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Abstract. We use partial actions, as formalized by Exel, to construct vari-
ous commensurating actions. We use this in the context of groups piecewise
preserving a geometric structure, and we interpret the transfixing property of
these commensurating actions as the existence of a model for which the group
acts preserving the geometric structure. We apply this to many groups with
piecewise properties in dimension 1, notably piecewise of class Ck, piecewise
affine, piecewise projective (possibly discontinuous).

We derive various conjugacy results for subgroups with Property FW, or dis-
torted cyclic subgroups, or more generally in the presence of rigidity properties
for commensurating actions. For instance we obtain, under suitable assump-
tions, the conjugacy of a given piecewise affine action to an affine action on
possibly another model. By the same method, we obtain a similar result in the
projective case. An illustrating corollary is the fact that the group of piece-
wise projective self-transformations of the circle has no infinite subgroup with
Kazhdan’s Property T; this corollary is new even in the piecewise affine case.

In addition, we use this to provide of the classification of circle subgroups
of piecewise projective homeomorphisms of the projective line. The piecewise
affine case is a classical result of Minakawa.

1. Introduction

The study of commensurating actions, as surveyed and systematized in [Cor1],
is closely related to group actions on CAT(0) cube complexes, which have been
developed in the last two decades and now plays a prominent role in geometric
group theory.

In the present work, we use them to obtain rigidity results in certain groups
such as the group PCAff (R/Z) of piecewise affine self-transformations of the
circle (allowing discontinuities). This group and various of its subgroups appear
in many places, notably in connection to Thompson’s groups. The piecewise
orientation-preserving subgroup PC0

Aff+(R/Z) was explicitly defined by M. Stein
[Ste1], and is sometimes referred to as group of affine interval exchanges. Its
subgroup PC0

Aff+(R/Z) of self-homeomorphisms was earlier studied by Brin and
Squier in [BrS].

Date: October 15, 2021.
2010 Mathematics Subject Classification. Primary 57S05, 57M50, 57M60; secondary 18B40,

20F65, 22F05, 37B99, 53C10, 53C15, 53C29, 57R30, 57S25, 57S30, 58H05.
Supported by project ANR-14-CE25-0004 GAMME.

1



2 YVES CORNULIER

We also consider the larger group PCProj(P
1
R) of piecewise projective self-

transformations of P1
R. Its subgroup PC0

Proj(P
1
R) of continuous elements ap-

peared in work of Strambach and Betten [Str, Be], identifying it as automorphism
group of a Moulton plane (an affine plane in the sense of incidence geometry, for
which Desargues’s theorem does not hold). A survey of these results can be found
in [Low]. Its derived series is computed in [BeW].

Another classical occurrence of the group PC0
Proj(P

1
R) come from the fact that

it includes a subgroup isomorphic to Thompson’s group T , namely its subgroup
for which breakpoints are in P1

Q and modeled over the pseudogroup of orientation-
preserving integral projective transformations (i.e., piecewise PSL2(Z)) [Im]. The
group PC0

Proj+(P1
R) was further investigated by Greenberg, in relation to folia-

tions. He also introduced its class-C1 subgroup PC1
Proj+(P1

R).
A recent renewal of the interest on the piecewise projective self-homeomorphism

groups comes from Monod’s remarkable observation [Mon] that the stabilizer of
∞ in the group PC0

Proj+(P1
R) is non-amenable, yet has no nonabelian free sub-

group. Lodha and Moore [LM] used this to produce explicit finitely presented
subgroups with the same property.

In this paper, we obtain restrictions on subgroups of such groups. Results
of this flavor appear for instance in work of Novak [Nov], showing that the
group IET+ of interval exchanges (the subgroup of piecewise translations in
PCAff (R/Z)) has no distorted cyclic subgroup. Also Dahmani, Fujiwara and
Guirardel [DFG, Theorem 6.1] proved that IET+ has no infinite subgroup with
Kazhdan’s Property T, a result improved in [JS, Theorem 4.1] (see also [Cor2,
Theorem 7.1(2)]).

We now remind what Property FW is.

Definition 1.1. Given a group G acting on a set Y , a subset X is commensurated
if, 4 denoting the symmetric difference, X 4 gX is finite for every g ∈ G. We
call (Y,X) a commensurating action. A stronger condition is being transfixed:
this means that there exists a G-invariant subset X0 such that X 4X0 is finite.

Being transfixed is the “obvious” reason for being commensurated and the
richness of the theory comes from the failure of the converse. The simplest
example of a non-transfixing commensurating action is the action of Z on itself
by translation, commensurating N.

Definition 1.2. A group G has Property FW if every commensurating action
of G is transfixing. More generally, given a subgroup H of G, the pair (G,H)
has relative Property FW if every commensurating action of G is transfixing in
restriction to H.

This is notably the case (see [Cor1] for details and further examples)

• when H has Property FW;
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• when (G,H) has relative Property FH (in the sense that any isometric
action of G on a Hilbert space has an H-fixed point) — for G countable
this is also known as relative Property T;
• when H is cyclic and distorted in G;
• when H = 〈c〉 is cyclic and unboundedly divisible in G (in the sense that

for every m there exists n ≥ m and γ ∈ G such that γn = c);

See Corollary 4.3 for the last two items. Property FW is established for various
lattices in semisimple groups in [Cor2], including cases without Property T.

The following is an application of Theorems 1.4 and 1.6 below.

Corollary 1.3. (a) (See Corollary 6.12) The group PCAff (X) of piecewise affine
self-transformations of X = R/Z has no infinite subgroup with Property FW (and
hence none with Kazhdan’s Property T).

(b) (See Corollary 6.20) The group PCProj(X) of piecewise projective self-
transformations of X = R/Z has no infinite subgroup with Property T.

A short companion note [Cor4] has been written, isolating the proof of the
corollary. As an addendum to (b), see Corollary 6.19 for strong restrictions on
possible subgroups with Property FW in the group of piecewise projective self-
transformations of R/Z.

In [LMT, Corollary 1.3], Lodha, Matte Bon and Triestino independently estab-
lish a particular case of Corollary 1.3(b): the subgroup PC0

Proj(X) = PC0
Proj(X)∩

Homeo(X) of continuous piecewise piecewise projective self-homeomorphisms of
X = R/Z has no infinite subgroup with Property T. They make use of a commen-
surating action allowing to reduce to a theorem of Navas saying that the group
of class-C2 diffeomorphisms of the circle has no infinite subgroup with Kazhdan’s
Property T. They also provide an alternative more direct argument applying to
the continuous piecewise affine case.

Our approach is based on using geometric structures, namely, in Corollary 1.3,
affine structures and projective structures.

Let us start with the affine case. We define an affine curve as a Hausdorff
topological space, locally modeled on open subsets of the affine line (with affine
change of charts). For instance, R/Z is naturally an affinely modeled curve, using
(inverses of) homeomorphic restrictions of the projection R→ R/Z as charts.

We say that an affinely modeled curve is finitely-charted if it has a finite cov-
ering by open intervals affinely isomorphic to intervals of R/Z. Beware that R
itself is not finitely-charted, while every compact affinely modeled curve is finitely-
charted, and every finitely-charted affinely modeled curve has finitely many com-
ponents.

As a classical result of Kuiper (see Appendix A), every connected, finitely-
charted affinely modeled curve is isomorphic to:

• the interval ]0, 1[,
• the standard circle R/Z, or
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• a non-standard circle: R>0/〈hα〉 for some unique α > 1, where hα denotes
the homothety x 7→ αx.

Given two affinely modeled curves X, X ′, a piecewise affine isomorphism is
by definition an affine isomorphism X r F → X ′ r F ′ between cofinite subsets,
modulo identification of two such partial isomorphisms if they are equal on some
cofinite subset. It is denoted X 99K X ′ (since it is not really a map). In partic-
ular, piecewise affine isomorphisms from X to itself form the group PCAff (X).
A piecewise affine isomorphism as above induces by composition a group isomor-
phism PCAff (X)→ PCAff (X ′).

Our approach roughly consists in the following. Let G be a group and H a
subgroup such that (G,H) has relative Property FW. Let G → PCAff (X) be a
piecewise affine action, with X = R/Z. Then in restriction to H, after suitably
“modifying” X, the subgroup H acts by affine automorphisms. “Modifying” X
means removing adding finitely many points (and defining an affine structure at
the added points).

Theorem 1.4. Let H be a subgroup of G = PCAff (X), with X = R/Z, such that
(G,H) has relative Property FW. Then there exists an affinely modeled curve X ′

and a piecewise affine isomorphism ϕ : X 99K X ′ such that the induced embedding
of H into PCAff (X ′) maps into AutAff (X ′).

If in addition H is infinite and contained in PC0
Aff (X), then we can assume

in addition that ϕ is given by a piecewise affine homeomorphism X → X ′ (in
particular, X ′ is an affine circle, possibly non-standard).

For instance, if H has Property FW, then the theorem applies, so that H
appears as a subgroup of AutAff (X ′), and the latter is a virtually abelian group,
which forces H to be finite, yielding Corollary 1.3(a).

Another important case is when H is a distorted cyclic subgroup, in which
case the conclusion can also be refined. We call “standard curve” a finite union
of copies of R/Z and bounded intervals (this means a finitely-charted curve with
no non-standard circle).

Recall that an element g of a group G is distorted if there exists a finite subset
S of G such that g ∈ 〈S〉 and limn |gn|S/n = 0, where | · |S denotes word length
with respect to S. For instance elements of finite order are distorted. A cyclic
subgroup 〈g〉 is by definition distorted in G if g has infinite order and is distorted
(so finite order elements are distorted but finite cyclic subgroups are undistorted!).

Corollary 1.5. (a) Let σ be a distorted element in PCAff (X), with X = R/Z.
Then there exists a standard curve X ′ and a piecewise affine isomorphism ϕ :
X 99K X ′ such that the image of σ in PCAff (X ′) belongs to AutAff (X ′).

(b) If moreover σ ∈ PC0
Aff (R/Z) and has infinite order, then there exists ϕ ∈

PC0,+
Aff (R/Z) such that ϕσϕ−1 is an irrational rotation.

Here, what is not covered by Theorem 1.4 is that the regularization holds in a
standard circle. In (b), + means that ϕ is orientation-preserving.
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Corollary 1.5(b) is close to a result recently obtained by Guelman and Liousse
[GuL] while this paper was in preparation: they obtain, by a different method,
and assuming that σ is distorted in PC0

Aff (R/Z), the conjugation for some power
of σ.

Actually, it is unknown whether the group PCAff (R/Z) admits a distorted
cyclic subgroup; this question is originally due to Navas [HL, Cor. 1.10]. The
question is also open for PC0

Aff (R/Z). See Corollary 6.15 for some equivalent
restatements of these questions.

Let us pass to the projective case. Say that a homeomorphism between open in-
tervals of the projective line P1

R is projective (or homographic) if is the restriction
of some homography (i.e., of some element of PGL2(R)). A projectively modeled
curve here means a Hausdorff topological space endowed with a system of charts
in intervals of P1

R, with projective changes of charts. It is finitely-charted if it
has a finite cover by open intervals projectively isomorphic to intervals in P1

R. As
in the affine case, compact implies finitely-charted, which implies having finitely
many connected components. The universal covering of P1

R is an example of a
connected projectively modeled curve that is not finitely-charted.

The classification of connected projectively modeled curves is closely related
to the classification of conjugacy classes in the universal covering of SL2(R).
Actually, while appearing at many places, it is often written in a vague way, or
even with an old chestnut mistake; see Appendix A.

Here is the projective analogue to Theorem 1.4.

