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Abstract. This paper contains several results about the Chabauty space of
a general locally compact abelian group. Notably, we determine its topological
dimension, we characterize when it is totally disconnected or connected; we
characterize isolated points.

1. Introduction

Let X be a locally compact Hausdorff space. The set F(X) of closed subsets
can be endowed with the Chabauty topology, which makes it a compact Hausdorff
space. For this topology, a net (Yi) converges to Y if and only if (Yi ∪ {∞})
converges to Y ∪{∞} in the Hausdorff topology of the one-point compactification
of X. When X is second countable, F(X) is metrizable. See details in §2.1. If
G is a locally compact group, the set S(G) of closed subgroups of G is closed in
F(G) and therefore is compact Hausdorff as well.

Introduced by Chabauty in [Cha], the Chabauty topology has been studied in
[HP, Pro, PT, PT2, FG1, FG2, BHK, Klo, Ha], and more specifically for discrete
groups in [Gri, Chm, CGP, CGPab]. The fine study of S(G) is subtle even for
apparently simple examples. While it is readily seen that S(R) is homeomorphic
to a segment, a tricky argument due to Hubbard and Pourezza [HP] shows that
S(R2) is homeomorphic to the 4-sphere. For n ≥ 3, S(Rn) is known to be
singular (i.e. not a topological manifold even with boundary) but Kloeckner [Klo]
showed that S(Rn) has a natural “stratification” which in particular makes it
a simply connected and locally contractible space; however S(Rn) has not yet
unveiled all its mysteries and for instance it is still unknown whether it can be
triangulated. Besides, Haettel [Ha] gave a full description of the space S(R×Z),
showing in particular that it is path-connected but not locally connected, and
has uncountable fundamental group.

Our first result, which underlies the proof of all others, is the continuity of
the orthogonal map in Pontryagin duality. Let G be an LCA-group (by this
acronym we mean a locally compact abelian group). Under the topology of
uniform convergence on compact subsets, the abelian group G∨ = Hom(G,R/Z)
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is locally compact, and the main result in Pontryagin duality is that the natural
homomorphism G → (G∨)∨ is a topological group isomorphism. In Bourbaki
[Bou, Chap. II.2], Pontryagin duality is used to deduce fundamental results in
the structure theory on LCA-groups. One of the results [Bou, Chap. II.1, no. 7]
is that the orthogonal map

S(G) → S(G∨)

H 7→ Hf = {φ ∈ Hom(G,R/Z) : φ(H) = 0}
is a bijection.

Theorem 1.1. Let G be an LCA-group group. Then the orthogonal map S(G)→
S(G∨), mapping H ⊂ G to its orthogonal Hf, is a homeomorphism.

We refer to this result as Pontryagin-Chabauty duality, and we develop con-
sequences on the general structure of the space S(G). The next theorem deals
with the topological (or covering) dimension, which is a (possibly infinite) in-
teger number tdim(X) associated to any topological space X, invariant under
homeomorphism, and for which tdim(Rn) = n for all n. See §2.2 for details.

Theorem 1.2 (Theorem 8.7). If G is any LCA-group, then the topological (cov-
ering) dimension of S(G) is given by

tdim(S(G)) = tdim(G)tdim(G∨),

where 0∞ =∞0 = 0. In particular, if G = Rd × Z` ×R/Zm then

tdim(S(G)) = (d+ `)(d+m).

Several characterizations of tdim(G) and tdim(G∨) are recalled in §2.8. Theo-
rem 1.2 is based on the special case

tdim(S(Rd)) = d2,

which holds because its has a decomposition into finitely many orbits under the
action of GLd(R), each of which is a manifold of dimension at most d2, and one of
which is exactly d2-dimensional, namely the set of lattices (see Proposition 8.2).

If G is an LCA-group, from classical theory it can be written as Rk ×M so
that M has a compact open subgroup; the finite number R(G) = k is uniquely
defined (see §2.6). The following results bring out a dichotomy between the case
R(G) = 0 (i.e. G is compact-by-discrete) and the case R(G) ≥ 1.

Theorem 1.3 (Section 7). Let G be an LCA-group with R(G) ≥ 1. Then S(G) is
connected. If moreover G is a Lie group and is compactly generated (i.e. G/G0 is
finitely generated, where G0 is the unit component), then S(G) is path-connected.

The connectedness statement was obtained in [PT2] (see the discussion in Sec-
tion 7). Nevertheless, Proposition 7.5 exhibits countable discrete abelian groups
A such that S(R× A) is not path-connected.



ON THE CHABAUTY SPACE OF LCA GROUPS 3

Example 1.4. By Theorems 1.2 and 1.3, if G is an LCA-group, then S(G) is
both connected and one-dimensional if and only if G ' R × H, where H is
profinite-by-(discrete torsion). In many cases, like R ×Qp, it also follows from
Theorem 7.4 that S(G) is path-connected. It would be interesting to have a closer
look into S(G) for those examples.

If X is compact Hausdorff space, we define π0(X) as the quotient of X by its
partition by connected components. By [BouT, II.4.4, Proposition 7], π0(X) is
compact, Hausdorff and totally disconnected. Section 6 studies LCA-groups G
with R(G) = 0 and more precisely the connected components of S(G). For such
groups, it is readily observed that S(G) is not connected unless G = {0} (this
is for instance a particular case of a result in [PT2] pertaining to non-abelian
locally compact groups). Our results yield in particular

Theorem 1.5. Let G be an LCA-group with R(G) = 0. Then

• π0(S(G)) is infinite if and only if G is infinite;
• every connected component of S(G) is homeomorphic to a compact group;

if G is a compactly generated Lie group, these components are tori.
• S(G) is totally disconnected if and only if G is either totally disconnected

or elliptic (i.e. is the union of its compact subgroups).

Also, Theorem 6.9 gives a structure result for LCA-groups for which S(G) has
countably many connected components. We extract from it

Theorem 1.6. Let G be an LCA-group which is neither discrete nor compact.
Then S(G) has (at most) countably many connected components if and only if
one of the following three conditions holds

• G = Q` × Zm ×Cn∞ × F , where F is finite, `,m, n ≥ 1, ` is prime with
mn;
• G = K × D × F with D torsion-free discrete, K compact connected, F

finite, and S(D) and S(K) are countable;
• R(G) ≥ 1.

Note that in the first case G is both elliptic and totally disconnected so S(G)
is countable itself, while in the second case S(G) is not totally disconnected by
Theorem 1.5. Note that the case when G is discrete (characterization of abelian
groups with countably many subgroups) is done in [Boy] (see Proposition 6.8) and
the compact case follows by Pontryagin duality. Note that the proof of Theorem
1.6 involves an intrinsic characterization of finite direct products of p-adic groups
Qp (see Lemma 6.10).

The next result concerns isolated points. When G is a discrete abelian group,
a necessary and sufficient condition for a subgroup H to be isolated in S(G)
is that H is isolated in S(H) and {1} is isolated in S(G/H) (see for insytance
[CGPab]). However when G is not assumed discrete, this condition obviously
remains necessary but is not sufficient: for instance Z is not isolated in S(R).
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The characterization of isolated points goes as follows (we refer to §2.4 for the
definition of Artinian and adic groups)

Theorem 1.7. Let G be an LCA-group and H a closed subgroup. Then H is an
isolated point in S(G) if and only if we are in one of the two (dual to each other)
cases

(1) H ' A× P , G/H ' D, A finitely generated abelian, P adic, D Artinian
(so G is totally disconnected);

(2) H ' P , G/H ' T ×D, P adic, T torus, D Artinian (so G is elliptic).

