal, in case Isom(X) is amenable, see [GW88, Corollary 1.12]).
Thus H1 and H2 are isomorphic.

Here are some partial results towards Conjecture 19.88.

• Conjecture 19.88 holds for H when H is abelian, by results of Xie [Xi14].
• Conjecture 19.88 holds for H when the purely real Heintze group H is

cocompact in the group of isometries of a rank 1 symmetric space of non-
compact type. This follows from Theorem 19.25 (combined, for instance,
with Proposition 19.89).
• If purely real Heintze groups H1, H2 of Carnot type (see §19.2.7) are quasi-

isometric, then Pansu’s Theorem [Pa89m, Theorem 2] implies that H1 and
H2 are isomorphic.
• Pansu’s estimates of Lp-cohomology in degree 1 [Pa07] provide useful quasi-

isometry invariants.
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• Carrasco [Ca17, Cor. 1.9] proves the following: given a Heintze group
H = N o R, let nmin be the characteristic subspace relative to the smallest
eigenvalue of some dilating element of R, and Hmin = exp(nmin)oR. Then
he proves that if purely real Heintze groups H1, H2 are quasi-isometric, then
Hmin

1 and Hmin
2 are isomorphic. He also proves that being of Carnot type is

a quasi-isometry invariant.

Internal QI-classification in the mixed type
In mixed type, we can specify Conjecture 19.87 as follows (see Definitions 19.68

and 19.69)

Conjecture 19.92. Let H be a nonabelian purely real Heintze group, $ > 0 a posi-
tive real number, and q a non-power integer, and define G = H[$, q]. If (H ′, $′, q′)
is another such triple and G and G′ = H ′[$′, q′] are quasi-isometric then they are
isomorphic.

Proposition 19.93. Conjecture 19.87 specified to groups of mixed type is equivalent
to Conjecture 19.92.

Proof. Suppose that Conjecture 19.87 specified to groups of mixed type holds. If
G and G′ are given as in Conjecture 19.92, then the validity of Conjecture 19.87
implies that G and G′ are commable. By Corollary 19.71, we deduce that G and G′

are isomorphic.
Conversely assume that Conjecture 19.92 holds. Let G be as in Conjecture 19.87,

of mixed type, and let G′ be a focal hyperbolic LC-group, quasi-isometric to G. Then
G′ is necessarily of mixed type (by Corollary 19.18). By Corollary 19.71, G and G′

are respectively commable to groups of the form H[$, q] and H ′[$′, q′], which by
the validity of Conjecture 19.92 are isomorphic, so that G and G′ are commable. �

The following theorem indicates that a significant part of Conjecture 19.92 holds,
and provides a full reduction to the connected case Conjecture 19.88.

Theorem 19.94. Let G = H[$, q] and G′ = H[$, q′], as in Conjecture 19.92, be
quasi-isometric. Then the following statements hold:

(a) [Co15] H and H ′ are quasi-isometric;
(b) [Co15] $ = $′;
(c) (T. Dymarz [Dy14]) q = q′.

In particular, if H satisfies Conjecture 19.88 then H[$, q] satisfies Conjecture 19.92.
�

Theorem 19.94 shows that Conjecture 19.92 boils down to Conjecture 19.88. How-
ever, the proofs of (a) and especially of (c) in [Dy14] suggest that Conjecture 19.92
might be easier than Conjecture 19.88, because its boundary exhibits more rigidity.

Let us indicate an application from [Co15]. Let X be a homogeneous negatively
curved manifold of dimension ≥ 2. For t > 0, let X{t} be obtained from X by
multiplying the Riemannian metric by t−1 (thus multiplying the distance by t−1 and
the sectional curvature by t). For instance, H2

{t} is the rescaled hyperbolic plane
with constant curvature −t.
Theorem 19.95 ([Co15]). If k1, k2 are integers ≥ 2 and t1, t2 are positive real
numbers, then X{t1}[k1] and X{t2}[k2] are quasi-isometric if and only if log(k1)/t1 =
log(k2)/t2 and k1, k2 have a common integral power. �

In particular, when either k ≥ 2 or t > 0 is fixed, the X{t}[k] are pairwise non-
quasi-isometric.
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The proof indeed consists in proving that if G is a focal hyperbolic LC-group with
a continuous proper cocompact isometric action on X{t}[k], then $(G) = c log(k)/t,
where the constant c > 0 only depends on X. In particular, the last statement of the
theorem follows from the quasi-isometric invariance of $, while the first statement
follows from it as well as Dymarz’ invariance of the invariant q, and for the (easier)
converse, relies on Proposition 19.70.