Theorem 1.6. Let H be a subgroup of G = PCProj(X), with X = R/Z, such
that (G,H) has relative Property FW. Then there exists a projectively modeled
curve X ′ and a piecewise projective isomorphism ϕ : X 99K X ′ such that the
induced embedding of H into PCProj(X

′) maps into AutProj(X
′).

If in addition H ⊂ PC0
Proj(X), then we can assume in addition that there

is an H-invariant finite subset F such that ϕ is given by a piecewise projective
homeomorphism X r F → X ′.

Thus H appears as a subgroup of AutProj(X
′), which virtually is the direct

product of identity components automorphism groups Li of its connected com-
ponents X ′i. Then for each i, the group Li is metabelian unless X ′i is projectively
isomorphic to a finite cover of P1

R (see the tables in §A.4, or [Cor4, Lemma
3.2] for a direct argument), in which case Li is isomorphic to a finite cover of
PSL2(R). This discards infinite subgroups with Property T (Corollary 1.3(a))
and drastically restricts the possible structures for its subgroups with Property
FW.

Remark 1.7. Although in a different context, let us mention another result con-
cluding the existence of an invariant projective structure. Navas [Nav2, Propo-
sition 2.1] proves, for a group of C3-diffeomorphisms of the circle, assuming that
it has no invariant probability measure and a certain technical condition, con-
cludes that there is an invariant projective structure. The technical condition
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roughly says that some cocycle, called Liouville cocycle, related to the distortion
of cross-ratios, is a coboundary, As in the current paper, he uses this proposition
in combination with the knowledge of the automorphism group of projectively
modeled curves, namely the fact that the orientation-preserving automorphism
group is metabelian unless the projectively modeled curve is a finite covering of
the projective line.

Remark 1.8. Theorem 1.6 notably applies to distorted elements (in this case
we do not separately state a corollary). This result would be particularly com-
plicated to state and prove without reference to projective structure, since the
classification of those is significantly more elaborate than that of the affine case.
Indeed, while classifying subgroups of PC0

Aff (R/Z) that are conjugate to SO(2)
in Homeo(R/Z), Minakawa exhibits elements, which turn out to be those auto-
morphisms of non-standard affinely modeled circles, conjugated into the standard
circle by a suitable piecewise affine homeomorphism. A projective analogue would
therefore require to exhibit, for every connected projectively modeled circle X,
a piecewise projective homeomorphism f onto R/Z and in each case write down
explicitly elements of fAutProj(X)f−1 as elements of PC0

Proj(R/Z).

As a complement to Corollary 1.3(b), let us state:

Corollary 1.9. For every subgroup Γ of PCProj(R/Z) with Property FW, there
exists n ≥ 0, a finite index subgroup Γ′ of Γ and a homomorphism Γ′ → PSL2(R)n

with finite kernel, such that each projection Γ′ → PSL2(R) has Zariski-dense im-
age. In particular, Γ is either finite or has a non-abelian free subgroup.

Example 1.10. Using Theorem 1.6, one obtains that the group Γ = PSL2(Z[i,
√

2])
(which does not have any infinite subgroup with Property T) does not embed into
PCProj(R/Z). Indeed, to start with, it has Property FW: this uses bounded gen-
eration by elementary unipotent elements due to Carter-Keller [WiM, Theorem
25.11]. Given this, the easy argument to deduce Property FW is the same as
the one [Cor1] for PSL2(Z[

√
2]). Then using Corollary 1.6 and the classification

of connected finitely-charted projectively modeled curves, one would deduce that
some finite index subgroup Γ′ of Γ embeds into PSL2(R).

The group Γ (and hence Γ′) lies as an irreducible arithmetic lattice in PSL2(C)2.
Hence, Γ′ has no homomorphism with infinite image into PSL2(R), by Margulis’
superrigidity [Mar].

We finish this introduction by repeating [Cor2, Question 1.19(2)]:

Question 1.11. Does there exist any infinite, finitely generated amenable group
with Property FW?

I conjecture a positive answer.

Remark 1.12. I owe to Nicolás Matte Bon the remark that the absence of infinite
Property FW groups in IET (and in the piecewise affine group), established
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here, discards some tempting candidates for infinite finitely generated amenable
groups with Property FW. Indeed, every amenable group with Property FW has
no homomorphism with infinite image into the piecewise projective group, by
Corollary 1.9.

Let us now mention results about “exotic circles”. Start from a simple ob-
servation: every continuous faithful action of the topological group R/Z on the
topological space R/Z is conjugate to the standard action by translation. Equiv-
alently, all subgroups of Homeo(R/Z) that are topologically isomorphic to R/Z
are conjugate to the group of translations. Assuming now that the action pre-
serves some structure, one can wonder about the classification by homeomor-
phism preserving this structure. This question was raised by Minakawa in the
affine context, as already mentioned in Remark 1.8. Reinterpreted using affinely
modeled structures, Minakawa’s result is that there is a natural bijective corre-
spondence between the set of isomorphism class of affinely modeled circles and
the set of subgroups of PC0

Aff (R/Z) that are topologically isomorphic to R/Z,
modulo conjugacy in PC0

Aff (R/Z). This correspondence goes as follows: start
from an affinely modeled circle X, choose a piecewise affine homeomorphism
ϕ : X → R/Z: then the corresponding subgroup is fAutAff (X)◦f−1, which up
to conjugacy in PC0

Aff (R/Z) only depends on the isomorphism type of X (which
depends on a parameter in R≥1).

In the projective case, we establish a similar result. For it we need not only
the classification of projectively modeled circles, but also of their 1-dimensional
compact connected subgroups of automorphisms, which is fully described in Ap-
pendix A. Only those homogeneous ones (i.e., with transitive automorphism
group) are relevant here. For a homogeneous projectively modeled circle, the
maximal connected compact subgroups of automorphisms are all conjugate (and
indeed equal to the identity component of the automorphism group, with the
exception of finite covers of P1

R, see Proposition A.7).

Theorem 1.13. There is a natural bijective correspondence between the set of
homogeneous projectively modeled circles and the set of subgroups of PC0

Proj(R/Z)
that are topologically isomorphic to R/Z (for the topology induced by inclusion in
Homeo(R/Z)), modulo conjugacy in PC0

Proj(R/Z). This correspondence maps X

to the conjugacy class fKXf
−1, where f is a piecewise projective homeomorphism

ϕ : X → R/Z, and KX is a maximal compact connected subgroup in AutProj(X).
The same result holds if PC0

Proj(R/Z) is replaced with its class C1 subgroup

PC1
Proj(R/Z).

The homogeneous projectively modeled circles form a proper subclass of the
class of projectively modeled circles. Namely, this subclass consists of

• the affinely modeled circles (the standard circle Θ1 and the non-standard
circle Θt = R>0/〈t〉 for t > 1), and
• the metaelliptic curves Ωt = Σ∞/〈ξt〉 for t > 0.
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Here Σ∞ is the universal covering of P1
R, and (ξt)t∈R is the lift of the group of

rotations PSO(2) = (ξ̄t)t∈R/Z; in particular Ωn for n ∈ N>0 is the connected
n-fold cover of P1

R. See Theorem 7.8 for a more detailed account.
The group PC1

Proj(X) of piecewise projective C1-diffeomorphisms was intro-
duced by Greenberg [Gre]. The question of classifying circle groups within this
group is explicit in Sergiescu’s notes [Ser]; it is solved by the second statement of
Theorem 1.13.

At a topological level, the only other connected Lie group transitive actions on
the circle are given by the action of PSL2(R) on the projective line, and its finite
coverings. These actions preserve a projective structure, by definition. Answering
a question in [LMT], we show here there are no “exotic” versions of such actions:

Theorem 1.14 (see Corollary 7.10). Let G be the image of a continuous and

injective homomorphism from the n-fold covering PSL
(n)
2 (R) to Homeo(R/Z).

Suppose that G ⊂ PC0
Proj(R/Z). Then G is uniquely determined up to con-

jugation in PC0
Proj(R/Z). If moreover G ⊂ PC1

Proj(R/Z) then G is uniquely

determined up to conjugation in PC1
Proj(R/Z).
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2. Method and results

The purpose of this work is to show how the notion of partial group action,
formalized by Exel [Ex], naturally fits into this context, and obtain various ap-
plications, notably to group actions on the circle “piecewise” preserving some
geometric structure, such as piecewise affine or piecewise projective actions. The
use of the formalism of partial actions punctually appeared in geometric group
theory already, namely in B. Steinberg’s work [Ste], but not in the context of
commensurating actions.

2.A. Partial actions. For X a topological space, let Itop(X) be the set of partial
homeomorphisms of X between open subsets. Each element f of I(X) is a
homeomorphism Df → D′f with Df , D

′
f open subsets of X. The open subset Df

is called the domain of f . Then I(X) is a monoid, where Dg◦f is by definition
{x ∈ Df : f(x) ∈ Dg}. ,The inverse partial homeomorphism D′f → Df of f ,

denoted f−1 is called preinverse of f (rather than inverse, since f−1 ◦ f is not
the identity, but the partial identity of Df ). Note that D′f = Df−1 . See §3.A for
details. For f, g, the notation f ⊂ g means that the graph of f is contained in
the graph of g; that is, g extends f .

Following Exel [Ex], a continuous partial action of a (discrete) group G on X
is a map α : G → Itop(X) satisfying the axioms: α(1) = idX , α(g−1) = α(g)−1,
and α(g)α(h) ⊂ α(gh) for all g, h ∈ G. We call X a continuous partial G-space.

Every partial action has a natural orbit decomposition.
We say that a partial action is cofinite if it has cofinite domains: X rDα(g) is

finite for every g ∈ G.
Let G acts continuously on a topological space E and X is an arbitrary open

subset of E. We say that X is G-essential in E if every G-orbit meets X. In
general, G partially acts on X by restriction. Namely, denoting by β the action on
E, and thinking β(g) as its graph (a subset of E2), one defines α(g) = X2∩β(g):
this makes X a continuous partial G-space.

It turns out that conversely, the G-space E can be constructed out of the partial
action on X, provided X is G-essential in E. Moreover, every continuous partial
action arises this way: every continuous partial G-space X has an essentially
unique “universal globalization”, namely a G-set X̂ = X̂G containing X as a G-
essential open subset. The point of view of partial actions is nevertheless useful,
because it often occurs that X is a “nice” object while E is not (for instance, X
is Hausdorff but E is not).

Let X be a continuous partial G-space. Say that X is G-transfixed above if
X̂rX is finite. In general, X is G-commensurated in X̂ if and only if the partial
G-action on X is cofinite, and G-transfixed in X̂ if and only if there exists a finite
subset F of X such that the partial action of G on X is transfixed above.

A rich source of partial actions is given by the following:
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Proposition 2.1 (Proposition 4.12). Let X be a Hausdorff topological space with
no isolated point. Then every f ∈ PC(X) has a unique maximal representative,
that is, a homeomorphism α(f) : Df → D′f with Df , D

′
f cofinite representing

f , that contains all other representatives of f . The assignment f 7→ α(f) is a
continuous partial action of PC(X) on X.

On the one hand, for a compact manifold (possibly with boundary) without
component of dimension ≤ 1, the canonical inclusion Homeo(X) ⊂ PC(X) is an

equality, see Remark 4.18; in particular the universal globalization X̂ of X under
the partial action of PC(X) is reduced to X. If X = Rn for n ≥ 2, it follows that
this universal globalization is reduced to the 1-point compactification Rn∪{∞}.