In [CGPab], the study was pursued to a complete description of the homeo-
morphism type of S(G), when G is a countable discrete abelian group. It would
be interesting to generalize this to second countable, totally disconnected LCA-
groups. Among those groups, those for which this question is nontrivial have a
very special form: they have to lie in an exact sequence

0→ A× P → G→ D → 0

with A, P , D as in Theorem 1.7(1), since if G is not of this form, by the same
theorem, S(G) has no isolated point and therefore is a Cantor space.
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[Eng] which led to a substantial simplification of computation of the dimension
of S(Rd).

2. Preliminaries

This section recalls definitions and basic results used throughout the paper.

2.1. The Chabauty topology. Recall that if X is a locally compact space, we
denote by F(X) the set of closed subsets of X. This set has several natural
topologies. The one of interest for us is called the Chabauty topology (or com-
pact topology), and is compact Hausdorff. It appears in an exercise by Bourbaki
[BouI, Chap. 8, §5] and was reintroduced by Narens [Nar] in the context and
language of non-standard analysis and its description in standard terms was then
provided by Wattenberg [Wat]. Given a compact subset K ⊂ X and open subsets
U1, . . . , Uk ⊂ X, define

Ω(K;U1, . . . , Uk) = {F ∈ F(X) : F ∩K = ∅;∀i, F ∩ Ui 6= ∅};
these set form the basis of the Chabauty topology on F(X).

The reader can prove as a simple exercise the following characterization of
converging nets in F(X).

Lemma 2.1. For a net (Fi) of closed subsets of X and F ∈ F(X), we have
equivalences

• Fi → F in the Chabauty topology;
• for every compact subset K and any open subsets U1, . . . , Uk with F ∩K =
∅ and F∩Uj 6= ∅ for each j, we have eventually Fi∩K = ∅ and Fi∩Uj 6= ∅
for each j;
• for every x ∈ F and every neighbourhood V of x, we eventually have
Fi ∩ V 6= ∅, and for every x ∈ X −F there exists a neighbourhood V of x
such that eventually Fi ∩ V = ∅.

From the latter characterization it is straightforward that if X = G is a locally
compact group, then S(G) is closed in F(X); in this specific case and under
countability assumptions, this topology was introduced by Chabauty [Cha].

2.2. Dimension of topological spaces. We recall briefly several notions of
dimension. For details see [HW]. Let X be a topological space. If U = (Ui)i∈I is
an open covering of X, define its degree as

deg(U) = sup

{
n : ∃J ⊂ I, #J = n,

⋂
i∈J

Ui 6= ∅

}
,

and the topological dimension (or covering dimension) tdim(X) of X is defined
as the smallest n such that every open covering of X can be refined to an open
covering with degree ≤ n + 1 (by convention tdim(∅) = −1). This dimension is
well-behaved in many respects, for instance tdim(Rn) = n.
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The inductive dimension indim(X) of a topological space X is defined induc-
tively as follows: indim(X) = −1 if and only if X = ∅; otherwise indim(X) ≤ n
if and only if every x ∈ X has a basis of closed neighbourhoods (Vi) such that
for each i, the boundary of Vi in X has inductive dimension ≤ n− 1.

These dimensions are related. Let us state, for later reference

Proposition 2.2.

(1) By a theorem of Urysohn (see [HW]), if X is a separable metrizable space,
then indim(X) = tdim(X). This applies in particular to X = S(G) when
G is a second countable locally compact group.

(2) By a theorem of Pasynkov [Pas], if G is a locally compact group, then
indim(G) = tdim(G).

(3) A theorem of Aleksandrov (see [Isb]) states that if X is any compact Haus-
dorff space then tdim(X) ≤ indim(X); this is an equality when X is
metrizable by (1) but not for general compact Hausdorff spaces [Vop].

(4) The topological dimension of an inverse limit of Hausdorff compact spaces
of topological dimension ≤ k is also ≤ k [Kat].

2.3. Scattered spaces. A topological space is scattered if every non-empty sub-
set has an isolated point, or equivalently if every non-empty closed subset has
an isolated point. Every countable compact Hausdorff space is scattered, as a
consequence of the Baire Category Theorem.

2.4. Subclasses of groups. Recall that, for n ≥ 2, the Prüfer group Cn∞ is
defined as the inductive limit of the groups Cnk = Z/nkZ; in particular Cn∞ '
Z[1/n]/Z and is the direct product of Cp∞ where p ranges over distinct prime
divisors of n. Similarly, the ring Zn of n-adic numbers is defined as the projective
limit of the groups Z/nkZ and is the product of Zp where p ranges over distinct
prime divisors of n. Also, Qn denotes the product of p-adic fields Qp when p
ranges over distinct divisors of n, and we call a group local if it is isomorphic to
a finite direct product of Qp (distinct or not).

Recall that a discrete abelian group is artinian if it satisfies the descending
condition on subgroups (no infinite decreasing chain), or equivalently is a finite
direct product of Prüfer groups and finite groups. We say here that an LCA-
group is adic if it is a finite direct product of finite groups and groups of the form
Zn for some (non-fixed) n.

We call torus a group of the form Rk/Zk.
An abelian A (without topology) is divisible if the map g 7→ ng is surjective

for all n ≥ 1. This is equivalent to the fact that whenever A is a subgroup
of an abelian group B, it has a direct factor in B. An LCA-group is divisible
if the underlying discrete group is divisible. A connected LCA-group is always
divisible; conversely a compact divisible LCA-group is connected.

An LCA-group G is elliptic if any element belongs to a compact subgroup; it
actually implies that any compact subset belongs to a compact subgroup. It is
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the same as compact-by-(discrete torsion). The largest elliptic subgroup of an
LCA-group is a closed subgroup, denoted by EG.

If G is a compact group and I an abstract set, the full direct product GI is
still a compact group. If G is a discrete group, the restricted direct product G(I)

is defined as the set of finitely supported functions I → G, and is endowed with
the discrete topology.

A compact group is always a filtering projective limit of compact Lie groups.
(We only use this fact in the abelian case, where it is a plain consequence of
Pontryagin duality.)

2.5. On Pontryagin duality. The following tables shows various groups or
classes of LCA-groups, in correspondence by Pontryagin duality. See [Bou,
Chap. II.2] for details.

G G∨

R R
Qp Qp

Z/nZ Z/nZ
Z R/Z
Zp Cp∞

class C C∨
discrete compact

Lie compactly generated
totally disconnected elliptic
discrete torsion-free connected compact

discrete torsion profinite
discrete artinian adic

discrete finitely generated torus-by-finite

2.6. The invariant R. Let G be an LCA-group. Define

R(G) = sup{k| Rk is isomorphic to a direct factor of G}.
The following result is contained in [Bou, II.2, Proposition 3(i)]

Proposition 2.3. Every LCA-group G is isomorphic to the direct product of Rk

and a compact-by-discrete group.
If G is a compactly generated abelian Lie group, then it isomorphic to Rk ×

Z` × (R/Z)m × F with F finite and k, `,m non-negative integers.

From this, we immediately derive the following results.
Lemma 2.4.

• If G1 is an open subgroup of G2, then R(G1) = R(G2).
• If K is a compact subgroup of G then R(G/K) = R(G).
• For every LCA-group, R(G) <∞.
• We have R(G) = 0 if and only if G is compact-by-discrete.
• R(G) = R(G∨).
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2.7. On connected groups.

Lemma 2.5. If a connected compact LCA-group G is non-trivial, then it contains
a nontrivial path.