19.6.3. Quasi-isometric amenable and non-amenable hyperbolic LC-groups.
The external classification can be asked in two (essentially) equivalent but intuitively
different ways:

• Which amenable hyperbolic LC-groups are QI to hyperbolic LC-groups of
general type?
• Which hyperbolic LC-groups of general type are QI to amenable hyperbolic

LC-groups?

These questions are equivalent but they can be specified in different ways. A
potential full answer is given by the following conjecture:

Recall from Definition 19.75 that a hyperbolic LC-group is special if and only if
it is both commable to amenable and non-amenable LC-groups and quasi-special if
it is quasi-isometric to a special hyperbolic group. Such groups have a very peculiar
form, see Proposition 19.76 for characterizations.

Conjecture 19.96. Let G be a hyperbolic LC-group. Then G is quasi-isometric to
both an amenable and a non-amenable CGLC-group if and only if G is quasi-special
hyperbolic.

Remark 19.97. The “if” part of the conjecture is clear. Conjecture 19.96 is a
coarse counterpart to [CCMT15, Theorem D], which is transcribed here as Case (b)
of Theorem 19.1 or as the equivalence (i)⇔(ii) of Proposition 19.76.

Proposition 19.98. Conjecture 19.86 specified to H of general type is equivalent
to Conjecture 19.96.

Proof. Suppose that Conjecture 19.86 holds for H of general type. Let G be as in
Conjecture 19.96; if G is quasi-isometric to the trivalent tree then it is quasi-special;
otherwise G is then quasi-isometric, and hence commable by the (partial) validity
of Conjecture 19.86, to both focal (not of totally disconnected type) and non-focal
hyperbolic LC-groups. We conclude by Proposition 19.76 that G is special.

Conversely assume Conjecture 19.96 holds. Suppose that G,H are quasi-isometric
hyperbolic LC-groups with G focal not of totally disconnected type and H of general
type. By the validity of Conjecture 19.96, each of G and H is quasi-special, and
hence special by Proposition 19.76. Thus again by Proposition 19.76(ii), G and H
commable to the isometry group of a rank 1 symmetric space of noncompact type;
since non-homothetic rank 1 symmetric spaces of noncompact type are not quasi-
isometric, we get the same group for G and H and thus they are commable. �

We now wish to specify Conjecture 19.96.

Conjecture 19.99. Let H = N o R be a purely real Heintze group of dimension
≥ 2. Then either H is special, or H is not quasi-isometric to any vertex-transitive
finite valency graph.

Remark 19.100. The special role played by those purely real Heintze that are
“accidentally” special make the conjecture delicate.
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Lemma 19.101. Assume that H is a non-special purely real Heintze group of dimen-
sion ≥ 2 . Then any CGLC group G quasi-isometric to H is either focal hyperbolic
of connected type (as defined in §19.2.5), or is compact-by-(totally disconnected). If
moreover H satisfies Conjecture 19.99, then G is focal hyperbolic of connected type.

Proof. If G is focal, its boundary is a sphere, it is of connected type.
Otherwise G is of general type. By Theorem 19.25, H is not quasi-isometric to a

rank 1 symmetric space of noncompact type and therefore G is compact-by-(totally
disconnected). In particular, H is quasi-isometric to a vertex-transitive connected
finite valency graph, and this is a contradiction in case Conjecture 19.99 holds. �

Using a number of results reviewed above, we can relate the two conjectures.

Proposition 19.102. Conjectures 19.96 and 19.99 are equivalent.