On the other hand, for X a circle, or a Cantor space, the group PC(X) is

much larger than the homeomorphism group. In these cases, X̂ is not Hausdorff,
as it includes the compact space X as a dense open proper subset. Also, since
PC(X) acts on X̂ and every orbit meets the open subset X, the space X̂ is locally

homeomorphic to X. In particular, for X a circle, X̂ is a connected 1-dimensional
non-Hausdorff topological manifold.

Using geometric structures, we obtain below further naturally occurring partial
actions.

2.B. Pseudogroups. We define a pseudogroup on a topological space as a set of
partial homeomorphisms between open subsets with a suitable stability condition
(see §3.E). A pseudogroup S on a (topological) space A makes meaningful the
notion, due to Ehresmann, of space modeled on (A, S) (see §3.E for details). For
instance, a space modeled on the pseudogroup consisting of Ck-diffeomorphisms
between arbitrary subsets of Rn is the same as a purely n-dimensional manifold
of class Ck. If X is a space modeled on S, the set of S-preserving homeomor-
phisms between open subsets of X is itself a pseudogroup. For instance, from
the pseudogroup of partial affine homeomorphisms on R, the circle R/Z inherits
an affine structure for which the projection R/Z is a local affine isomorphism.
In turn, through the local homeomorphisms R/Z ← R → P1

R, the circle R/Z
inherits a projective structure. We refer to §3.E for precise definitions.

Let S be a pseudogroup on a space A and X is a Hausdorff S-modeled space.
The parcelwise-S group PCS(X) is the subgroup ofX having a representative that
is an S-preserving homeomorphism between open cofinite subsets. Then, if X has
no isolated point, then PCS(X) also has a canonical S-preserving cofinite partial
action on X, given by g 7→ αS(g), where αS(g) is the maximal representative
of g that is an S-preserving homeomorphism between cofinite subsets of X (see

§4.E.1 for details). Then the universal globalization X̂G of X with respect to
every subgroup G ⊂ PCS(X) is also an S-modeled space; still it can fail to be
Hausdorff.

Theorem 2.2 (Regularization theorem). Let A be a Hausdorff space with no
isolated point and S a pseudogroup on A. Let X be an S-modeled space.
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Let H be a subgroup of PCS(X) such that X is transfixed under the partial
S-preserving action of H. Then there exists a cofinite subset Y of X such that
ŶH is Hausdorff. In particular, ŶH is an S-modeled Hausdorff space, and the
identity map of Y is an S-preserving homeomorphism between cofinite subsets of
X and ŶH , intertwining the parcelwise-S action on X to an S-preserving action
on ŶH .

Roughly, the conclusion says that after “cutting-and-pasting” X at finitely
many points, the action becomes continuous and S-preserving.

The proof of this theorem is easy; the main contribution here was to gather
the various features and write it down.

In the continuous case (i.e., H ⊂ PC0
S), one obtains a stronger conclusion.

Theorem 2.3 (Regularization theorem, continuous case). Let A be a Hausdorff
space with no isolated point and S a pseudogroup on A. Let X be an S-modeled
space.

Let H be a subgroup of PC0
S(X) such that X is transfixed under the partial

S-preserving action of H. Then there exists cofinite subsets Y ⊂ Y ′ of X with Y ′

H-invariant, and an H-invariant S-modeled structure on Y ′ that coincides with
the original one on Y . In particular, if H has no finite orbit on X, then Y ′ = X.

Roughly, it means that after removing a finite invariant subset, one can “repair”
the S-structure at finitely many points so that the resulting S-structure is pre-
serve (unlike in the discontinuous case, there is no need to change the topology).

In the language of Theorem 2.2, this means that ŶH identified by an parcelwise-S
H-equivariant homeomorphism to an H-invariant cofinite subset Y ′ of Y .

Now let us discuss the transfixing assumption. Denoting by DS
g ⊂ X the

domain of g ∈ H and ∆S
g its complement, X is transfixed by H if and only

supg∈H |∆S
g | <∞.

• when S the pseudogroup of all partial homeomorphisms of X (Hausdorff
with no isolated point), ∆g is the set of discontinuity points;
• when X = R/Z with the pseudogroup of isometries or oriented isometries,

again ∆S
g is the set of discontinuity points;

• when X = R/Z with the affine pseudogroup or its oriented analogue,
∆S
g is the set of “breakpoints”, that is, discontinuity points as well as

continuity points at which g is not differentiable (or equivalently at which
the left and right derivatives are not equal);
• when X = R/Z with the projective pseudogroup or its oriented analogue,

∆S
g is the set of points at which g is not of class C2.

For S a pseudogroup on model space with no isolated point, and for X a S-
modeled Hausdorff space, the function PCS(X) → N, g 7→ |∆S

g | has specific
properties that are common to all such functions defined from cofinite partial
actions. For instance, the behavior of such functions on cyclic subgroups is very
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restricted for every g there exists mS
g ∈ N such that |∆S

gn| = mS
gn + bg(n) for

all n ∈ N, for some bounded non-negatively valued function bg. In particular,

the limit limn→∞
|∆S

gn |
n

exists, is a non-negative integer, and is zero if and only if
supk |∆S

gn | <∞.

Let us apply this to the Ck-pseudogroup. Let k ∈ N = {0, 1, . . . } be an
integer. For σ be a parcelwise-Ck self-transformation of R/Z (or of an open
interval), define K0(σ) as the subset of outer discontinuity points of σ (that is,
the set of x such that σ(x+) 6= σ(x−). For x /∈ K0(σ), we can choose the value
of σ(x) as the one making σ continuous at x. For i ∈ {1, . . . , k} let Ki(σ) be the
subset of those x /∈ Ki−1(σ) at the neighborhood of which σ is not of class Ci.
For i ∈ {0, . . . , k}, let ki(σ) be the cardinal of Ki(σ) and k≤i(σ) =

∑i
j=0 kj(σ).

Note that ki(σ) = ki(σ
−1).

Corollary 2.4 (See Corollary 6.6). For every k ∈ N and parcelwise-Ck self-
transformation σ of R/Z, there exist integers 0 ≤ m0 ≤ · · · ≤ mk and bounded
non-negative even functions bi : Z→ N such that for all i ∈ {0, . . . , k}, we have
k≤i(σ

n) = mi|n|+ bi(n).
In particular, k≤i and ki have the property of growing either linearly or being

bounded.

This lets us retrieve or improve some known results in a unified way. Applied
when k = 0 and in the case of interval exchanges, this concerns the discontinuity
growth for interval exchanges and this counting result was obtained in [Nov,
DFG]. When k = 1, in the case of piecewise affine self-transformations, it was
obtained by Guelman and Liousse [GuL, §4] that the sequences (k1(σn))n≥0 (and
(k0(σn))n≥0) are either bounded of have linear growth. See also Corollary 6.16
for a specification of Theorem 2.2 to this context.

3. Preliminary definitions

3.A. Inverse symmetric monoids. A semigroup is a set endowed with an
associative binary law. A monoid is a semigroup endowed with a unit element
(which is then unique). In a semigroup, a preinverse of an element x is an element
y such that xyx = x and yxy = y. A semigroup (resp. monoid) is called an inverse
semigroup (resp. inverse monoid) if every element x has a unique preinverse, then
denoted x−1. Homomorphisms of monoids (resp. inverse semigroups, resp. inverse
monoids) are required to map unit to unit (resp. preinverse to preinverse, resp.
both). In inverse semigroup theory, preinverses are often called “inverses” but
we rather use the more usual terminology of inverses in monoids (an inverse for
x is y such that yx = xy = 1; such y is unique and is then a preinverse of x).

Given sets X, Y , the set P(X × Y ) of subsets of X × Y (the set of binary
relations on X, Y ) is endowed with its usual composition: given A ⊂ X × Y and
B ⊂ Y × Z,

A ◦B = {(x, z) ∈ X × Z : ∃y ∈ Y : (x, y) ∈ A, (y, z) ∈ B}.
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In particular, this makes P(X2) a monoid (the diagonal idX being the unit
element). For u ∈ P(X × Y ), define Du and D′u as its projections on X
and Y , called its domain and range. Denote by s : A 7→ A−1 the involution
P(X × Y ) → P(Y × X) induced by (x, y) 7→ (y, x). Beware that it is not an
inverse map on P(X2) as soon as X is nonempty, and not a preinverse map as
soon as X contains two distinct elements.

Let I(X, Y ) be the set of subsets of X2 both of whose projections are injective.
These are called partial bijections of X, namely each u ∈ I(X) is a bijection
between its domain Du and its range D′u. These are stable under composition.
In particular, I(X) is a well-known submonoid of X2, called inverse symmetric
monoid of X. Indeed, this is an inverse monoid: the preinverse of u being u−1.

Let Icof(X) be the set of partial bijections of σ ∈ I(X) with cofinite domain
and range. This is an inverse submonoid of I(X).

Given topological spaces A, B, let Itop(A,B) be the subset of I(A,B) consist-
ing of those u such that both Du and D′u are open subsets of A, and such that
u induces a homeomorphism Du → D′u. In particular, Itop(A) = Itop(A,A) is an
inverse submonoid of I(A). We write Icof

top(A,B) = Itop(A,B) ∩ Icof(A,B) and

Icof
top(A) = Icof

top(A,A).

3.B. Partial actions.

3.B.1. Definition.

Definition 3.1 (Exel [Ex]). A partial action of a group G on a set X is a map
α : G→ I(X) satisfying:

(1) α(1) = idX ;
(2) α(g−1) = α(g)−1 for all g ∈ G;
(3) for all g, h ∈ G, α(g) ◦ α(h) ⊂ α(gh).

We say that (X,α) is a partial G-set (and if α(G) ⊂ S(X), the group of permu-
tations of X, we say that it is a global G-set, or just G-set).

When α is valued in Icof(X), it is called a cofinite-partial action.
Given a partial action of G on X, a topology T on X is said to be preserved

by the partial action if for every g ∈ G, we have α(g) ∈ Itop(XT ). Here XT
means X endowed with the topology T (mostly the topology is implicit and is
omitted from the notation). When X is endowed with T , we call it a topological
partial action of G on X; we call X a partial topological G-space, and (global)
topological G-space when the underlying partial action is an action.

A homomorphism between partial G-sets (X,α), (Y, β) is a map f : X → Y
that is G-equivariant, in the sense that α(g) ⊂ (f × f)−1(β(g)) for all g ∈ G.
That f is G-equivariant just means that for every g ∈ G every x ∈ X such that
α(g)x is defined, then β(g)f(x) is also defined and f(α(g)x) = β(g)f(x).

We say that such a homomorphism f is full if the above inclusion is an equality:
α(g) = (f × f)−1(β(g)) for all g ∈ G. We then say that f is fully G-equivariant.



14 YVES CORNULIER

The homomorphism f is essential if for every y ∈ Y there exists g ∈ G such
that β(g)y is defined and belongs to f(X).

A bijection (X,α) → (Y, β) is called G-biequivariant if both f and f−1 are
G-equivariant. For a bijective homomorphism, this means that f is fully G-
equivariant.

Beware that a bijectiveG-equivariant map can fail to beG-biequivariant, unlike
in the setting of global actions. For instance, β could be an action but not α (see
Proposition 4.10 for a result in this context).

3.B.2. Universal globalization. Given a partial G-set (X,α), partial G-sets (Y, β)
endowed with a homomorphism (X,α) → (Y, β) form a category, whose maps
are the G-equivariant maps so that the obvious triangle commutes. It has a full
subcategory, consisting of those (global) G-sets (Y, β) endowed with a homomor-
phism (X,α) → (Y, β). An initial element in this category is called a universal
globalization for (X,α).