Proof. As G∨ is a non-trivial discrete torsion-free abelian group (see §2.5), we
have Hom(G∨,R) 6= 0. By Pontryagin duality, Hom(R, G) is non-trivial as well.
In particular, G contains non-trivial paths. �

Lemma 2.6. Let D be a torsion-free discrete abelian group and Q a connected
compact abelian group. If both D and Q are non-zero, then Hom(D,Q) is a
non-trivial compact connected group.

Proof. We have a non-zero element f in Hom(D,R) and by Pontryagin duality,
we can find a non-zero g in Hom(R, Q) as well. By composing g by λf for suitable
λ > 0, we get a non-trivial element in Hom(D,Q).

As D is a direct limit of groups of the form Zk, Hom(D,Q) is a projective
limit of groups of the form Hom(Zk, Q) = Qk which are compact and connected.
Therefore Hom(D,Q) is compact and connected as well. �

2.8. Dimension of LCA-groups. We deal here with the topological dimension
because we need to use Proposition 2.2(4), but by (2) of the same proposition, it
coincides for locally compact groups with the inductive dimension. The following
lemma is a particular case of [Dix, Theorem 5]. Recall that all homomorphisms
are assumed to be continuous.

Lemma 2.7. If G is an LCA-group, H a closed subgroup and f : H → R a
homomorphism, then f can be extended to a homomorphism G→ R.

Proof. Let K be a compact subgroup of G such that G/K is a Lie group whose
unit component is isomorphic to Rk. Working in G/K if necessary, we can
suppose K = 0. Let H1 be the inverse image in G of the torsion in G/H. Then f
has a unique extension to H1; in restriction to H1∩G0 this extension is continuous
as it essentially consists in extending a homomorphism from R` × Zm to R`+m.
Now there exists a direct factor of H1 ∩ G0 in G0, so f extends to H + G0, and
finally by injectivity of the Z-module R, we can extend f to all of G. �

Lemma 2.8. The following (possibly infinite) numbers are equal

• The supremum of k such that there exists a homomorphism G→ Rk such
that the closure of the image is cocompact
• The supremum of k such that Zk embeds discretely into G.

Proof. Suppose that G → Rk is a homomorphism whose image has cocompact
closure. Then the image contains a basis, hence a lattice, which lifts to a discrete
subgroup of G isomorphic to Zk.

Suppose that Zk embeds discretely into G. Consider the embedding of Zk

in Rk as a lattice. By Lemma 2.7, this can be extended to a homomorphism
G→ Rk whose image has cocompact closure. �
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Lemma 2.9. The following (possibly infinite) numbers are equal

• The topological dimension tdim(G);
• The supremum of k such that there exists a homomorphism Rk → G with

discrete kernel;
• The supremum of k such that (R/Z)k is a quotient of G.

Proof. Denote by a, b, c the corresponding numbers. By Lemma 2.8 and Pontrya-
gin duality, b = c. Clearly a ≥ b.

Let us prove a ≤ c. The three numbers are invariant if we replace G by an open
subgroup, so we suppose G/G0 compact. Therefore we can write G = R` × K
with K compact, and we write K as a filtering projective limit of compact Lie
groups Ki. If c = c(G) = k+ ` <∞, then c(Ki) ≤ k for all i, so Ki is a compact
Lie group of dimension at most k, hence of topological dimension at most k.
By Proposition 2.2(4), K has dimension at most k, so G has dimension at most
k + `. �

By Pontryagin duality again, we get

Corollary 2.10. The numbers in Lemma 2.8 are also equal to the topological
dimension of G∨.

We will also need the following lemma.

Lemma 2.11. Let G be an LCA-group and k = R(G). There exist abstract sets
I, J , a compact subgroup K in G and an open subgroup H containing K, such
that

• H/K is isomorphic to Z(I) × (R/Z)J ×Rk,
• dim(G) = dim(H/K) = k + #J , and
• dim(G∨) = dim((H/K)∨) = k + #I.

(Here the cardinal of an infinite set is just ∞.)

Proof. In view of Proposition 2.3, we can suppose G has a compact open sub-
group M . Consider a maximal free subgroup H/M in the discrete group G/M .
Obviously dim(G) = dim(H), and since G/H is torsion, it follows from Corollary
2.10 that dim(G∨) = dim(H∨). Apply this to find, by duality, a closed group K
of M such that (M/K)∨ is maximal free abelian, so dim(H) = dim(H/K) and
dim(H∨) = dim((H/K)∨). Now M/K is connected, hence divisible, and open in
H/K, so has a direct factor. So H/K is isomorphic to Z(I) × (R/Z)J for some
sets I, J . �

3. Pontryagin-Chabauty duality

Theorem 1.1 is stated in [Pro], and the short and elementary proof given therein
consists in an elegant reduction to the case of a Euclidean space, but the latter
case is only considered there as “easily verified”. Also, continuity of the orthogo-
nal map in S(Rd) is asserted in [Klo, Section 2.4]. We here give a detailed proof
of this not-so-obvious fact.
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Theorem 3.1. Let V be a finite-dimensional real vector space. The orthogonal
map S(V )→ S(V ∨), is a homeomorphism.

We need a few preliminary results.

Lemma 3.2. Let W be a closed subgroup of V and Γ a lattice in W . Let (Wn)
be a sequence of closed subgroups of V such that Wn → W . Then there exists
An ∈ GL(V ) with An → 1 and Γ ⊂ AnWn.

Proof. We can suppose V = Rd with canonical basis (e1, . . . ), W = Rk × Z` ×
{0}d−k−`, Γ = Zk+` × {0}d−k−`.

We can pick, for i ≤ k + `, e
(n)
i ∈ Wn so that e

(n)
i → ei for all i. Consider

the linear map Bn mapping each ei to e
(n)
i (agree e

(n)
i = ei for i > k + `). Then

Bn → 1, so eventually Bn has an inverse An, and Γ ⊂ AnWn. �

When V is a finite-dimensional real vector space, there is a canonical identi-
fication between the (ordinary) dual V ∗ and the Pontryagin dual V ∨, given by
composition of a linear mapping V → R by the natural projection R → R/Z.
Then if W a closed subgroup of V , Wf corresponds under this identification to

{L ∈ V ∗| ∀v ∈ W, 〈v, L〉 ∈ Z},

which is called, when W is a lattice, the dual lattice. If A ∈ GL(V ), then it is
immediate that (AW )f = (At)−1Wf, where At ∈ GL(V ∗) is the adjoint map of
A.

Lemma 3.3. Let W be a closed subgroup of V and Γ a lattice in W . Let Wn

be a sequence of closed subgroups of V such that Wn → W . Suppose that Wn

eventually contains Γ. Then Wn ∩W 0 → W 0 (the unit component of W ).

Proof. Let w ∈ W 0. Then there exists a sequence wn ∈ Wn with wn → w.
Set R = d(W 0,W − W 0). We can suppose d(wn,W

0) ≤ 2R/3 for all n. If
wn /∈ W 0 for infinitely many n’s, we can find a positive integer mn such that
d(mnwn,W

0) = mnd(wn,W0) ∈ [R/3, 2R/3]. Now we can find γn ∈ Γ such that
the sequence (mnwn − γn) is bounded. By assumption it belongs to Wn, and
d(mnwn − γn,W

0) ∈ [R/3, 2R/3]. So it has a cluster value x with d(x,W 0) ∈
[R/3, 2R/3], so x /∈ W , butWn → W forces x ∈ W , a contradiction, i.e. wn ∈ W 0

for large n. �

Proposition 3.4. There exists a constant Cd with the following property. When-
ever Γ is a discrete subgroup of Rd with shortest vector of length ≥ R, then Γ∨

is ε-dense, with ε = Cd/R.