Proof. Assume Conjecture 19.96 holds. Consider H as in Conjecture 19.99, quasi-
isometric to a vertex-transitive finite valency graph X. Then H is quasi-isometric to
Isom(X); if the latter is focal, being totally disconnected, it is of totally disconnected
type, hence its boundary is totally disconnected, contradicting Corollary 19.18. So
Isom(X) is of general type; the validity of Conjecture 19.96 then implies that H is
special.

Conversely assume Conjecture 19.99 holds. Let G be quasi-isometric hyperbolic
LC-groups G1, G2, with G1 of general type and G2 focal; we have to show that G is
special. By Corollary 19.22, G2 is either of totally disconnected or connected type.
In the first case, G2 is special. Since by Proposition 19.76 being special hyperbolic
is a quasi-isometry among CGLC-groups, we deduce that G is special. In the second
case, by Proposition 19.65, G2 is commable to a purely real Heintze group H. If by
contradiction H is not special, since it satisfies Conjecture 19.99, by Lemma 19.101
G1 is focal, a contradiction. �

Remark 19.103. Another restatement of the conjectures is that the class of non-
special focal hyperbolic LC-groups is closed under quasi-isometries among CGLC-
groups.

Let us now give a more precise conjecture.

Conjecture 19.104 (Pointed sphere Conjecture). Let H be a purely real Heintze
group of dimension ≥ 2. Let ω be the H-fixed point in ∂H. If H is not isomorphic
to the minimal parabolic subgroup in any simple Lie group of rank one, then every
quasi-symmetric self-homeomorphism of ∂H fixes ω.

The justification of the name is that the boundary ∂H naturally comes with
a distinguished point; topologically this point is actually not detectable since the
sphere is topologically homogeneous, but the quasi-symmetric structure ought to
distinguish this point, at the notable exception of the cases for which it is known
not to do so.

In turn, the pointed sphere Conjecture implies Conjecture 19.99. More precisely:

Proposition 19.105. Let H satisfy the pointed sphere Conjecture. Then it also
satisfies Conjecture 19.99.

Proof. Let H satisfy the pointed sphere Conjecture. If H is minimal parabolic, both
conjectures are tautological, so assume the contrary. Assume by contradiction that
H is QI to a vertex-transitive graph X of finite valency. The action of Isom(X) on
its boundary is conjugate by a quasi-symmetric map to a quasi-symmetric action
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Figure 2. A pointed 2-sphere: the boundary of a generic hyperbolic
semidirect product R2 o R.

on ∂H. By assumption, this action fixes a point. So Isom(X) is focal of totally
disconnected type, contradicting Corollary 19.18. �

Theorem 19.106 (Pansu, Cor. 6.9 in [Pa89d]). Consider a purely real Heintze
group N o R, not of Carnot type (see Definition 19.23). Suppose in addition that
the action of R on the Lie algebra n is diagonalizable. Then H satisfies the pointed
sphere Conjecture.

In case N is abelian, the assumption is that the contracting action of R is not
scalar (in order to exclude minimal parabolic subgroups in PO(n, 1) = Isom(Hn

R)).

Theorem 19.107 (Carrasco [?]). The pointed sphere Conjecture for all purely real
Heintze groups that are not of Carnot type.

In the particular case of Heintze groups of the form H = N o R holds with N
abelian, this was previously proved by X. Xie [Xi14] with different methods.

Theorem 19.106 covers all cases when H has dimension 3 (i.e. N has dimension 2),
with the exception of the semidirect product R2oR with action by the 1-parameter

group (Ut)t∈R where Ut =

(
et tet

0 et

)
, which is dealt with specifically in [Xi12].

In Xie’s Theorem (the pointed sphere conjecture for H = NoR with N abelian),
the most delicate case is that of an action with scalar diagonal part and nontrivial
unipotent part; it is not covered by Pansu’s Theorem 19.106. In turn, the first ex-
amples of purely real Heintze groups not covered by Xie’s theorem are semidirect
products Hei3oR, where Hei3 is the Heisenberg group, with the exclusion of the min-
imal parabolic subgroup Carn(Hei3) (see Remark 19.24) in PU(2, 1) = Isom(H2

C). If
the action on (Hei3)ab = Hei3/[Hei3,Hei3] has two distinct eigenvalues, then Pansu’s
Theorem 19.106 applies. The remaining case of the pointed sphere Conjecture for
dim(H) = 4 is the one for which the action on (Hei3)ab has is not diagonalizable but
has scalar diagonal part, and is covered by Carrasco’s theorem.