Theorem 3.2 (Megrelishvili [Me1, Me2], Abadie [Aba1, Aba2], Kellendonk-Law-
son [KL]). Every partial G-set (X,α) admits a universal globalization ι : (X,α)→
(X̂, α̂). Moreover

(1) the map ι is injective;

(2) every α̂(G)-orbit in X̂ meets ι(X) (that is, ι is essential).

In detail, the first assertion means that there is a set X̂, a map ι : X → X̂, a
G-action β on X such that ι is G-equivariant and such that for every other G-set
Y and G-equivariant map f = X → Y , there exists a unique G-equivariant map
uf : X̂ → Y such that f = uf ◦ ι.

Let us recall the simple construction. Denote by Dg ⊂ X the domain of α(g).

Start from X̃ = G × X and the map X → X̃ given by x 7→ (1, x). Endow X̃

with the G-action given by g · (h, x) = (gh, x). Define X̂ by modding out by the
equivalence relation ∼ given by (h, x) ∼ (k, y) if x ∈ Dk−1h and α(k−1h)(x) = y.

The G-action passes to the quotient X̂ and the resulting map X → X̂ is a
universal globalization. This can be checked as an exercise: indeed, the virtue of
the theorem is, first and foremost, to have been formulated.

The following easy lemma is a convenient way to recognize a universal global-
ization.

Lemma 3.3 ([KL, Prop. 3.5]). Any full, essential and injective homomorphism
from a partial G-action to a global G-action is a universal globalization [KL, Prop.
3.5]. �

Remark 3.4. Megrilishvili [Me1, Me2] used a less general, related formalism of
“preactions” and then constructed a “universal action” with the same construc-
tion as the one used for the universal globalization in [Aba1, Aba2, KL] in the
framework of partial actions. Abadie’s result was written in 1999 in his PhD
[Aba1] and published only in 2003 [Aba2]. The construction of the universal
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globalization was independently later obtained, using the same construction, by
Kellendonk and Lawson [KL] (published in 2004, but quoted as a preprint in
[Me2] published in 2000).

Theorem 3.5 (Abadie [Aba1, Aba2, KL]). Let (X,α) be a partial G-set and

ι : (X,α) → (X̂, α̂) a universal globalization. For every topology T on X pre-

served by α(G), there is a unique topology T̂ on X̂ preserved by α̂(G) such that

ι is an open continuous map. Moreover, (X̂, α̂) is an initial element in the cat-
egory of topological G-sets (topological spaces endowed with a G-action by self-
homeomorphisms) endowed with a continuous homomorphism of partial actions
from (X,α).

Actually, Abadie’s result is directly stated while defining the globalization in
the context of actions on topological spaces. But the underlying action only
depends on the underlying partial action, so we have found convenient to restate
it as above, which is closer to the subsequent formulation from [KL, §3.2].

Note that in partial actions, we always consider the acting group as a dis-
crete group, although Abadie [Aba2] more generally addresses partial actions of
topological groups.

Let us mention for future reference

Lemma 3.6. If X is T1 (that is, singletons are closed), so is X̂.

Proof. Describe X̂ as above as quotient of G×X by an equivalence relation. Then
the equivalence class of (g, x) meets each layer {g′} ×X in at most a singleton.
Hence if X is T1, equivalence classes are closed, so that the quotient topological
space is T1. �

3.C. Encoding commensurating actions as partial actions and vice versa.
Given a partial action α of G on a set X, let us define `−X(g) as the cardinal of the
complement X r Dα(g); define `+

X(g) = `−X(g−1). Call `+
X and `−X the loanshark

and prodigal semi-index functions of the partial G-set X. This can actually be in-
terpreted in previous setting: indeed, consider a universal globalization X → Y .
Then `−X(g) coincides with its definition as in §4.A, in the setting of commensu-
rating actions.

We say that the partial action commensurates X if `+
X (or equivalently `−X)

takes finite values. For a partial action, the condition of commensurating X
is equivalent to be a cofinite-partial action. This shows that all the theory of
commensurating actions translates in the setting of cofinite-partial actions. We
say that it transfixes X if there exists a finite subset F of X such that the induced
partial action of G on XrF has finite complement in its universal globalization.
Equivalently, this means that X is transfixed in its universal globalization. In
particular, given a subgroup H of G, relative Property FW of (G,H) can be
restated as: every cofinite-partial action of G is transfixing in restriction to H.
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Moreover, by the dictionary between cofinite-partial actions and commensurating
actions, Theorem 4.1 can be restated as:

Theorem 3.7. A partial action of a group G on a set X is transfixing if and
only if `+

X (or equivalently `−X) has a finite supremum on G. �

3.D. Parcelwise group PC(X). Let X be a topological space. Recall from §3.A
that Icof

top(X) is the inverse submonoid of Icof(X) consisting of partial homeomor-
phisms between two open cofinite subsets of X.

Identifying two elements in Icof
top(X) whenever they coincide outside a finite

subset, we obtain a group, which we denote by PC(X), and call it the group of
parcelwise continuous self-transformations of X.

3.E. Pseudogroups, modeled structures, piecewise and parcelwise monoids.

3.E.1. Definition. We define a pseudogroup on a topological space A as an inverse
submonoid S of I(A) such that {U : idU ∈ S} is a basis of the topology. Note
that the latter condition implies that the topology is determined by S.

The completed pseudogroup Ŝ consists of the set of elements of u ∈ I(A) that
can be written, for some index set I, as a union

⋃
i∈I ui with ui ∈ S for all i.

When S = Ŝ, the pseudogroup is called complete.
In the literature, pseudogroups are often defined as what is called here “com-

plete pseudogroup”, and furthermore are also often supposed to contain idU for
every open subset U . We find convenient here to get rid of these restrictions.

Example 3.8. Let G be subgroup of the self-homeomorphism group of A. Then
the set of restrictions of elements of G to open subsets is a pseudogroup on A. It
is usually not complete: for instance, if G consists of translations on A = R, it is
not complete, since the completed pseudogroup contains local translations (with
non-connected domain) that are not translations.

For instance, if G is a subgroup of the group of self-homeomorphisms of X,
we can define the pseudogroup induced by G, starting from those restrictions of
elements of G to open subsets.

3.E.2. S-structures, S-modeled topological spaces. Let S be a pseudogroup on a
topological space A.

Let X be a topological space. An S-atlas on X is a subset H of I(X,A), whose
elements are called charts, such that ∅ ∈ H and such that for any f, g ∈ H, we
have g ◦ f−1 ∈ Ŝ.

An S-atlas is called complete if it satisfies the following two additional condi-
tions:

• for every f ∈ H and u ∈ S, we have u ◦ f ∈ H;
• for any index set I and family (gi)i∈I in H such that g :=

⋃
i∈I gi belongs

to I(X,A), we have g ∈ H.
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The data of a complete S-atlas H on X is called an S-structure on X. A
topological space endowed with an S-structure is called an S-modeled topological
space. We call it finitely-charted if X has a finite covering by domains of charts.

Actually, every S-atlas on X endows X with an S-structure: indeed every
S-atlas generates a complete S-atlas in a natural way.

3.E.3. Parcelwise-S inverse monoid and group. Now consider an S-modeled topo-
logical space X, with complete atlas H = IS(X,A).

We then denote by IS(X) the set of elements h ∈ I(X) that can be written,
for some index set I and families (fi)i∈I and (gi)i∈I in H, as h =

⋃
i∈I g

−1
i ◦ fi.

Then IS(X) is an inverse submonoid of I(X) (and thus a pseudogroup), and
IS(X,A) is stable under precomposition with IS(X) and postcomposition with

Ŝ = IS(A). By composition, any topological space endowed with a IS(X)-
structure inherits a canonical S-structure.

Consider the inverse submonoid Icof
S (X) = IS(X)∩Icof

top(Xδ), that is, the set of
elements in IS(X) with cofinite domain and range. We call it the parcelwise-S
inverse monoid of X. Identifying two elements of Icof

S (X) whenever they coincide
on a cofinite subset, we obtain a subgroup PCS(X) of PC(X), called the group
of parcelwise-S self-transformations of X.

When X has no isolated point, the canonical homomorphism Homeo(X) →
PC(X) is injective. The inverse image of PCS(X) in Homeo(X) is denoted by
PC0

S(X).
In particular, we define S℘ as the pseudogroup on the model space A of re-

strictions of elements of PC0
S(A). It is easy to check that PCS(X) = PCS℘(X).

3.E.4. Piecewise-S inverse monoid and group. Define Icof
S] as the set of f ∈

Icof
S (X) such that there exist a finite partition (Di)i∈I of the domain of f into

open subset, a family (gi)i∈I in IS(X) such that the domain Ei of gi contains the
closure Di, and such that gi extends fi.

It is easy to check that this is an inverse submonoid of Icof
S (X). We call it the

piecewise-S inverse monoid of X. Its image in PC(X) is a subgroup PCS](X) of
PC(X), called group of piecewise-S self-transformations of X.

When S consists of all local homeomorphisms, we denote these by Icof
] (X) and

PC](X).

3.F. Curves and doubling tricks. By curve we mean a purely 1-dimensional
Hausdorff paracompact topological manifold with finitely many connected com-
ponents. A connected curve is homeomorphic to the circle or an open interval.

Start from a curve A with a pseudogroup S. A finitely-charted S-modeled
curve is a curve endowed with an S-structure definable by finitely many charts
(the condition is automatic for compact S-modeled curves).

By standard curve we mean finite disjoint union of open bounded intervals
and circles (where a circle is a copy of R/aZ for some a > 0). A more intrinsic
(but somewhat using more formalism than necessary) is to define a standard
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curve as a purely 1-dimensional oriented Riemannian manifold, with finitely many
components.

Given a standard curve X, local orientation-preserving measure-preserving
homeomorphisms yield a canonical Iso+-structure on X. Therefore, for every
pseudogroup S on the circle including the local orientation-preserving isometries,
it endows X with a canonical S-structure.

The idea of doubling points in one-dimensional dynamics is very classical, and
often attributed to Denjoy.

The idea underlying the following lemma appears in the context of interval ex-
changes in Danthony-Nogueira’s article [DN]. I thank Thierry Bousch for bringing
this important observation to my attention.

Lemma 3.9. For any curve X endowed with an orientation, endow X± = X ×
{1,−1} with the product topology and an orientation: that of X on X ×{1} and
the reverse one on X × {−1}.

Then there is a natural injective group homomorphism Φ of PC(X) into PC+(X±),
whose image is the centralizer of the involution σ : (x, 1)↔ (x,−1) in PC+(X±),
and which makes the projection X± → X equivariant.

Proof. For f ∈ Icof
top(X) and x ∈ Df , define the reduced derivative f ı(x) as equal

to 1 or −1 according to whether f is locally orientation-preserving or orientation-
reversing at x (this is well-defined because X is endowed with an orientation).
It can be thought of as the sign of the derivative, but is defined for arbitrary
piecewise strictly monotonic functions.

It satisfies the same property as the derivative for composition: when defined,
we have (f2 ◦ f1)ı(x) = f ı1(x)f ı2(f1(x)). With a suitable derivability assumption
we would obtain an action on the tangent bundle, and then, modding out by the
action of positive scalars, an action on the orientation bundle. This idea works
directly thanks to the above formula. Namely, for any f ∈ Icof

top(X), and (x, ε) ∈
X × {±1}, define τ(f)(x, ε) = (f(x), f ı(x)ε). Note that it obviously commutes
with s, and preserves the given orientation. That it defines a partial action with
domain of definition Df × {±1} is immediate from the composition formula. It
then induces a group homomorphism of PC(X) into PC+(X±), which is clearly
injective. That the image consists of the centralizer of σ is straightforward, as
well as the additional statement. �

See also Lemma 4.23 in the additional presence of a geometric structure.