Proof. We can embed Γ into a lattice having the same shortest vector. This
reduces to the classical case of lattices, due to Mahler [Mah] (an elementary
approach provides Cd with an exponential upper bound with respect to d; nev-
ertheless a linear bound on Cd can be obtained [Ban]). �
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Proof of Theorem 3.1. We identify V = Rd. Suppose Hn tends to H = Rk×Z`×
{0}m (k+ l+m = d) and let us prove that H∨

n tends to {0}k ×Z`×Rm. Taking
subsequences if necessary, we can suppose these sequences converge. Clearly
the limit W of H∨

n is “R/Z-orthogonal” to H and therefore W is contained in
{0}k × Z` ×Rm.

In view of Lemma 3.2, we can suppose that Hn contains Zk+`×{0}m. (Indeed,

(AnHn) tends to H and (AnHn)f = (At
n)
−1
Hf

n tends to W .) We then claim that
the orthogonal projection of Hn onto {0}k+` ×Rm is a discrete subgroup Γn of
systole (shortest vector) tending to infinity. Indeed, if Hn contains an element of
the form (xn, yn, zn) with (zn) bounded and nonzero for infinitely many n’s, we
can first multiply these elements by integers so that ‖zn‖ ≥ 1 for infinitely many
n’s, and then by translating by elements of Zk+` × {0}m, which is contained in
Hn by assumption, we can suppose xn and yn are bounded. Then at the limit,
we obtain in H an element whose third coordinate is nonzero, a contradiction.
Thus Hn ⊂ Rk × Z` × Γn, and the systole of Γn tends to infinity. So

Hf
n ⊃ {0}k × Z` × Γf

n .

By Proposition 3.4, Γf
n tends to Rm. So W ⊃ {0}k × Z` × Rm and we are

done. �

Proof of Theorem 1.1. It is explained in [Pro] how Theorem 3.1 implies Theorem
1.1; we do not repeat the full argument here, but the reader can complete the
proof as follows:

• Show that the class C of LCA-groups G for which the orthogonal map
S(G)→ S(G∨) is continuous, is stable under taking

– closed subgroups;
– Pontryagin dual;
– direct limits (namely if every open compactly generated subgroup of
G is in C then G is in C).

• Check that the smallest class of (isomorphism classes of) LCA-groups
containing Rd for all d and closed under the three operations above is the
class of all LCA-groups. �

4. Isolated points

In this section, we prove Theorem 1.7.

Lemma 4.1. The subgroup {0} is isolated in S(G) if and only if G ' T × D,
with T ' (R/Z)k a torus, and D discrete Artinian.

Proof. Suppose {0} isolated. Then G does not contain any discrete copy of Z,
so is elliptic. Let U be a compact open subgroup. Then {0} is isolated in S(U),
so U∨ is isolated in S(U∨). As U∨ is discrete, this means that U∨ is finitely
generated (see [CGP]), so replacing U by a finite index subgroup, we can suppose
that U is a torus. As U is open and divisible, it has a direct factor D in G, which



12 YVES CORNULIER

is discrete. As {0} is isolated in S(D) as well, we deduce from [CGP, Lemma 4.1]
that D is Artinian.

Conversely, let us assume that T is a torus, D is Artinian, G = T ×D, and let
us prove that {0} is isolated in S(G). If D is finite, then the Pontryagin dual is
a finitely generated discrete abelian group, so G∨ is isolated in S(G∨), so {0} is
isolated in S(G). In general, if Dprime is the subgroup of D generated by elements
of prime order, it is easy to check that T ×Dprime−{0} is a discriminating subset
of T ×D, that is, every non-trivial subgroup of T ×D has non-trivial intersection
with T ×Dprime. Therefore since Dprime is finite, this reduces to the case when D
is finite and we are done. �

Lemma 4.2. The subgroup G is isolated in S(G) if and only if G ' A×P , with
A a finitely generated abelian group, and P an adic group.

Proof. Follows from Lemma 4.1 by Pontryagin-Chabauty duality. �

In the discrete setting, a necessary and sufficient condition for a subgroup H to
be isolated in S(G) is that H be isolated in S(H) and {0} be isolated in S(G/H).
In the locally compact setting, this does not hold any longer, although there is
essentially a unique obstruction, given by the following lemma.

Lemma 4.3. The subgroup Z× {0} is not isolated in S(Z×R/Z).

Proof. It is part of the continuous family of subgroups 〈(1, t)〉 for t ∈ R/Z. �

Proof of Theorem 1.7. Suppose that H is isolated. So H is isolated in S(H)
and {0} is isolated in S(G/H). By Lemmas 4.1 and 4.2, we deduce that H '
A × P , G/H ' T × D, with A finitely generated abelian, P adic, T torus, D
Artinian. Assume that simultaneously A is infinite and T is non-trivial. Then
we can embed S(Z×R/Z) into S(G), mapping Z to H. But Z is not isolated in
S(Z×R/Z) by Lemma 4.3, so H is not isolated.

Conversely, assume that H ' A× P , G/H ' D, A finitely generated abelian,
P adic, D Artinian. Suppose L is close enough to H. As H is clopen, this means
that L∩H is close to H, and as H is isolated in S(H) by Lemma 4.2, this implies
that L contains H. Now using that {0} is isolated in S(G/H), we deduce that
L = H, so H is isolated. The second case is equivalent by Pontryagin-Chabauty
duality. �

5. Some natural maps

Let G be an LCA-group. If Ω is an open subgroup, then the map S(G)→ S(Ω)
mapping H to H ∩ Ω is obviously continuous and surjective, and we refer to it
as the natural map iΩ : S(G)→ S(Ω).

By duality, if K is a compact subgroup, then the projection map pK : S(G) 7→
S(G/K) mapping H to (H + K)/K, is continuous and surjective. (When Ω is
not open or K non-compact, these maps often fail to be continuous, see [PT] for
a discussion.)
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Note that if K ⊂ Ω, the maps iΩ and pK commute in an obvious way, and
the composition map ρΩ,K : S(G) → S(Ω/K) maps H to ((H + K) ∩ Ω)/K =
((H ∩ Ω) +K)/K.

If K ′ ⊂ K ⊂ Ω ⊂ Ω′, then obviously

ρG
Ω,K = ρ

Ω′/K′

Ω/K′,K/K′ ◦ ρG
Ω′,K′ ,

where we write ρG
Ω,K for ρΩ,K in order to mention G. Therefore, if we have a net

(Ki,Ωi), filtering in the sense that if j ≥ i then Kj ⊂ Ki ⊂ Ωi ⊂ Ωj, we obtain
a natural map

S(G)→ lim←−S(Ωi/Ki)

This map has dense image, hence is surjective. It is injective provided
⋂
Ki = {0}

and
⋃

Ωi = G, in which case it is a homeomorphism.
We can play another game with these maps. Consider the diagonal map

iΩ × pK : S(G)→ S(Ω)× S(G/K).

This map need not be surjective. It is interesting because its fibers have a very
special form.

Proposition 5.1. Let G be an LCA-group, K a compact subgroup, Ω an open
subgroup containing K. Consider the map

S(G) → S(Ω)× S(G/K)

H 7→ (H ∩ Ω, (H +K)/K)

as above. Then the fiber of (R,M/K) is either empty, or homeomorphic to the
compact group

Hom((M + Ω)/Ω, K/(K ∩R))

(in particular it is homogeneous).