The remaining cases of the pointed sphere conjecture are now those Heintze groups
of Carnot type Carn(N). Note that if N is abelian or is a generalized (2n + 1)-
dimensional Heisenberg group Hei2n+1 (characterized by the fact its 1-dimensional
center equals its derived subgroup), then Carn(N) is minimal parabolic. Therefore,
the first test-cases would be when N is a non-abelian 4-dimensional simply connected
nilpotent Lie group: there are 2 such Lie groups up to isomorphism: the direct
product Hei3×R and the filiform Lie group Fil4, which can be defined as (R[x]/x3)o
R where t ∈ R acts by multiplication by (1 + x)t = 1 + tx+ t(t−1)

2
x2.

19.6.4. Conjecture 19.88 and quasi-symmetric maps. An important tool, given
a geodesic hyperbolic space and ω ∈ ∂X, is the visual parabolic metric on the “par-
abolic boundary” ∂X r {ω}. Note that unlike the visual metric, these are generally
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unbounded. It shares the property that any quasi-isometric embedding f : X → Y
induces a quasi-symmetric embedding ∂X r {ω} → ∂Y r {f̄(ω)}. This follows
from the corresponding fact for visual metrics and the fact that the embedding
∂X r {ω} ⊂ ∂X is quasi-symmetric [SX12, Section 5].

The parabolic boundaries and the quasi-symmetric homeomorphisms between
those are therefore important tools in the study of quasi-isometry classification and
notably Conjecture 19.88. Let us include the following simple lemma.

Lemma 19.108. Let G,G′ be focal hyperbolic LC-groups and ω, ω′ the fixed points
in their boundary. Suppose that there exists a quasi-isometry f : G → G′. Then
there exists a quasi-isometry u : G→ G′ such that ū maps ω to ω′.

Proof. If f̄(ω) = ω′ there is nothing to do. Otherwise, since G is transitive on
∂Gr {ω}, there is a left translation v on G such that v̄(f̄−1(ω′)) 6= f̄−1(ω′). Then

f̄ v̄f̄−1 = fvf−1 is a quasi-symmetric self-homeomorphism of ∂G′ not fixing ω′, so
the group of quasi-isometries generated by fvf−1 and by left translations of G′ is
transitive on ∂G′. Thus after composition of f by a suitable quasi-isometry in this
group, we obtain a quasi-isometry u such that ū maps ω is mapped to ω′. �

If G is a focal hyperbolic LC-group of connected type, with no nontrivial compact
normal subgroup, and N is its connected nilpotent radical, then the action of N on
∂Gr{ω} is simply transitive and the visual parabolic metric induces a left-invariant
distance on N . When G is of Carnot type (see §19.2.7), this distance is equivalent
(in the bilipschitz sense) to the Carnot-Caratheodory metric. In general I do not
know how to describe it directly on N .

19.6.5. Further aspects of the QI classification of hyperbolic LC-groups.
This final subsection is much smaller than it should be. It turns around the general
question: how is the structure of a hyperbolic LC-group of general type related to
the topological structure of its boundary?

The following theorem is closely related, in the methods, to the QI classification
of groups quasi-isometric to the hyperbolic plane. It should be attributed to the
same authors, namely Tukia, Gabai, and Casson-Jungreis, to which we need to add
Hinkkanen in the non-discrete case.

Theorem 19.109. Let G be a hyperbolic LC-group. Then ∂G is homeomorphic to
the circle if and only if G has a continuous proper isometric cocompact action on
the hyperbolic plane.

Proof. The best-known (and hardest!) case of the theorem is when G is discrete.
See for instance [KB02, Theorem 5.4]. It immediately extends to the case when G
is compact-by-discrete (i.e. has an open normal compact subgroup).