Remark 3.10. In the context of piecewise isometric maps, the elements in the
image of Φ were called “linear involutions” in [DN]; thus “linear involutions”
denote one way to represent the group of “interval exchanges with flips”, thus
encoded as interval exchanges in this model. Since these are neither linear nor
involutions, we prefer avoid this terminology.

Remark 3.11. There is another interesting topology on X±, instead of the prod-
uct topology as above, namely the Denjoy topology τDenj. It is defined as the
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(local) ordering (in the case of the interval, it consists of the lexicographic order
consisting in splitting each x into two consecutive elements). It is compact if X
is compact. Its main interest, essentially mentioned by Keane in [Ke], is that
the cofinite-partial action of PC(X) on X± extends to a continuous action on
(X±, τDenj) is continuous. Unlike the product topology, it is not (locally) metriz-
able.

4. General results

4.A. Commensurating actions. Denote by 4 the symmetric difference be-
tween subsets of a set, and | · | the cardinal function.

Given a group G acting on a set Y , a subset X ⊂ Y is commensurated if
X 4 gX is finite for every g ∈ G. We then call (Y,X) a commensurating action
of G. We say that the commensurating action (Y,X) is transfixing, or that the
subset X ⊂ Y is transfixed, if there exists a G-invariant subset X0 such that
X4X0 is finite. The function `X : g 7→ |X4gX| is called the cardinal definition
function of the commensurating action (Y,X). If X is transfixed then `X is
obviously bounded; the converse also holds:

Theorem 4.1 ([BPP]). The commensurating G-action (Y,X) is G-transfixing if
and only if its cardinal definite function `X is bounded on G.

Continue with an arbitrary subsetX of Y . Let us denote `+
X : g 7→ |XrgX| and

`−X(g) = `+
X(g−1) = |X r g−1X|. Call `+

X and `−X the loanshark and the prodigal
semi-index functions of (Y,X). Note that Y being commensurated means that
either of these functions takes finite values, and transfixed means that either of
these functions is bounded. Each of these functions, say `, satisfies `(1) = 0
and `(gh) ≤ `(g) + `(h) for all g, h ∈ G. Note that `X = `+

X + `−X . (When X
is G-commensurated, the difference g 7→ `+(g) − `+(g−1) is a well-defined map
G → Z, and actually a group homomorphism, called index character of (Y,X),
see [Cor1, §4.H].)

Proposition 4.2. 1) [Cor1, Cor. 6.A.2] Every cardinal definite function on Z
has the form n 7→ m|n|+ b(n) for some unique m ∈ N and bounded non-negative
function b : Z→ N (where N = {0, 1, . . . }).

2) For every commensurating action of Z, the corresponding prodigal semi-
index function has, in restriction to N, the form n 7→ m′|n| + b(n) for some
unique m′ ∈ N and bounded non-negative function b′ : Z→ N.

Proof. 2) Let (Y,X) be a commensurating action of Z = 〈u〉. Let (Y,X) be a
commensurating action of Z = 〈u〉 and X a commensurating subset; let ` = `Y,X
be the corresponding cardinal definite function and `+ = `+

Y,X .
We start with the case when Y is 〈u〉-transitive, that is, consists of a single

cycle. If Y is finite, then ` is bounded. Otherwise, Z acts simply transitively on
Y and hence we can suppose that Y = Z with u(n) = n+ 1. Then X is a subset
with finite boundary, which therefore has a finite symmetric difference with some
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X ′ ∈ {∅,−N,N,Z}. So `+
X − `+

X′ is bounded. We have `+
X′|N = 0 for X ′ ∈

{∅,−N,Z}, and `+
N(n) = n for all n ∈ N. We can thus write `+(n) = m+n+ b(n)

with m+ ∈ {0, 1}, for all for n ∈ N. (Note that we have a similar formula for
`− with some m− ∈ {0, 1} and that (m+,m−) ∈ {(0, 0), (1, 0), (0, 1)}.) A simple
argument using sub-additivity of `+ shows that b ≥ 0.

Adding over finitely many orbits, we obtain the result when Y consists of
finitely many orbits.

In general, let W be the union of orbits of elements of the finite subset X4uX;
it consists of finitely many orbits Wi. Then X ∩W c is invariant, and hence we
have ` = `W,X∩W and `+ = `W,X∩W . This reduces to the case when there are
finitely many orbits, which has been settled.

1) From (2) and since `(n) = `+(n)+`+(−n), we can write `(n) = m±n+b±(n)
for all n ∈ ±N. Since `(n) = `(−n) for all n, taking the limit of (`(n)−`(−n))/n
when n→∞ yields m+ = m−, and in turn we deduce b+ = b−. �

The first consequence below was originally observed as a consequence of a more
difficult result of Haglund [Hag] on isometries of CAT(0) cube complexes.

Corollary 4.3. Let G be a group and 〈c〉 a cyclic subgroup. Suppose that c
is distorted (as defined before Corollary 1.5), or c is unboundedly divisible (as
defined after Definition 1.2). Then (G, 〈c〉) has relative Property FW.

Proof. Let ` be a cardinal definite function on G.
Suppose that c is distorted in some finitely generated subgroup Γ of G, and

let | · | be the word length on Γ with respect to some finite generating subset.
Since ` is subadditive, there exists C such that `(g) ≤ C|g| for all g ∈ Γ. In
particular, `(cn) ≤ C|cn|. If c is distorted, then lim |cn|/n = 0, and we deduce
lim `(cn)/n = 0. By Proposition 4.2, it follows that supn `(c

n) <∞.
Also by Proposition 4.2, the limit m(g) = lim `(gn)/n belongs to N for all

g ∈ G. Clearly, m(gk) = km(g). It immediately follows that if c has roots of
unbounded order, then m(c) = 0, and hence, again by Proposition 4.2, we have
supn `(c

n) <∞. �

Proposition 4.4. Let A be a finitely generated abelian group and ` a cardinal-
definite function on A. Then there exist subgroups B,A′ of A such that

• B ∩ A′ = {0};
• B + A′ has finite index in A;
• the length ` is bounded on B;
• the length ` has growth equivalent to the word length on A′.

Proof. Let B(A, `) be the maximal subgroup on which ` is bounded (it clearly
exists). We first assume that B(A, `) = {0}. Hence, A is torsion-free, so we
can suppose that A = Zd, and we have to show that ` is equivalent to the word
growth.

Let f be a cardinal-definite function on A. First suppose that it is associated
to a transitive commensurating action A/E, with commensurated subset M , and
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that f is unbounded. Then A/E has more than one end, and hence is 2-ended.
Let χ : A/E → Z a surjective homomorphism (this is unique up to sign). Then,
up to replace χ with −χ, the subset M has finite symmetric difference with
χ−1(M), and then `(v) = m|χ(v)| + O(1), where m is the cardinal of the kernel
of χ.

In general, as in the proof of Proposition 4.2, f is equal to the cardinal-definite
function associated to an action with finitely many orbits (this actually holds, by
the same arguments, for arbitrary finitely generated groups). Hence there exist

k and homomorphisms A → Z such that we have f(v) =
∑k

i=1 |χi(v)| + O(1).
Note that χi extends to a linear form on Rd with integral coefficients. Then
ν =

∑k
i=1 |χi| defines a seminorm on Rd, whose vanishing subspace is

⋂
i Ker(χi).

The latter is a rational subspace. Since ` is unbounded on any nonzero subgroup
of Zd, we deduce that this rational subspace is zero. Hence ν is a norm, hence
ν ≥ c‖ · ‖1 for some c > 0. Since the `1-norm ‖ · ‖1 coincides with the word length
on Zd, we thus have the required inequality.

In general (B(A, `) arbitrary), let A′ be any maximal subgroup among those
with B(A, `) ∩ A′ = {0}. Since B(A′, `) = {0}, we obtain the result by applying
the previous case to A′. �

The following lemma is far from optimal but we find convenient to write it for
reference.

Lemma 4.5. Let G be a Lie group of dimension 1, of the form G◦ o F with F
either trivial or cyclic of order 2, acting by inversion on the abelian unit compo-
nent G◦. Then G has a finitely generated dense subgroup Γ such that (G,Γ) has
relative Property FW as an abstract group.

Proof. Let f be a cardinal definite function on G. Choose u, v ∈ G◦ generating a
dense subgroup Λ of G◦, and set Γ = Λ o F . Since each of u, v is divisible in G,
we have f bounded on both 〈u〉 and 〈v〉 by Corollary 4.3. Since f is subadditive
and since every element of Γ can be written as unvmk with (n,m, k) ∈ Z2 × F ,
we deduce that f is bounded. �

4.B. Lemmas of B. Neumann and P. Neumann. We use the following
lemma holding for arbitrary group actions, which for convenience we refer to
as Neumann’s lemma:

Lemma 4.6. Let G be a group and Z a G-set. Let U be a cofinite subset of Z
including all finite G-orbits. Then for any finite subset F of Z there exists g ∈ G
such that gF ⊂ U .

Proof. A result of P. Neumann [Neu2, Lemma 2.3] states (∗) that for every G-set
W with no finite orbit and every finite subset F ′ of W , there exists g ∈ G such
that gF ′ ∩ F ′ is empty. (This is an easy consequence of B. Neumann’s result
[Neu1] that a group is never covered by finitely many left cosets of infinite index
subgroups.)



22 YVES CORNULIER

Let Z∞ be the union of all infinite G-orbits; by assumption U∪Z∞ = Z. Define
F ′ = (Z r U) ∪ (F ∩ Z∞). Then F ′ ⊂ Z∞, and we can apply (∗) to W = Z∞
and F ′: there exists g ∈ G such that gF ′ ∩F ′ = ∅. In particular, gF ′ ⊂ U . Since
g(F r Z∞) ⊂ Z r Z∞ ⊂ U by assumption, we deduce that gF ⊂ U . �

Neumann’s lemma can be used to obtain separation properties:

Corollary 4.7. Let G be a group and Y a topological space on which G acts by
self-homeomorphisms. Let U be a cofinite Hausdorff subset of Y including all
finite G-orbits. Then Y is Hausdorff.

Proof. Apply Lemma 4.6 to 2-element subsets of Y , one first obtains that for all
x 6= y, the point y does not belong to the closure of {x}. Hence U is open. Again
apply Lemma 4.6 to 2-element subsets of Y to obtain the Hausdorff Property. �

In turn, this has the following application.

Lemma 4.8. Let G be a (discrete) group acting continuously on a topological
T1-space Y . Let X,X ′ be subsets of Y , such that X is G-essential (i.e., X meets
all G-orbits), X is open, X ′ is G-invariant, and the symmetric difference X4X ′
is finite. Suppose that X is Hausdorff. Then X ′ has a cofinite G-invariant subset
X ′′ that is Hausdorff and open in Y .

Proof. Let F be the union of finite G-orbits in X ′ meeting X ′ r X. Define
X ′′ = X ′rF . Hence X ′′ is a cofinite G-invariant subset of X ′ and every element
of X ′′ r X belongs to an infinite G-orbit. By Corollary 4.7 applied to Y = X ′′

and U = X ∩X ′′, we infer that X ′′ is Hausdorff.
Since Y is T1 (singletons are closed), X ∩X ′′ is open; hence X ′′ =

⋃
g∈G g(X ∩

X ′′) is open too. �

In terms of partial actions, this has the following consequence:

Proposition 4.9. Consider a topological partial action of a (discrete) group G
on a Hausdorff topological space X. Suppose that X is G-transfixed. Then there
exists a G-invariant subset X ′ of X̂ with X ′ 4 X finite, that is G-invariant,
Hausdorff and open in X̂.