Proof. If H ∩ Ω = R is assumed, then obviously H + K = M is equivalent
to H + K + R = M . So we can suppose that R = 0 without changing the
statement. Also, we can suppose that M = G. So we have to prove that the
set F of subgroups H with H ∩ Ω = {0} and H + K = G is either empty or
homeomorphic to Hom(G/Ω, K). Suppose there is at least one such group V .
Then since K ⊂ Ω we get G = V ⊕K = V ⊕Ω, so K = Ω (in the original group
this means that Ω∩M = K+R when the fiber is non-empty) and V is isomorphic
to G/Ω. We see that H ∈ F if and only if it is the graph of a homomorphism
V → K. So F is homeomorphic to Hom(G/Ω, K). �

6. Groups with R = 0: study of connected components

In this section and the next one, we study connectedness of S(G). The study
of path-connectedness and local connectedness of G itself was done by Dixmier
[Dix] and seems to be, to a large extent, fairly unrelated.
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Lemma 6.1. Let G be an LCA-group. If G is either discrete or compact, then
S(G) is totally disconnected.

Proof. If G is discrete, then S(G) is a closed subset of 2G and is therefore totally
disconnected. By duality, we deduce the same result if G is compact. �

Proposition 6.2. If R(G) = 0 and G is infinite, then S(G) has infinitely many
connected components.

Proof. If G is discrete, then S(G) is totally disconnected and infinite and we are
done.

Assume G non-discrete. By Lemma 2.4, there exists a compact open subgroup
M in G. The natural map (see Section 5) iM : S(G) → S(M) is continuous
and surjective. Since M is compact and infinite, its Pontryagin dual is discrete
and infinite (see §2.5), so S(M∨) is infinite and totally disconnected, and is
homeomorphic to S(M) by Pontryagin-Chabauty duality (Theorem 1.1). �

Lemma 6.3. Suppose that G is either elliptic, or totally disconnected. Then
S(G) is totally disconnected.

Proof. Let K be a compact open subgroup. Proposition 5.1 provides a continuous
map from S(G) to S(K)×S(G/K), which is totally disconnected by Lemma 6.1.
Therefore any connected subset of S(G) is contained in a fiber of this map, and by
Proposition 5.1 again, any such nonempty fiber is homeomorphic to Hom(D,Q)
for some subgroup D of G/K and some quotient Q of K. If G is totally dis-
connected, so is Q, and therefore Hom(D,Q) is totally disconnected, so S(G) is
totally disconnected. By duality, the same conclusion holds if G is elliptic. �

Recall that EG denotes the elliptic subgroup of an LCA-group G.

Theorem 6.4. Let G be an LCA-group with R(G) = 0. For any H ∈ S(G), set
N = H + G0 and L = H ∩ EG. Then the connected component of H in S(G)
consists of the subgroups H ′ such that H ′ + G0 = N and H ′ ∩ EG = L, and is
homeomorphic to the compact group

Hom((N + EG)/EG, G0/(G0 ∩ L)).

Proof. Set K = G0, Ω = EG. Since R(G) = 0, K is compact and Ω is open.
Consider the continuous map iΩ×pK : S(G)→ S(EG)×S(G/G0). By Proposition
5.1, the nonempty fibers are homeomorphic to the compact group

Hom((N + EG)/EG, G0/(G0 ∩ L)).

By Lemma 6.3, the target space S(EG) × S(G/G0) is totally disconnected, and
by Lemma 2.6 the fibers are connected. The theorem follows. �

Corollary 6.5. Let G be an LCA-group. Equivalences:

• S(G) is totally disconnected;
• G is either elliptic or totally disconnected.
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Proof. The reverse implication is Lemma 6.3. Conversely assume S(G) is totally
disconnected. It is trivial (and a particular case of several already proved results)
that this implies R(G) = 0. If G is not elliptic, it contains a closed subgroup H
isomorphic to Z. Applying Theorem 6.4, we obtain that the connected component
of H in S(G) is homeomorphic to G0, therefore is not reduced to a point unless
G is totally disconnected. �

Definition 6.6. A point x of a topological space X is

• path-rigid if its path-connected component is reduced to {x};
• rigid if its connected component is reduced to {x}.

Plainly, rigid implies path-rigid. If {x} is an intersection of clopen subsets, then
x is rigid; the converse holds when X is compact, by [BouT, II.4.4, Proposition 6].

Let us denote by Dtf the quotient of the discrete group D by its torsion sub-
group.

Corollary 6.7. Let H be a closed subgroup of the LCA-group G. Equivalences:

(i) H is rigid in S(G);
(ii) H is path-rigid in S(G);
(iii) R(G) = 0, and either H is elliptic or G/H is totally disconnected.

Proof. (i)⇒(ii) is trivial.
(ii)⇒(i) By Proposition 7.2, R(G) = 0, so we can apply the theorem, which

says that the connected component of H is homeomorphic to a compact group.
So we can apply Lemma 2.5.

(i)⇔(iii). The condition R(G) = 0 follows from (iii) by definition, and from
(i) by Proposition 7.2. So assuming R(G) = 0, the equivalence is obtained as
follows. Set N = H+G0 and L = H ∩EG. By the theorem, the path component
of H is homeomorphic to Hom((N +EG)/EG, G0/(G0∩L)). Since (N +EG)/EG

is a torsion-free discrete group and G0/(G0 ∩ L) is a connected compact group,
by Lemma 2.6, the connected group Hom((N +EG)/EG, G0/(G0∩L)) is trivial if
and only if either (N + EG)/EG or G0/(G0 ∩ L) is trivial, or equivalently, either
N ⊂ EG or G0 ⊂ L, that is, either H + G0 ⊂ EG or G0 ⊂ EG ∩ H. Since
R(G) = 0, we have G0 ⊂ EG, so the previous condition is equivalent to either
H ⊂ EG or G0 ⊂ H, which means that either H is elliptic or G/H is totally
disconnected. �

We now give a structure result for LCA-groups for which π0(S(G)) is countable,
or equivalently scattered. We first recall the following classical proposition, which
has reappeared several times in the literature.

Proposition 6.8. Let G be an LCA-group.

(1) If G is discrete, then S(G) is countable if and only if G lies in an extension

1→ Z → G→ A→ 1,
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where Z is a finitely generated abelian group, and A ' Cm∞ for some
m ≥ 1.

(2) If G is compact, then S(G) is countable if and only if G lies in an extension

1→ P → G→ T → 1,

where T is a compact Lie group and P ' Zm for some m ≥ 1.

Note that in the statement above, m is not assumed prime. As far as we know
(1) was first proved by Boyer [Boy] and (2) immediately follows by Pontryagin
duality.

Theorem 6.9. Let G be a compact-by-discrete LCA-group. Equivalences:

(a) π0(S(G)) is scattered.
(b) π0(S(G)) is countable.
(c) G has a compact open subgroup M such that S(M) and S(G/M) are

countable, and one of the following condition holds
(1) M is finite;
(2) G/M is finite;
(3) M is profinite and G/M is torsion;
(4) M is virtually connected and G/M has finite torsion.

(d) One of the following condition holds
(1’) G is discrete with countably many subgroups (see Proposition 6.8);
(2’) G is compact with countably many subgroups (dual to the previous

case);
(3’) G = Q` × Zm ×Cn∞ × F , where F is finite, `,m, n ≥ 1, ` is prime

with mn.
(4’) G = K ×D × F with D torsion-free discrete, K compact connected,

F finite, and S(D) and S(K) are countable.

Note that in Cases (1),(2),(3), S(G) is countable itself. In (4), S(G) is not
totally disconnected unless G is compact or discrete.

We need some preliminary lemmas.

Lemma 6.10. Let G be an LCA-group with a compact open subgroup M . Suppose
that G is divisible and torsion-free. Assume that M is adic and G/M is discrete
artinian. Then G is local.