Assume now that G is not compact-by-discrete. Consider the action α : G →
Homeo(∂G) on its boundary by quasi-symmetric self-homeomorphisms. Endow
Homeo(∂G) with the compact-open topology, which (for some choice of metric on
∂G) is the topology of uniform convergence; the function α is continuous. Since
G is non-elementary hyperbolic, the kernel of α is compact, and therefore by as-
sumption the image α(G) is non-discrete. We can then apply Hinkkanen’s theorem
about non-discrete groups of quasi-symmetric self-homeomorphisms [Hi90]: after
fixing a homeomorphism identifying ∂G with the projective line, α(G) is contained
in a conjugate of PGL2(R). Thus after conjugating, we can view α as a contin-
uous homomorphism with compact kernel from G to PGL2(R). It follows that
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H = G/Ker(α) is a Lie group. Since G is not compact-by-discrete, we deduce that
the identity component H◦ is noncompact.

If H is focal, then it acts continuously properly isometrically cocompactly on a
millefeuille space X[k]; the boundary condition implies that k = 1 (so X[k] = X)
and X is 2-dimensional, hence is the hyperbolic plane. Otherwise H is of general
type, and since H◦ is noncompact we deduce that H is a virtually connected Lie
group; being of general type it is not amenable, hence not solvable and we deduce
that the image of H in PGL2(R) has index at most 2. Thus in all cases G admits
a continuous proper cocompact isometric action on the hyperbolic plane. �

Conjecture 19.110. Let G be a compactly generated locally compact group. Suppose
that G is quasi-isometric to a negatively curved homogeneous Riemannian manifold
X. Then G is compact-by-Lie.

Proposition 19.111. Conjecture 19.110 is implied by Conjecture 19.96.

Proof. Suppose Conjecture 19.96 holds. Let G be as in Conjecture 19.110; its bound-
ary is therefore a sphere. If G is focal, then it is compact-by-Lie by Proposition 19.8.
Otherwise it is of general type. Since Isom(X) contains a cocompact solvable group
by [He74, Proposition 1], we deduce from Conjecture 19.96 that G has a continuous
proper isometric action on a symmetric space, which implies that it is compact-by-
Lie. �

It is a general fact that if the boundary of a non-focal hyperbolic LC-group con-
tains an open subset homeomorphic to Rn for some n ≥ 0, then the boundary is
homeomorphic to the n-sphere: see [KB02, Theorem 4.4] (which deals with the case
of finitely generated groups and n ≥ 2 but the proof works without change in this
more general setting).

Question 19.112. Let G be a hyperbolic locally compact group whose boundary
is homeomorphic to a d-sphere. Is G necessarily compact-by-Lie?

A positive answer to Question 19.112 would imply Conjecture 19.110, but, on the
other hand would only be a very partial answer to determining which hyperbolic
LC-groups admit a sphere as boundary, boiling down the question to the case of
discrete groups. At this point, Question 19.112 is open for all d ≥ 4. Still, it has a
positive answer for d ≤ 3 (and similarly Conjecture 19.110 has a positive answer for
dim(X) ≤ 4), by the positive solution to the Hilbert-Smith conjecture in dimension
d ≤ 3, which is due to Montgomery-Zippin for d = 1, 2 and J. Pardon for d = 3.

Interestingly, in the Losert characterization of CGLC-groups with polynomial
growth [Lo87], the most original part of the proof precisely consists in showing that
such a group is compact-by-Lie.

19.6.6. Beyond the hyperbolic case. Here is a far reaching generalization of
Conjecture 19.88. We call real triangulable Lie group a Lie group isomorphic to a
closed connected subgroup of the group of upper triangular real matrices in some
dimension. Equivalently, this is a simply connected Lie group whose Lie algebra
is solvable, and for which for each x in the Lie algebra, the adjoint operator ad(x)
has only real eigenvalues. The following conjecture appears in research statements
I wrote around 2010 as well as earlier talks.