Proof. Since X is transfixed, it is transfixed as a subset of its universal globaliza-
tion X̂, which is T1 by Lemma 3.6. Let X ′′ be a G-invariant subset of X̂, such
that X4X ′′ is finite. By Lemma 4.8, X ′′ has a G-invariant, cofinite subset that
is both Hausdorff and open in X̂. �

We are led to consider partial actions that are obtained from actions by re-
stricting domains of definitions. For instance, the group PC0

Aff (R/Z) of piecewise
affine self-homeomorphisms of R/Z acts on R/Z, and it is natural to restrict to
a partial action preserving the affine structure, by restricting the domain of def-
inition of f to the set of points at which f is affine (or equivalently derivable).
The following proposition typically addresses such partial actions, characterizing
the condition of being transfixing.
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Proposition 4.10. Let G be a group and α an action of G on a set Y . Consider
a cofinite-partial action β of G on Y such that the identity map (Y, β) → (Y, α)
is G-equivariant. Suppose that Y is transfixed for the partial action β. Then
there exist cofinite subsets X ⊆ X ′ ⊆ Y with X ′ α(G)-invariant, such that the
inclusion of (X, β) into (X ′, α) is a universal globalization.

In particular if there is no finite α(G)-orbit in Y then the conclusion can be
written as: there exists a cofinite subset X ⊆ Y such that the inclusion of (X, β)
into (Y, α) is a universal globalization.

Proof. Let i : Y → Ŷ be a universal globalization of β. By the universal property,
there exists a G-equivariant map π : (Ŷ , β̂)→ (Y, α) such that π ◦ i = idY .

For every subset X ⊆ Y , its universal globalization is the union of all β̂(G)-

orbits of Ŷ meeting i(X). Let X be a cofinite subset of Y that is transfixed
above (i.e., such that X has finite complement in its universal globalization).

Removing finitely many finite β̂(G)-orbits, we can suppose that X̂ r i(X) meets

no finite β̂(G)-orbit. We claim that π is injective on X̂. Indeed, π is clearly

injective on i(X). Since any pair in X̂ can be moved into i(X) by a group

element (applying Lemma 4.6 to the action β̂), we deduce injectivity of i on X̂.

Then define X ′ = i(X̂): then X ⊆ X ′ ⊆ Y satisfy the given statement. �

4.C. Canonical partial action of self-homeomorphism groups. Let X be
a topological space. Consider the group PC(X) of parcelwise continuous self-
transformations of X, introduced in §3.D.

Denote by π the projection Icof
top(X) → PC(X). That is, for g ∈ PC(X),

π−1({g}) is the set of representatives of g as partial homeomorphisms between
two open cofinite subsets of X.

For g ∈ PC(X), define α(g) =
⋃
σ∈π−1({g}) σ. Here the union is understood

among subsets of X2.

Lemma 4.11. Suppose that X is Hausdorff with no isolated point. Then α(g) is
a partial bijection for every g ∈ PC(X).

Proof. It is clear that α(g) ⊂ X × X has cofinite (hence open) projections into
X. So we have to show that projections are injective, and by symmetry (α(g−1)
being the flip of α(g)) it is enough to check for the first projection. To show its
injectivity, consider (x, y), (x, y′) ∈ α(g). Hence (x, y) ∈ σ and (x, y′) ∈ σ′ for
some σ, σ′ ∈ π−1({g}). Since every cofinite subset of X is dense, there exists a
net (xi) in the domain of σ∩σ′, tending to x. Then, by continuity of both σ and
σ′ and using that Y is Hausdorff, we have y = limi σ(xi) = limi σ

′(xi) = y′. �

It is easy to check the failure of the conclusion of Lemma 4.11 whenever X has
at least two isolated points. Thanks to Lemma 4.11, we have:
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Proposition 4.12. Let X be a Hausdorff topological space with no isolated point.
Then g 7→ α(g) defines a topological partial action of PC(X) on X, which is a
splitting for the canonical projection π : Icof

top(X)→ PC(X).

Proof. By Lemma 4.11, this map is well-defined. The first two conditions of
partial actions (identity and inverses) are clearly satisfied. Let us check that
α(g)α(h) ⊂ α(gh) for all g, h ∈ PC(X). Consider x ∈ X such that y = α(h)x
and z = α(g)(α(h)x) are defined. So (x, y) ∈ α(h) and (y, z) ∈ α(g). Hence there
exist σ ∈ π−1({g}) and σ′ ∈ π−1({h}) such that (x, y) ∈ σ′ and (y, z) ∈ σ. Hence
σσ′ ∈ π−1(gh) and (x, z) ∈ σσ′. That is, (x, z) ∈ α(gh). �

Remark 4.13. The above splitting is not a monoid homomorphism in general:
for instance idX = α(1) = α(g−1g) 6= α(g−1)α(g) = idDg when Dg 6= X.

Remark 4.14. From a categorist’s point of view, it would be more natural and
general to formulate this in a groupoid context, where a partial groupoid action is
defined assigning to each object a set and to each arrow a partial bijection between
the corresponding sets, with the analogous axioms. Then Proposition 4.12 adapts
to this more general setting: every parcelwise continuous map g : X → Y between
Hausdorff topological spaces without isolated point has a canonical representative
α(g) in Icof

top(X), satisfying the axioms of groupoid partial action. We sticked to
the group case only for the sake of conciseness, and because the generalization
requires no further ingredient.

4.D. Generalities about the parcelwise and piecewise groups.

Definition 4.15. Let X, Y be Hausdorff topological spaces. For functions f, g ∈
Y X , write f ∼ g if f and g coincide on a cofinite subset, and let [f ] be the class
of f modulo ∼.

Say that f ∈ Y X is outer continuous at x ∈ X if x is not isolated and there
exists a map g ∈ [f ] that is continuous at x. Then the value g(x) does not depend
on the choice of g and only on the class [f ], and is called the outer limit of f (or
of [f ]) at x. Let D◦f (or D◦[f ]) be the set of points at which f is outer continuous.

Let X be a Hausdorff topological space with no isolated point. Every σ ∈
PC(X) defines a class modulo ∼ in XX in the above sense. Then, for σ ∈ PC(X),
the set D◦σ of points on which σ is outer continuous is cofinite, since it contains
the domain of definition of any representative σ̂. In the setting of Proposition
4.12, Dα(σ) is thus contained in D◦σ.

Under a strong assumption, we have a converse. Define a topological space X
as locally saturated if for every open subset U of X, every continuous injective
map U → X is open. For instance, topological manifolds of pure dimension n
are locally saturated, by Brouwer’s invariance of domain theorem (we will use it
for n = 1, in which case this is obvious).
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Proposition 4.16. Let X be a Hausdorff topological space with no isolated point.
Suppose that X is locally saturated. Then for every σ ∈ PC(X), the domain of
definition of α(σ) coincides with the subset D◦σ of outer continuity of σ.

Proof. We only have one inclusion to check. Suppose that σ is outer continuous
at x. Let σ̃ be a lift of σ in Icof

top(X). If σ̃ is defined at x, then x ∈ Dα(σ) (by
construction of the latter). Otherwise, let y be the outer limit of f at x. Define
f = σ̂ ∪{(x, y)} (viewed as subsets of X2). Then f is a partial map and we have
to check that f is injective and f−1 is continuous on its domain D.

Define a neighborhood U ⊂ D of x as follows: if f is injective, choose U = D.
Otherwise, there exists a unique x′ ∈ D r {x} such that f(x) = f(x′). Since X
is Hausdorff, let U be any open neighborhood of x in D whose closure does not
contain x′. Hence f is injective on U in all cases. Since X is locally saturated,
f(U) is open. Hence V = σ−1(f(U)) is open; we have

V = σ−1(f(U r {x}) ∪ {y}) = (U r {x}) ∪ σ−1({y}).

If by contradiction x′ exists, σ−1({y}) = {x′}, and hence we deduce that (U r
{x}) ∪ {x′} is open. Intersecting with the complement of the closure of U , we
deduce that {x′} is open, a contradiction.

Now let us show that f−1 is continuous at y. Indeed, f(U) is a neighborhood
of y for every neighborhood U ⊂ D of x and this precisely establishes continuity
of f−1. �

We finish this subsection by a digression, namely a corollary of Proposition
4.12 in terms of near actions. Recall [Cor3] that a near action of a group G on
a set X is a homomorphism from G into the group PC(X), where X is endowed
with the discrete topology. Every action of G on X induces a near action, and a
near action arising in this way is called realizable.

Given two near actions on sets X and Y , one can naturally define the disjoint
near action on X t Y . The near action on X is called completable if there exists
a set Y and a near action on Y such that the disjoint union near action on X tY
is realizable.

If X is a topological space, write Xδ for X endowed with the discrete topology,
so we have a canonical inclusion PC(X) ⊂ PC(Xδ), which thus defines a near
action of PC(X) on X.

Corollary 4.17. For every Hausdorff topological space X with no isolated point
(or with finitely many isolated points), the near action of PC(X) on X is com-
pletable.

Indeed, Proposition 4.12 provides a cofinite-partial action realizing the near ac-
tion of PC(X), and hence taking the universal globalization yields completability.
See [Cor3, §1.P, §4.K] for more on the link between near actions and cofinite-
partial actions. In the presence of isolated points, the near action of PC(X) on
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X is not always completable; notably, it is not completable when X is infinite
discrete, see [Cor3].

Given a Hausdorff topological space X with no isolated point, we have in-
clusions Homeo(X) ⊂ PC](X) ⊂ PC(X). When X is S-modeled, it induces
inclusions PC0

S(X) ⊂ PCS](X) ⊂ PCS(X).
We say that a Hausdorff topological space X has no local cut point if it satisfies

one of the following two equivalent conditions:

• every x ∈ X, the set of neighborhoods V of x such that x ∈ V r {x} and
V r {x} is connected, is a basis of neighborhoods of x;
• for every x ∈ X and every neighborhood W of x, there is a unique com-

ponent Z of W r {x} such that x belongs to the closure of Z.

Note that it implies that X has no isolated point. For instance, this holds if X
is a topological manifold with no component of dimension ≤ 1, or more generally
if X is locally homeomorphic to a locally finite simplicial complex in which every
vertex or edge belongs to a triangle, and in which the link at every vertex is
connected.

Remark 4.18. Let X be a Hausdorff compact topological space with no local
cut point. Then the inclusion Homeo(X) ⊂ PC(X) (holding whenever X is
Hausdorff and has no isolated point) is an equality.

Indeed, given that X is Hausdorff compact, the assumption that X has no
local cut point is equivalent to the condition that for every finite subset F of X,
the embedding X r F → X is the end compactification (in the sense of Specker
[Spe]) of X r F .

The equality PC(X) = Homeo(X) is a rigidity property, which means, in
a sense, that the parcelwise continuous group PC(X) does not deserve a spe-
cific study, and illustrates by contrast, the richness of the context of purely 1-
dimensional topological manifolds X.

Remark 4.19. Let X be a Hausdorff topological space with no local cut point.
Then the inclusion Homeo(X) ⊂ PC](X) is an equality.

Indeed, consider f ∈ Icof
] (X) and x ∈ X. Consider I, (Di), (gi) and (Ei) as

in §3.E.4. Since I is finite and X has no isolated point, the set J of i such that
x ∈ Di is not empty. Hence gi(x) is a limit point of f(x′) when x′ 6= x tends to
x; since x is not a local cut point, gi(x) does not depend on i; call it f̄(x); note
that f̄ extends f . Again using that I is finite one checks that f̄ is continuous at
x. Then f̄ ◦ f̄−1 and f̄ ◦ f̄−1 are defined everywhere, are continuous, and are the
identity outside finite subsets. Since X has no isolated point, these are identity.
Thus f̄ is a homeomorphism.