Proof. Let S be the (finite) set of primes occurring in the canonical decomposition
of M (as a product of pro-p-groups for distinct primes p). Since this decompo-
sition is canonical, it does not depend on M and it follows that G also inherits
such a decomposition. Hence we can reduce to the case when S = {p}. So M is
isomorphic to Zm

p for some m. So we have a continuous embedding q : M → Qm
p .

Denote by i the inclusion of M into G. Since G is divisible as an abstract abelian
group, there exists an abstract homomorphism f : Qm

p such that f ◦ q = i. Since
the restriction of f to the open subgroup q(M) = Zm

p is continuous, f is continu-
ous as well. The kernel of f has trivial intersection with Zm

p , hence is trivial, that
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is, f is injective. Besides, the image f(Qm
p ) contains M , hence is open, and is di-

visible. So it has a direct factor Γ in G, necessarily discrete. Now Γ is torsion-free
as a subgroup of G, and artinian as a subgroup of G/M . So Γ = {0}. �

Lemma 6.11. Let G be an LCA-group with a compact open subgroup M . Assume
that M is adic and G/M is discrete artinian. Then we can write G as Q× Z ×
D × F with Q local, Z torsion-free adic, D discrete artinian, and F finite.

Proof. We can suppose that M is torsion-free. Let T be the torsion subgroup
in G. Since T ∩M = {0}, we know that T is a discrete subgroup. Moreover T
embeds into G/M , so T is Artinian. Let S be the divisible part of T , which has
finite index in T . Since Td ∩M = {0}, D has a direct factor G1 in G containing
M . Working similarly in the Pontryagin dual of G1, we write G = Z ×D × G2

where Z is torsion-free adic, and both G2 and its Pontryagin dual have finite
torsion. Since the Pontryagin dual of G2 has finite torsion, the index [G2 : nG2]
is bounded independently of n. So the divisible part

⋂
n n!G2 of G2 has finite

index and we can write G2 = F ×G3 with F finite, G3 divisible and torsion-free
(and satisfying the hypotheses of the lemma). We have G = Z × D × F × G3.
By Lemma 6.10, G3 is local. �

Proof of Theorem 6.9. • (b)⇒(a) follows from the general fact that a count-
able compact Hausdorff space is scattered (see §2.3).
• (c)⇒(b). First note that the result is clear if (1) or (2) holds, since then
S(G) is countable.

Consider the natural map (introduced in Section 5)

(6.1) iM × pM : S(G)→ S(M)× S(G/M).

By Proposition 5.1, each non-empty fiber is of the form Hom(N,Q) with
N ≤ G/M and Q ≤M . If (3) holds, then Q has finite torsion Qt and the
divisible part Nd of N has finite index, so Hom(N,Q) = Hom(N/Nd, Qt)
is finite. So the fibers are finite and S(G) is countable.
• (a)⇒(c). Suppose that π0(S(G)) is scattered and let M be a compact

open subgroup of G. Then π0(S(M)) and π0(S(G/M)) are scattered
as well, hence countable (Lemma 6.1). Moreover, for every fiber F of
the natural map (6.1), we have π0(F) scattered. By Proposition 5.1,
these fibers are homeomorphic to compact groups. Thus π0(F) is both
scattered and homeomorphic to a compact Lie group, so is finite, i.e. the
fibers have finitely many components. Therefore for all closed subgroups
0 ≤ L ≤M ≤ N ≤ G, we have Hom(N/M,M/L) virtually connected.

– Suppose Z embeds into G/M . Then taking N such that N/M ' Z,
we have Hom(N/M,M) = M virtually connected.

– In a dual way, if M is not profinite, that is, if Z does not embed into
M∨, then (G/M)∨ is virtually connected, that is, G/M has finite
torsion.
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Therefore one of the following holds
– M is finite (Case (1))
– M is infinite.

∗ G/M is not torsion. Then M is virtually connected; as it is
infinite, it is not profinite, and hence G/M has finite torsion.
This is Case (4).
∗ G/M is torsion. We again discuss.

· M∨ is not torsion. Then (G/M)∨ is virtually connected,
so G/M has finite torsion, so is finite (Case (2)).
· M∨ is torsion, so M is profinite (Case (3)).

• (c)⇒(d). Under the assumption that S(M) and S(G/M) are countable,
let us prove (i)⇒(i’) for i = 1 . . . 4. For i = 1, 2 there is nothing to prove.

Suppose (4). We can suppose that M is connected. Hence it is divisible,
so has a direct factor H in G. Then H is discrete and finite-by-(torsion-
free). So H∨ is connected-by-finite, and again the connected component,
by the same argument, has a direct factor. This means that H is the
direct product of a finite group by a torsion-free group.

Suppose (3). Since G/M is discrete torsion and S(G/M) is countable,
G/M is artinian of the form Cn∞ × F1 with F1 finite and n square-free
[Boy]. Dually, G/M is adic of the form Zm × F2 with F2 finite and m
square-free. By Lemma 6.11, we can write G = Q × Z ×D × F with Q
local, Z torsion-free adic, D discrete artinian, and F finite. Because of
the special form of M and G/M , We can write Q, Z and D in the desired
form. �

7. Connectedness when R ≥ 1

In [PT2], Protasov and Tsybenko show that if G = {1} is a locally compact
group such that S(G) is connected, then G contains a closed copy of R. They
show the converse holds for abelian groups; however their proof relies on the
statement that for every locally compact group G, we have S(R×G) is connected.
This is not true (see Proposition 7.6); however their proof can probably be fixed
when G is abelian; nevertheless their proof does not yield path-connectedness
in the case of compactly generated Lie groups, as they typically show that two
points are in the same connected component by showing the second one belongs
to the closure of a path emanating from the first one.

Consider a locally compact group G = Rk × H and L a closed subgroup of
G. Denote by M the closure of the projection of L on H. We consider the
automorphism τλ(x, h) = (λx, h). Consider the path τλ−1(L) for λ ∈ [1,+∞[.

Lemma 7.1. Consider a group G = Rk × H as above, with k ≥ 1, where the
locally compact group H has a compact open subgroup (but need not be abelian).
Let L be a closed subgroup of G. Denote by L1 the closure of the projection of L
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on H. Then for some vector subspace W of Rk, τλ−1(L) tends to W × L1 when
λ tends to +∞.

Proof. Let M denote any accumulation point of (τλ−1(L)). It is straightforward
that {0} × L1 ⊂M ⊂ Rk × L1.

Let us begin by the case when H is compact. Let W be the vector space
generated by the projection of L on Rk. Obviously M ⊂ W × L1. Take v ∈ W
and λi → +∞. Then λiv is at bounded distance, say ≤ r, of some element in
the projection of L. That is, we can find (wi, hi) in L with ‖wi − λiv‖ ≤ r.
So ‖λ−1

i wi − v‖ → 0. So τλ−1
i

(wi, hi) accumulates to (v, h) for some h ∈ L1, by

compactness of H. Therefore, since we know that {0} × L1 is contained in M ,
we deduce that (v, 0) is contained in M . Since v is arbitrary, M = W × L1.

In general, H has a compact open subgroup K, and by the above, if W is
the vector space generated by the projection of L ∩ (Rk × K) on Rk, then we
obtain that τλ−1(L) ∩ (Rk ×K) → W × (L1 ∩K). As M has to be of the form
F × L1 for some closed subgroup F , we deduce that F = W and τλ−1(L) tends
to W × L1. �

Proposition 7.2. Let G = Rk × H be a locally compact group, where H has a
compact open subgroup. Let L be a closed subgroup of G and let L1 be the closure
of the projection of L on H. Then the path-connected component of L in S(G)
contains S(Rk) × {L1}. In particular, if k ≥ 1, then L is not path-rigid (see
Definition 6.6).