Conjecture 19.113. Two real triangulable groups G1, G2 are quasi-isometric if and
only if they are isomorphic.
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Remark 19.91 provides some evidence: if G1, G2 admit isometric left-invariant
Riemannian structures (or, equivalently, admit simply transitive continuous isomet-
ric actions on the same Riemannian manifold), then they are isomorphic. (This fails
for more general simply connected solvable Lie groups: for instance both R3 and
the universal covering of Isom(R2) admit such actions on the Euclidean 3-space.)

Let us mention the important result that for a real triangulable group, the dimen-
sion dim(G) is a quasi-isometry invariant, by a result of J. Roe [Roe93].

A positive answer to Conjecture 19.113 would entail many consequences other
than the hyperbolic case, including the (internal) quasi-isometry classification of
polycyclic groups. A particular case is the case of polynomial growth.

Conjecture 19.114. Two simply connected nilpotent Lie groups G1, G2 are quasi-
isometric if and only if they are isomorphic.

The latter conjecture, specified to those simply connected nilpotent Lie group
admitting cocompact lattices, is equivalent to a more familiar (and complicated)
conjecture concerning finitely generated nilpotent groups, namely: two finitely gen-
erated nilpotent groups are quasi-isometric if and only if they have isomorphic real
Malcev closure (when a nilpotent Γ is not torsion-free and T is its torsion subgroup,
its real Malcev closure is by definition the real Malcev closure of Γ/T ). This is first
asked by Farb and Mosher in [FM00] (before their Corollary 10).

Let us mention that two finitely generated nilpotent groups are commensurable
if and only they have isomorphic rational Malcev closures. Thus any pair of non-
isomorphic finite-dimensional nilpotent Lie algebras g1, g2 such that g1 ⊗ R and
g2⊗R are isomorphic provides non-commensurable quasi-isometric finitely generated
nilpotent groups, namely G1(Z) and G2(Z), where Gi is the unipotent Q-group
associated to gi, and some Q-embedding Gi ⊂ GLn is fixed. The smallest examples,
according to the classification, are 6-dimensional. An elegant classical example is,
denoting by Hei2n+1 the (2n + 1)-dimensional Heisenberg group (2n + 1 ≥ 3) and

k is a positive non-square integer, Hei2n+1(Z) × Hei2n+1(Z) and Hei2n+1(Z[
√
k]) are

not commensurable, although they are both isomorphic to cocompact lattices in
Hei2n+1(R)2.

The main two results known in this directions are, in the setting of Conjecture
19.114:

• the real Carnot Lie algebras (see Remark 19.24) Carn(G1) and Carn(G2)
are isomorphic (Pansu [Pa89m]);
• (assuming that G1 and G2 have lattices) the real cohomology algebras of
G1 and G2 are isomorphic (Sauer [Sau06], improving Shalom’s result [Sh04]
that the Betti numbers are equal).

Pansu’s result supersedes a yet simpler result: for a simply connected nilpotent
Lie group G, both the dimension d and the degree of polynomial growth rate δ are
quasi-isometry invariant. This is obvious for the growth, while for the dimension
this follows from Pansu’s earlier result that the asymptotic cone is homeomorphic to
RdimG [Pa83]. This covers all cases up to dimension 4, since the only possible (d, δ)
are (i, i) (0 ≤ i ≤ 4), (3, 4), (4, 5), (4, 7), are achieved by a single simply connected
nilpotent Lie group ((i, i) are the abelian ones, (3, 4) is the 3-dimensional Heinsen-
berg H3 and (4, 5) is its product with R, and (4, 7) is the filiform 4-dimensional Lie
group, of nilpotency length 3).

In dimension 5, there are 9 simply connected nilpotent Lie groups up to isomor-
phism. They are denoted L5,i in [Gr07] with 1 ≤ i ≤ 9, and only two are not Carnot:
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L5,5 and L5,6. Their degree of polynomial growth rate are 5, 6, 8, 6, 8, 11, 11, 7,
10 respectively. This only leaves three pairs not determined by the quasi-isometry
invariance of (d, δ); the first is L5,2 and L5,4, where L5,2 ' H3 ×R2 and L5,4 ' H5

are distinguished by Pansu’s theorem. The other two pairs we discuss below are L5,3

and L5,5 on the one hand, L5,6 and L5,7 on the other hand.