4.E. On parcelwise-S and piecewise-S groups.

4.E.1. Partial action αS. Let S be a pseudogroup on a topological space A, and
let X be a S-modeled topological space. Denote by πS the projection Icof

S (X)→
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PCS(X). By definition, a topological partial action on X is S-preserving if it
maps G into IS(X).

To any topological S-preserving cofinite-partial action of G on X, we can con-
sider the induced homomorphism G→ PCS(X).

Now assume that X is Hausdorff and has no isolated point. For g ∈ PCS(X),
define αS(σ) =

⋃
σ∈π−1

S ({g}) σ. It is contained in α(g) =
⋃
σ∈π−1({g}) σ (i.e., where

we take the union over the whole preimage in Icof
top(X)). It follows from Lemma

4.11 that if X is Hausdorff and has no isolated points, then α(g) is a partial
bijection, and hence αS(g) is a partial bijection.

This shows that for X Hausdorff and without isolated point, the above mapping
from the set of topological S-preserving partial actions ofG onX to Hom(G,PCS(X))
has a canonical section, and in particular is surjective.

It can happen, and it is one interest of the construction, that αS(g) is properly
contained in α(g). For instance, if g is a piecewise affine homeomorphism and S is
the pseudogroup of local affine homeomorphisms, then α(g) is defined everywhere,
while αS(g) is defined outside singular points.

4.E.2. Transfer of S-structure to the globalization. The following simple proposi-
tion plays an essential role; it is also paramount to not assume Y to be Hausdorff.
For this reason, we provide a detailed proof.

Proposition 4.20. Let S be a pseudogroup on a topological space A. Let G
be a group with a topological S-preserving partial action on an S-modeled space
X. Consider a partial topological G-space Y with an injective open full essential
homomorphism of partial actions X → Y . Then there is a unique S-structure
on Y extending the S-structure on X such that the partial action of G is S-
preserving.

Proof. View X → Y as an open inclusion, and denote by α the partial action on
Y , and β the partial action on X. For every y ∈ Y , the inclusion being essential,
there exists g ∈ G such that α(g)y ∈ X. Since X and the Dα(g) are open and
α(g) is continuous on its domain, there exists (∗) an open neighborhood U of y
included in Dα(g) such that α(g)U ⊂ X. Given (∗), the uniqueness follows.

For the existence, it is enough to endow Y with a structure on the pseudogroup
IS(X). Namely, define an atlas where the charts are indexed by the pairs (g, U),
where g ranges over G and U among open subsets of Y such that α(g)U ⊂ X.
Such a chart φg,U has domain U and is simply given by α(g)|U . That the domain
of charts cover Y follows from (∗).

Now let us check the compatibility condition in the definition of an atlas.
Consider two charts φg,U and φh,V : we have to show that φh,V ◦ φ−1

g,U belongs

to IS(X). Define W = α(g)U ∩ α(h)V . Define U ′ = α(g)−1(W ) ⊂ U and
V ′ = α(h)−1(W ) ⊂ V . Then, adding subscripts to restrict the domain and range
of the given partial bijections, we have

φh,V ◦ φ−1
g,U = φh,V ′ ◦ φ−1

g,U ′ =
(
α(h)V ′→W

)
◦
(
α(g)−1

U ′→W
)

= α(h ◦ g−1)W→W .
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The first equality just uses the definition of composition of partial maps; the
second is just the definition, and the third follows from the definition of partial
maps and the definition of partial action. Now it follows from the inclusion
X → Y being full that α(h ◦ g−1)W→W is equal to β(h ◦ g−1)W→W . Therefore,
the change of charts α(h ◦ g−1)W→W belongs to IS(X). This proves that we have
an atlas.

Let us finally check that the partial action α is S-preserving. Indeed, since
this is a local condition, we can check for a given g at given points y, y′ = α(g)y;
we can choose an open neighborhood U of y which is the domain of a chart
φU,h, and such that V = α(g)U is domain of a chart φV,k. Then, on h(U),
the composition φV,k ◦ (α(g)U→V ) ◦ φ−1

U,h (which describes α(g)U→V in charts)

equals α(kgh−1)h(U)→k(V ) which preserves S. Hence α(g) is S-preserving at the
neighborhood of y. �

Corollary 4.21. Given a group G with a topological S-preserving partial ac-
tion on an S-modeled topological space X, there exists a unique G-invariant S-
structure on the universal globalization X̂ extending the original S-structure on
X.

Remark 4.22. Beware that even if X is Hausdorff, X̂ is often far from Hausdorff:
indeed the construction of X̂ typically glues copies of open subsets of X along
open intersections.

For this reason, and because of our extensive use of Corollary 4.21, discussions
about Hausdorffness of spaces are important unavoidable issues: even if the ul-
timate goal is to deal with Hausdorff spaces and produce Hausdorff spaces, we
have to accept the presence of non-Hausdorff spaces among our tools.

4.E.3. Further remarks. The following lemma complements Lemma 3.9 and is
immediate.

Lemma 4.23. Let X is modeled over a pseudogroup S on R/Z. Then the natural
homomorphism Φ : PC(X) → PC+(X±) induces an isomorphism from PCS(X)
onto the centralizer of σ in PC+

S (X±). �

Remark 4.24. If A = R/Z and S is one of the pseudogroups Isom, Aff ,
Proj, the whole pseudogroup of local homeomorphisms, or one of their ori-
ented counterparts, then for every S-modeled topological space X, we have
PCS(X) = PCS](X).

Continuing with R/Z, examples of S for which PCS(X) 6= PCS](X) are the
pseudogroup of partial Ck-diffeomorphisms for k > 0 (or k = ∞, ω), the pseu-
dogroups Aff℘ and Proj℘ of piecewise affine/projective local homeomorphisms.

Remark 4.25. Even when PC(X) = Homeo(X) (as in Remark 4.18), we can
have PCS(X) 6= PC0

S(X). This is for instance the case when S is the pseudogroup
of Ck-diffeomorphisms on Rd for d ≥ 2 and k > 0.
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In higher dimension, of course there are other natural interesting ways of con-
sidering “piecewise” properties, which allow infinite subsets (typically “codimen-
sion 1”) subsets of “singular points”. Such a study goes beyond the scope of this
paper.

5. Non-distortion phenomena

This shorter section is independent of the next ones, and only referred to in the
non-distortion corollaries. Indeed, while commensurated actions typically allow
to prove that distorted elements preserve some given geometric structure, an
additional step is necessary to understand when such automorphisms are distorted
within the whole piecewise group.

We indicate a way to systematically tackle such problems, with a limited tech-
nical cost, thanks to the language of pseudogroups.

Let S be a pseudogroup on a topological space X. Whenever we refer to sx
for (s, x) ∈ S ×X, it is understood that we mean “(such that) x belongs to the
domain Ds of s”. We freely consider s as a subset of X2.

Given open subsets Y, Z of X, we denote by SY,Z the set of those s ∈ S that are
included in Y ×Z. Write SY = SY,Y (so S = SX); note that SY is a pseudogroup
on Y , and is an inverse subsemigroup of I(X).

Given a subset T ⊂ I(X), define a graph structure on X, with one edge (x, gx)
for all g ∈ T and x ∈ X. Let dT be the corresponding graph “distance” (allowing
the value ∞) on X. Note that dT = dT∪T−1 , so it is generally no restriction to
assume T symmetric.

Lemma 5.1. Let X be a set (viewed as discrete topological space) with a subset
Y . Let S be a pseudogroup on X, with idY ∈ S.

Let T be a subset of S and K a subset of SX,Y , such that
⋃
f∈K Df = X.

Define T ′ = KTK−1 (so T ′ is included in SY ). Then for all y, y′ ∈ Y we have
dT ′(y, y

′) ≤ 3dT (y, y′).

Note that assuming idY ∈ K yields dT (y, y′) ≤ dT ′(y, y
′); the interest of Lemma

5.1 is to provide an inequality in the reverse direction. This can be thought as
a non-distortion property: we can replace a path of size n (in X) with a path of
size 3n (within Y ).

Proof. Since T ′ ∪ T ′−1 ⊂ K(T ∪ T−1)K−1, we can suppose that T is symmetric.
Consider y, y′ ∈ Y with dT (y, y′) = n, so we can write y′ = sn . . . s1y with si ∈ T .
Write xj = sj . . . s1y ∈ X. For each j, there exists k = kj ∈ K such that xj ∈ Dkj .
Then

y′ = (snk
−1
n−1)(kn−1sn−1k

−1
n−2) . . . (k2s2k

−1
1 )(k1s1)y = τn . . . τ1y,

with τi = kisik
−1
i−1 ∈ T ′ (and k0, kn = idY ). Then τj . . . τ1y ∈ Y for all j. Hence

dT ′(y, y
′) ≤ 3n. �
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Let X be a standard curve. Define a small interval in X as a subset I either
empty or homeomorphic to an open interval, with the additional requirement
that if I is included in a circle component of length a, then the length of I is
≤ a/2. This ensures that the intersection of any two small intervals is a small
interval. Define the pseudogroup of isometries S as consisting of those isometries
between two small intervals of X.

Lemma 5.2. Let X be a standard curve, with the above pseudogroup S. Let Y
be a circle component of X. For z ∈ Y ±, let Qz be the set of σ ∈ PCS(X) such
that σ(z) ∈ Y ±. For σ ∈ Qz, define h = gz(σ) as the unique isometry h of Y
such that h(z) = σ(z).

Then for every finite subset W of PCS(X), there exists a finite subset W ′

of Isom(Y ) such that for every z ∈ Y ± and every σ ∈ Qz, we have |σ|W ≥
1
3
|gz(σ)|W ′.

Proof. Let W be a finite subset of PCS(X). Let T be a finite subset of S such
that every element of W is the union of finitely many elements of T . Let K a
finite subset of S such that the range of every k ∈ K is included in Y , and the
domains of k ∈ K cover X. Set T ′ = KTK−1 ⊂ SY . For t ∈ SY r {∅}, define
Ψ(t) as the unique self-isometry of Y extending t; define W ′ = Ψ(T ′). Then, for
every z ∈ Y ± and σ ∈ Qz, we have

|σ|W ≥ dT (z, σz) ≥ 1

3
dT ′(z, σz)) =

1

3
|gz(σ)|W ′ .

Let us justify each of the (in)equalities above. The middle inequality is provided
by Lemma 5.1. The left-hand inequality follows from the case when σ ∈ W ,
in which case it holds by definition of T . For the right-hand equality, the in-
equality ≤ is easy and not needed, so let us only justify ≥. Indeed, suppose
that dT ′(z, σz) = n. Then we can write σ(z) = tn . . . t1z with ti ∈ T ′. Write
τi = ti . . . t1 and zi = τiz. So

gz(τi)z = zi = tiτi−1z = Ψ(ti)gz(τi−1)z.

Thus gz(σ)z = Ψ(tn) . . .Ψ(t1)z, and hence, again using that the isometry group of
Y acts freely on Y , we deduce gz(σ) = Ψ(tn) . . .Ψ(t1). Hence |gz(σ)|W ′ ≤ n. �

Proposition 5.3. Let X be a standard curve and Z a clopen subset of X. Then
Isom(Z) is undistorted in PCS(X) = IET./(X). More generally, let Γ be any
subgroup of Isom(Z) and homomorphism q = Γ → IET./(X r Z), and denote
by Γq the image of Γ in IET./(X) by the homomorphism id × q. Then Γq is
undistorted in IET./(X).