Proof. This follows from Lemma 7.1, and path-connectedness of S(Rk) (which is
an easy exercise). �

Define an LCA-group as circular if it is discrete and has an injective homo-
morphism into R/Z (for instance, R/Z with the discrete topology is circular).
Define an LCA-group G to be polycircular if it has a composition series

{0} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that each Gi/Gi−1 is circular, and metacircular if it can be written as Rk×H,
where H has a compact open subgroup M such that both H/M and M∨ are
polycircular. For instance, every compactly generated Lie group is metacircular.
Also, Qp is metacircular, but the infinite direct product (Z/2Z)Z is not.

Lemma 7.3. Let H denote an LCA-group such that either H or H∨ is circular.
In S(Rk ×H), if k ≥ 1, we can join {0} ×H to {0} by a path.

Proof. It is enough to prove the lemma for k = 1, since then we can join R`×H
to R`−1 ×H by a path and concatenate all those paths.

• H has a continuous injection ψ to R/Z. Consider in R/Z×H the graph
of ψ (upside down). Let L be its inverse image in R×H. On G = R×H,
consider the automorphism τλ(x, h) = (λx, h).
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Consider the path τλ(L) for λ ∈]0,+∞[. Clearly, when λ→ 0, it tends
to R ×H. When λ tends to +∞, we claim that it tends to {0}. Indeed
consider (λi)→∞, and (ti, hi)→ (t, h) with (ti, hi) ∈ τλi

(L). This means
that (λ−1

i ti, hi) ∈ L. So ψ(hi) = λ−1
i ti in R/Z. As (ti, hi) → (t, h) and

λ−i 1→ 0, we have ψ(hi)→ ψ(h) and λ−1
i ti → 0. So ψ(h) = 0 in R/Z. By

injectivity of ψ, we deduce that h = 0. We obtain that in restriction to
the clopen subset R× (H −{0}), the path τλ(L) tends to ∅ when λ tends
to +∞. In restriction to R× {0}, this is constantly {0}. So the claim is
proved.
• H∨ is discrete and injects into R/Z. By Pontryagin-Chabauty duality, it

amounts to join R×{0} and R×H∨ in S(R×H∨). Using connectedness
of S(R), we can join R × {0} and {(0, 0)}, respectively {0} × H∨ and
R×H∨, so it is enough to join {(0, 0)} and {0}×H∨, which was done in
the previous case. �

Theorem 7.4. If R(G) ≥ 1 then S(G) is connected. If moreover G is metacir-
cular (e.g. if G is a compactly generated Lie group), then S(G) is path-connected.

Proof. First assume that G is metacircular. Set G = Rk × H with k ≥ 1 and
R(H) = 0.

In view of Proposition 7.2, it is enough to show that every closed subgroup of
the form {0} ×M , can be joined to {0} by a path. We can find a composition
series

{0} = M0 ≤ · · · ≤Mn = M

such that each Mn/Mn+1 is either circular of the Pontryagin dual of a circular
group. From Lemma 7.3, we can join R×Mi to R×Mi−1 by a path. Combining,
we join R×M and R× {0}. This proves the second statement.

The first statement is deduced by the projective limit argument. First assume
that G is a Lie group. Then M is the direct limit of its open compactly generated
subgroups Mi, so S(G) is the projective limit of S(Rk ×Gi), which are compact
and connected. So S(G) is connected.

By Pontryagin duality, we deduce that S(G) is connected when G is any com-
pactly generated LCA-group with R(G) ≥ 1 (see §2.5). We can reiterate a
second time the projective limit argument to deduce that S(G) is connected for
any LCA-group with R ≥ 1. �

From Theorem 7.4, we see that S(G) can be path-connected even when G is
not a compactly generated Lie group, for instance when G = R × D with D a
discrete group with a injection into R/Z. However, path-connectedness may fail
for some groups with R ≥ 1, as the following example shows.

Proposition 7.5. Let A be an infinite, discrete abelian group of uniform torsion.
Then S(R× A) is not path-connected.
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Proof. Consider the natural map ρ : S(R × A) → S(R) (ρ = iR×{0} in the
notation of Section 5). Identifying λZ with λ−1, {0} with 0 and R with∞, we can
view ρ as a continuous map to [0,∞]. We define maps w,w′ : S(R×A)→ S(A) as
follows: w(H) is the projection of H ⊂ R×A to A and w′(H) is the intersection
of H with {0} × A, identified with A.

In restriction to ρ−1(]0,+∞]), an easy compactness argument shows that the
projection map w is continuous. Besides, in restriction to ρ−1([0,+∞[), the
intersection map w′ is continuous: indeed if (Hi) tends to H, a priori Hi∩A could
tend to something smaller than H ∩A. But if (0, h) ∈ H ∩A, it is approximable
by elements (ei, hi) of Hi; so (dei, 0) belongs to Hi (where dA = 0); unless ei is
eventually zero, this would imply that ρ(Hi)→∞, contradiction.

We claim that if A0 and A1 are subgroups of A, and if R×A0 and R×A1 can
be joined by a path, then A0 and A1 are commensurable (the converse is an easy
consequence of Theorem 7.4). Consider a path γ in S(R×A) with γ(i) = R×Ai

(i = 0, 1). By compactness, we can find 0 = t0 < · · · < t1 < · · · < tk = 1 such that
each γ([ti, ti+1]) is contained in either ρ−1(]0,+∞]) or ρ−1([0,+∞[). In the first
case, w(γ(ti)) = w(γ(ti+1)) by continuity and connectedness, and because S(A)
is totally disconnected. Similarly, in the second case, w′(γ(ti)) = w′(γ(ti+1)). But
w′(H) is a finite index subgroup of w(H) for any H, since any subquotient of R
of uniform torsion is finite. Therefore in all cases, w(γ(ti)) is commensurable to
w(γ(ti+1)). Accordingly w(t0) = A0 and w(tk) = A1 are commensurable. �

We finish this section by a counterexample to [PT2, Lemma 1], which at the
same time answers positively a conjecture at the end at the same paper, namely
that there exists a topological group G with a closed subgroup isomorphic to R,
such that S(G) is not connected.

Proposition 7.6. Let Γ be a non-solvable finite group. Then S(R × Γ) is not
connected.

Proof. If Λ is a subgroup of Γ, the natural map iΛ : S(Γ) → S(Λ) is continuous
and surjective, so replacing Γ by a smaller subgroup if necessary (e.g. the inter-
section of its derived series), it is enough to prove the proposition assuming that
Γ is perfect and non-trivial, that is, [Γ,Γ] = Γ. Then define A ⊂ S(R×Γ) as the
set of subgroups containing {0}×Γ. If L is a subgroup of Γ, define BL ⊂ S(R×Γ)
as the set of subgroups contained in R× L. These are clearly closed subsets. So
the union B of BL, where L ranges over proper subgroups of Γ, is closed. Clearly
B consists whose subgroups whose projection to Γ is a proper subgroup, and in
particular A ∩ B = ∅.

Now since Γ is perfect, the derived subgroup of any element H of S(R×Γ)−B
is exactly {0} × Γ, so that A ∪ B = S(R × Γ), which gives a partition into two
closed subsets, which are both non-empty as soon as Γ 6= {1}. �
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8. Dimension

In this section, we have to switch from inductive to topological dimension and
vice versa (see the reminder in §2.2), depending on the tools available. In case
the two are known to coincide (see Proposition 2.2), we simply denote it by dim.
Although our general results is in terms of topological dimension (because of the
projective limit argument, see Proposition 2.2(1)), we have to detour through the
inductive dimension.