• For L5,3 and L5,5, the Betti numbers are (1, 3, 4, 4, 3, 1), and Carn(L5,5) '
L5,3 (they have growth exponent 8); thus they are distinguished neither by
Pansu’s theorem, nor by Shalom’s theorem. A basis for the Lie algebra l5,i
for i = 3, 5 is given as (a, b, c, d, e) with for both, nonzero brackets [a, b] = c,
[a, c] = e, and for l5,5 the additional nonzero bracket [b, d] = e. Note that
l5,3 is the product of the 1-dimensional Lie algebra and the 4-dimensional
filiform Lie algebra.

However, they are distinguished by Sauer’s theorem: indeed, the cup
product S2(H2(l5,i)) → H4(l5,i) has rank 1 (in the sense of linear algebra)
for l5,3 and 2 for l5,5. Thus the cohomology algebras are not isomorphic as
graded algebras.
• For both L5,7 and L5,6, the Betti numbers are (1, 2, 3, 3, 2, 1). We have

Carn(L5,6) ' L5,7 (they have growth exponent 11); thus they are distin-
guished neither by Pansu’s theorem, nor by Shalom’s theorem. A basis for
the Lie algebra l5,i for i = 7, 6 is given as (a, b, c, d, e) with for both, nonzero
brackets [a, b] = c, [a, c] = d, [a, d] = e, and for l5,6 the additional nonzero
bracket [b, c] = e. The Lie algebra l5,7 is the standard filiform 5-dimensional
Lie algebra.

Actually the graded cohomology algebras are isomorphic: both have a ba-
sis (1, a1, a2,
b5, b6, b7, c8, c9, c10, d13, d14, e15) so that the product is commutative with unit
1, H1 has basis (a1, a2), H2 has basis (b6, b7, b8), etc, and the nonzero prod-
ucts of basis elements except the unit are

– aid15−i = bjc15−j = e15;
– a1b7 = −2c8, a2b6 = c8, a2b7 = c9;
– b6b7 = d13, b7b7 = −2d14.

(it is commutative because the product of any two elements of odd degree is
zero). Thus L5,7 and L5,6, although non-isomorphic, are not distinguishable
by either Pansu or Sauer’s theorem. Thus they seem to be the smallest
open case of Conjecture 19.114 (note that being rational, they have lattices;
the rational structure being unique up to isomorphism, these lattices are
uniquely defined up to abstract commensurability). Still, these can be dis-
tinguished by the adjoint cohomology: H1(g, g) (the space of derivations
modulo inner derivations) has dimension 5 for l5,7 and 4 for l5,6; however
it is not known if this dimension is a quasi-isometry invariant for simply
connected nilpotent Lie groups.

It would be interesting to show that the adjoint cohomology of the Lie algebra is
a quasi-isometry invariant of simply connected nilpotent Lie groups (at least as a
real graded vector space): indeed, as mentioned by Magnin who did comprehensive
dimension computations in dimension ≤ 7 [Mag08], it is much more effective than
the trivial cohomology to distinguish non-isomorphic nilpotent Lie algebras.

Indeed, the classification of 6-dimensional nilpotent Lie algebras provides 34 iso-
morphism classes over the field of real numbers, 26 of which are not 2-nilpotent.
Among those, 13 are Carnot (over the reals); among those Lie algebras with the
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same Carnot Lie algebra, all have the same Betti numbers (i.e. the same trivial
cohomology as a graded vector space) with 2 exceptions, which provide, by the way,
the smallest examples for which Shalom’s result improves Pansu’s (Shalom [Sh04,
§4.1] provides a 7-dimensional example, attributed to Y. Benoist).

For the interested reader, we list the 6-dimensional real nilpotent Lie algebras,
referring to [Gr07] for definitions, according to their Carnot Lie algebra. Since the
Betti numbers and adjoint cohomology computations are done in [Mag08] with a
different nomenclature, we give in each case both notations.

• Nilpotency length 5:
– Carnot: l6,18 (standard filiform). Is the Carnot Lie algebra of 3 Lie

algebras: l6,i for i = 18, 17, 15. In [Mag08], they are denoted g6,j
with j = 16, 17, 19 (in the same order). All have the Betti numbers
(1, 2, 3, 4, 3, 2, 1). However they can be distinguished by adjoint coho-
mology in degree 1 (of dimension 6, 5, 4 respectively).

– Carnot: l6,16. Is the Carnot Lie algebra of 2 Lie algebras: l6,i for
i = 16, 14. Both have the Betti numbers (1, 2, 2, 2, 2, 2, 1).

• Nilpotency length 4:
– Carnot: l6,7 (product of a 5-dimensional standard filiform with an 1-

dimensional abelian one). Is the Carnot Lie algebra of 5 Lie algebras:
l6,i for i = 7, 6, 11, 12, 13. In [Mag08], they are denoted g5,5 × R,
g5,6 × R, and g6,j for j = 12, 11, 13. The first four have the Betti
numbers (1, 3, 5, 6, 5, 3, 1), while the last one has the Betti numbers
(1, 3, 4, 4, 4, 3, 1) and thus the corresponding group can be distinguished
by Shalom’s theorem (incidentally, the first 4 are metabelian while the
last one is not).

– Each of the last three Carnot Lie algebras of nilpotency length 4 are
only Carnot Lie algebras of itself. They are denoted l6,21(ε) for ε =
0, 1,−1; in [Mag08] they are denoted g6,14 and g6,15 (twice, the last two
having isomorphic complexifications).

• Nilpotency length 3:
– Carnot: l6,9. It is the Carnot Lie algebra of 4 Lie algebras (3 over the

complex numbers): l6,9, l6,24(1), l6,24(−1), and l6,24(0). (In [Mag08],
these are g5,4 × R, g6,5 (twice), and g6,8.) All have the same Betti
numbers (1, 3, 5, 6, 5, 3, 1). The dimension of the zeroth and first adjoint
cohomology distinguishes them, except the two middle ones having
isomorphic complexification.

– Carnot: l6,25. It is the Carnot Lie algebra of 2 Lie algebras: l6,i for
i = 25, 23. (In [Mag08], these are g6,j for j = 6, 7.) They both have
the Betti numbers (1, 3, 6, 8, 6, 3, 1). The dimension of the first adjoint
cohomology distinguished them.

– Carnot: l6,3. It is the Carnot Lie algebra of 3 Lie algebras: l6,i for
i = 3, 5, 10. (In [Mag08], these are g4 × R2, g5,3 × R, and g6,2.) The
first two have the Betti numbers (1, 4, 7, 8, 7, 4, 1), while the last one
has the Betti numbers (1, 4, 6, 6, 6, 4, 1). The first two, still, can be
distinguished by adjoint cohomology in degree 0 (i.e., they have centers
of distinct dimension), and also in degree 1.

– Each of the last four Carnot Lie algebras of nilpotency length 3 are
only Carnot Lie algebras of itself. They are denoted l6,19(0), l6,19(1),
l6,19(−1), and l6,20, and are called in [Mag08] g6,4, g6,9 for the two middle
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one which have isomorphic complexification, and g6,10. They have Betti
numbers (1, 3, 6, 8, 6, 3, 1) for the first one and (1, 3, 5, 6, 5, 3, 1) for the
last three ones.

• Nilpotency length ≤ 2. They are all Carnot and thus distinguished by
Pansu’s theorem. They are denoted l6,26, l6,22(ε) for ε = 0, 1,−1, and l6,i
for i = 8, 4, 2, 1, and in [Mag08] they are denoted g6,3, g6,1, g3 × g3 (twice),
g5,2 ×R, g5,1 ×R, g3 ×R3, and R6.

Note that in all the cases above distinguished neither by Pansu nor by Shalom’s
theorem, I have not computed the cup product in cohomology and thus have not
checked in which cases they are distinguished by Sauer’s theorem.
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[Pa89d] P. Pansu. Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann.

Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212.
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