The following lemma is Theorem VI.7 in [HW].

Lemma 8.1. Let f be a closed map between separable metrizable spaces. If all
fibers of f have dimension ≤ b, then indim(X) ≤ indim(Y ) + b.

Proposition 8.2.

dim(S(Rd)) = d2.

Proof. Since the set of lattices is an open subset of S(Rd) and is a d2-dimensional
manifold, we have indim(S(Rd)) ≥ d2. Also, S(Rd) has a natural finite partition
into GLd(R)-orbits, each of which is a manifold of dimension ≤ d2. Therefore
S(Rd) is a separable metrizable space which is a union of countably many closed
subspaces, each of which is homeomorphic to a closed ball in Rk for some k ≤ d2.
By [Eng, Corollary 1.5.4], it follows that indim(S(Rd)) ≤ d2. �

Definition 8.3. Let X be a locally compact space. Define indim∞(X) as the
inductive dimension of the Alexandrov compactification of X at the point ∞,
that is,

indim∞(X) = sup
K

(1 + inf
L
{indim∂L : L ⊃ K}),

where K,L range over compact subsets of G.

Lemma 8.4. Let G be a metrizable LCA-group. Then indim∞(G) = 0 if G is
compact-by-discrete, and indim∞(G) = indim(G) otherwise.

Proof. The statement remains the same if we replace G by an open subgroup.
Hence we can suppose G = Rk ×K with K compact. Then the point at infinity
has neighbourhoods with boundary of the form S×K, where S is a (k−1)-sphere.
Observe that S ×K has dimension ≤ (k − 1) + indim(K) if k ≥ 1 and is empty
if k = 0. So if k ≥ 1, we get indim∞(G) ≤ k + indim(K) = indim(G), the latter
equality using Lemma 2.9, and if k = 0 we get indim∞(G) = 0.

Conversely, denoting by Dn the closed n-disc, we use the fact that as a con-
sequence of Lemma 2.9, G contains a closed subset homeomorphic to Rk × Dn

for n = indim(K) (or for any n if indim(K) = ∞). So if k ≥ 1, the Alexandrov
compactification of G contains the Alexandrov compactification of R≥0×Dn+k−1,
which is a (k + n)-sphere passing through the point at infinity. So indim∞(G) ≥
indim(G). �
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Lemma 8.5. Let G be a metrizable LCA-group. Then

indim(S(G× Z)) ≤ indim(S(G)) + dim(G).

Proof. Consider the natural map pG×{0} : S(G× Z) → S(G). The fiber of H is
homeomorphic to the set of partially defined homomorphisms Z→ G/H, which is
homeomorphic to the Alexandrov compactification of G/H×Z>0. A point not at
infinity in this space has dimension indim(G/H). The point at infinity has a basis
of neighbourhood given by the complements of K × F , for K compact in G/H
and F finite in Z>0, so if we restrict to K with indim∂K ≤ indim∞(G/H)−1, we
deduce that the dimension of the fiber is ≤ max(indim(G/H), indim∞(G/H)).
By Lemma 8.1, we get

indim(S(G× Z)) ≤ indim(S(G)) + sup
H∈S(G)

(max(indim(G/H), indim∞(G/H))).

Now by Lemma 8.4, indim∞(G/H) ≤ indim(G/H), and by Lemma 2.9,

indim(G/H) ≤ indim(G) �.

Theorem 8.6. The inductive, or topological, dimension of S(Rk×Z`×(R/Z)m×
F ), for F finite, is (k + `)(k +m), and is achieved by a piece of manifold.

Proof. Since S(Rk×Z`×(R/Z)m×F ) is compact and metrizable, the two notions
of dimension coincide (Proposition 2.2(1)) so we can work with the inductive
dimension.

First, we have to embed a (k + `)(k + m)-dimensional manifold into S(Rk ×
Z` × (R/Z)m). It will be convenient to rewrite the group as Z` ×Rk × (R/Z)m.
We consider the action of the group of automorphisms of the form (x, y, z) 7→
(x,Ay + Bx, z + Cx + Dy), where A ∈ GL(Rk), B ∈ Hom(Z`,Rk) ' R`k, C ∈
Hom(Z`, (R/Z)m) ' (R/Z)`m, D ∈ Hom(Rk, (R/Z)m) ' Rkm. Consider the
subgroup Zk+`: its stabilizer is discrete, so its orbit is (k+`)(k+m)-dimensional;
this is the desired piece of manifold and provides the easy inequality.

Conversely, to obtain that the inductive dimension is bounded as given, we
first reduce the case from G× F to G. Each fiber of the map S(G× F )→ S(G)
can be identified to the set of partial homomorphisms from F to some quotient of
G, hence is finite. So by Lemma 8.1, we have indim(S(G× F )) ≤ indim(S(G)),
the other inequality being trivial.

By Lemma 8.5, we obtain by induction that

indim(S(Rk × Z`)) ≤ indim(S(Rk)) + kl.

By duality,

indim(S(Rk × (R/Z)m)) ≤ indim(S(Rk)) + km,

and by a second induction,

indim(S(Rk × Z` × (R/Z)m)) ≤ indim(S(Rk)) + km+ `(k +m),
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and finally by Proposition 8.2

indim(S(Rk × Z` × (R/Z)m)) ≤ (k + `)(k +m).

�

We can now state the general result (see Lemma 2.9 and Corollary 2.10 for
interpretations of tdim(G) and tdim(G∨)).

Theorem 8.7. Let G be an LCA-group and δ = tdim(G)tdim(G∨) ∈ {0, 1, . . . ,∞}
(where 0∞ =∞0 = 0). The topological dimension of S(G) is given by

tdim(S(G)) = δ.

It is achieved by a piece of manifold, i.e. if δ < ∞ then S(G) contains a closed
subset homeomorphic to the closed δ-ball, with δ = tdim(G)tdim(G∨); in case
δ =∞, it contains closed balls of arbitrary large dimension.

Proof. For the inequality ≥, Lemma 2.11 reduces to G = Z(I) × (R/Z)J × Rk.
If I, J are finite, then by Theorem 8.6 we get a piece of n-manifold, where n =
(k + #I)(k + #J). If (k + #I)(k + #J) 6= 0 and either I or J is infinite, the
same argument allows to find pieces of manifolds of arbitrary large dimension.

Let us prove ≤. If either tdim(G) or tdim(G∨) is zero, then G is totally
disconnected, or elliptic, and then we know by Corollary 6.5 that S(G) is totally
disconnected, so is zero-dimensional.

We henceforth assume tdim(G)tdim(G∨) nonzero. If either tdim(G) or tdim(G∨)
is infinite there is nothing to prove, so we suppose both finite and nonzero.

In case G is a compactly generated Lie group, in view of Proposition 2.3, the
result is given by Theorem 8.6.

First assume that G is a Lie group. Then in view of Corollary 2.10, G has
an open, compactly generated subgroup M such that for every subgroup con-
taining N , we have tdim(N∨) = tdim(G∨). Now S(G) is the projective limit
of S(N), when N ranges over subgroups containing M , which is of dimen-
sion tdim(G)tdim(G∨). By Proposition 2.2(4), it follows that tdim(S(G)) ≤
tdim(G)tdim(G∨).

Now by duality, the result holds when G is a compactly generated LCA-group.
Repeating a second time the projective limit argument, we obtain the result for
a general LCA-group. �
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