Proof. We can suppose, passing to a subgroup of finite index, that Γ is included
in the unit component Isom(Z)◦. In particular, Γ preserves each component of
Z, and acts trivially on any component of Z that is not a topological circle. Let
Y1, . . . , Yk be the circle components of Z; we can view Isom(Z)◦ as the product∏

j Isom(Yj)
◦. Fix zj ∈ Yj.
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Let W be a finite subset of PCS(X). For each j, apply Lemma 5.2, out-
putting a finite subset Wj of Isom(Yj); we can suppose that Wj is symmetric
and contains 1. For γ ∈ Γ, let γq be its image in IET./(X); for each j let
γj ∈ Isom(Yj) be its restriction to Yj. Then γq ∈ Qz and hence Lemma 5.2 says
that |γq|W ≥ 1

3
|gzj(γq)|Wj

. Since gzj(γq) = γj, this yields |γq|W ≥ 1
3
|γj|Wj

. Write
W ′ =

∏
j({1} ∪Wj); then for every γ we have |γ|W ′ = supj |γj|Wj

. Hence we

deduce |γq|W ≥ 1
3
|γ|W ′ . If Γ = Isom(Y ), this gives the non-distortion result. In

general, this follows by using that in a virtually abelian group, all subgroups are
undistorted: precisely, the non-distortion ensures that there exists a finite subset
W ′′ of Γ and C > 0 such that for all g ∈ Γ, we have |g|W ′ ≥ C|g|W ′′ . �

Corollary 5.4 (Novak [Nov]). Let X be a standard curve and f an self-isometry
of X of infinite order. Then f is undistorted in IET./(X). �

This is, modulo the formulation, due to Novak in the context of (piecewise
orientation-preserving) interval exchanges. Precisely, Novak’s proof that IET
has no distorted cyclic subgroups consists, in a first step, in showing that every
distorted element has an isometric model and then the next step is to prove (by
hand: [Nov, §4]) a result akin to the previous corollary. Using Proposition 5.3,
Novak’s result is improved in Corollary 6.9.

We now consider affinely modeled curves. They are defined here as AffR/Z-
modeled curves; in particular finitely-charted is meant in the definition of §2.B:
it just means that no component is affinely isomorphic to an unbounded interval
of R. Thus (see Appendix A), every component is affinely isomorphic to:

• a bounded interval (which is isomorphic to ]−1, 1[), or
• the standard circle R/Z, or
• a non-standard circle R>0/〈s〉 for some (unique) s > 1.

A bounded interval has a trivial Aff+ automorphism group. In the case of circles,
which are given here as topological groups, in each case the Aff+ automorphism
group consists of the left-translations (additive in the standard case, multiplica-
tive in the non-standard case).

Lemma 5.5. Let X be a finitely-charted affinely modeled curve with a clopen
subset Y . Let Y1, . . . , Ym be the distinct components of Y , each of which being
isomorphic to a non-standard circle, and fix yj ∈ Yj for each j.

Let T a finite subset of the pseudogroup S of affine isomorphisms between open
intervals in X. Then there exists a finite subset W of AutAff (X)◦ such that for
every σ ∈ AutAff (X)◦ we have

|σ|W ≤
m∑
j=1

dT (yj, σyj).

.

Proof. We choose coordinates, so that X is identified to a suitable finite disjoint
union of intervals, where Yj, which is isomorphic to R>0/〈sj〉 for some sj > 1,



32 YVES CORNULIER

corresponds to the interval [cj, sjcj[, the identification being affine outside the
discontinuity point. We can choose them so that the T -orbit of yj does not contain

cj. For ν > 0, let r
(j)
ν be the multiplicative rotation of Yj given by multiplication

by ν: in the given coordinates, we still (by abuse) denote it as r
(j)
ν . If ν ∈ [1, sj[

(which we can always suppose), it is explicitly given by: for y ∈ [cj, sjcj/ν[ we

have r
(j)
ν (y) = νy while for y ∈ [sjcj/ν, sjcj[, we have r

(j)
ν (y) = (ν/sj)y. Let

M ⊂ R∗ be the set of slopes of elements of T in these coordinates; this is a finite

subset. Define W = {r(j)
ν : ν ∈M, 1 ≤ j ≤ m}.

We start from the observation that any affine automorphism of Yj is determined
by its slope at yj in these coordinates. Indeed, for ν ∈ [1, sj[, if ν < sjcj/yj, then

the slope of r
(j)
ν at yj is ν ≥ 1; if ν = sjcj/yj, then r

(j)
ν is discontinuous at yj; if

ν > sjcj/yj, then the slope of r
(j)
ν at yj is ν/sj < 1.

Fix j. Define nj = dT (yj, σyj). Write σyj = t
(j)
nj . . . t

(j)
1 yj. Let a

(j)
i be the slope

of t
(j)
i at t

(j)
i−1 . . . t

(j)
1 yj. Write a(j) = a

(j)
nj . . . a

(j)
1 . Then the slope of σ at yj is a(j).

Since σ is determined on Yj by its slope at yj, we deduce that σ = ra(j) on Yj.
Hence

σ =
m∏
j=1

ra(j) =
∏
j

nj∏
i=1

r
a
(j)
i
,

so

|σ|W ≤
m∑
j=1

nj∑
i=1

|r
a
(j)
i
|W ≤

m∑
j=1

nj∑
i=1

1 =
m∑
j=1

nj =
∑
j

dT (yj, σyj). �

Corollary 5.6. Let X be a finitely-charted affinely modeled curve. Let Z be
a clopen subset of X such that no component of Z is affinely isomorphic to a
standard curve. Then AutAff (Z) is undistorted in PCAff (X).

Proof. It is enough to show that Aut(Z)◦ is undistorted. Hence, we can suppose
that Z has no interval component, so each of its components is a non-standard
circle.

Let W ′ be a finite subset of PCAff (X). Let T be the set of partial affine
isomorphisms extracted from W ′. Let W be given by Lemma 5.5. Then for every
σ ∈ PCAff (X)

|σ|W ≤
m∑
j=1

dT (yj, σyj) ≤ m|σ|W ′ . �

Specifying to the subgroup of continuous elements, and to cyclic subgroups,
this yields the following particular case which, modulo the formulation, is due to
Guelman-Liousse [GuL, §7].

Corollary 5.7 (Guelman-Liousse). Let X be a finitely-charted affinely modeled
curve. Let Y a component of X that is a nonstandard circle, i.e., Y ' R>0/〈s〉
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for some s > 1. Then every cyclic subgroup of AutAff (Y ) is undistorted in
PC0

Aff (X).

The robustness of the method allows to apply it in some other cases. For
instance, a related argument can show that irrational rotations of non-standard
circles are undistorted in the group of piecewise projective self-transformations.
The proof is a little more difficult: the basic idea is to use non-distortion of
homotheties in PSL2(R) rather than in an abelian group. Actually, this should
be performed in a systematic study of distortion in groups of piecewise projective
self-transformations.

It is not known if Corollary 5.6 holds when standard circles are allowed in Z;
see Corollary 6.15.

6. The main theorem and applications

6.A. Powers and the first corollaries. We first use the interpretation of piece-
wise/parcelwise actions as partial actions to provide counting results for the num-
ber of “singularities” of various maps, in various senses.

6.A.1. Using the partial action α. Let X be a Hausdorff topological space with
no isolated point. Proposition 4.12 applies: PC(X) has a canonical partial action
α on X. Call the finite complement of the domain of definition of σ ∈ PC(X) its
domain of indeterminacy. It contains the subset of outer discontinuity points of
σ, defined as the complement of the set of outer continuity points x of σ. If in
addition X is locally saturated (e.g., a topological manifold of pure dimension),
Proposition 4.16 applies and these two finite subsets coincide for every σ.

When X is an oriented 1-dimensional manifold, not necessarily connected,
outer discontinuity points of σ are the same as discontinuity points of the unique
left-continuous representative of σ. (Beware that mapping σ to its unique left-
continuous representative of σ is not a monoid homomorphism; yet it is a monoid
homomorphism in restriction to piecewise orientation-preserving elements).

Corollary 6.1. Let X be a Hausdorff topological space with no isolated point.
Consider the cofinite-partial action of PC(X) on X.

(1) the prodigal semi-index function `− of this partial action (as defined in
§3.C), and hence of its restriction to any subgroup, coincides with the
function mapping σ ∈ PC(X) to the number of indeterminacy points of
σ;

(2) Let G be a group with a homomorphism α : G → PC(X). Then X
is transfixed by α(G) (as defined in §3.C) if and only if the number of
indeterminacy points of α(g) is bounded independently of g ∈ G;

(3) for every σ ∈ PC(X) there exists mσ ∈ N and a bounded function b :
N→ N such that `−(σn) = mσn+ b(n) for all n ∈ N.
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Proof. The first fact is immediate and the second immediately follows. Using
the universal globalization (Theorem 3.2), the prodigal semi-index function `−

of this partial action is the prodigal semi-index action of some commensurating
action (namely on the universal globalization of X, commensurating X). Hence
(3) follows from Proposition 4.2. �

This has the following addendum (for which we did not attempt to find optimal
hypotheses):

Corollary 6.2. In the setting of Corollary 6.1(3), assume that X is a topological
manifold with no boundary and finitely many ends. Then `−(σ) = `−(σ−1) for
all σ. In particular, we have mσ = mσ−1 for all σ. In other words, for every
σ ∈ PC(X) there exists mσ ∈ N and an even bounded function b : Z → N such
that `−(σn) = mσ|n|+ b(n) for all n ∈ Z.

Proof. This reflects the fact that domains of definition of σ and σ−1 have comple-
ments of the same cardinal. In turn, this follows from the fact that the comple-
ment of m and m′ points in X are homeomorphic only if m = m′. Let us check
the latter assertion.

First suppose that X has constant dimension. Write θ = 2 if dim(X) = 1 and
θ = 1 if dim(X) ≥ 2. Let k be the number of ends of X. Then the number of
ends of X minus m points is k + θn. This number retains m, when X is given.
(If X has dimension 0, the condition of having finitely many ends means that
X is finite and the result holds too.) The case when X has variable dimension
immediately follows. �

Remark 6.3. In the case when X = R/Z and in the context of interval ex-
changes, Corollary 6.2, was essentially established independently in [Nov, Prop.
2.3] and [DFG, Corollary 2.5]. Although not stated, the behavior of the form
n 7→ kn + O(1) for n → +∞ with k ∈ N is established explicitly in [DFG] and
follows from the proof in [Nov].

The symmetry established in Corollary 6.2, as well as the non-negativity of b
seem to be (minor) new observations. The generalization to PC(R/Z) is signifi-
cant; however it seems that the methods used in both references can be applied
with minor changes, at least in the piecewise orientation-preserving case.

6.A.2. Using the partial action αS. We now use the partial action αS introduced
in §4.E.1 to obtain a result of the same flavor as Corollary 6.1. For an element
g of PC(X), we call points of S-indeterminacy of αS(g) the elements outside its
domain of definition.

Corollary 6.4. Let X be a Hausdorff topological space with no isolated point.
Consider the cofinite-partial action αS of PCS(X) on X.

(1) the prodigal semi-index function `−S (σ) of this partial action (and hence
of its restriction to any subgroup) coincides with the function mapping
σ ∈ PC(X) to the number of S-indeterminacy points of σ;
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(2) for every σ ∈ PCS(X) there exists mS,σ ∈ N and a bounded function
b : N→ N such that `−(σn) = mS,σn+ b(n) for all n ∈ N.

(3) Let G be a group with a homomorphism into PCS(X). Then X is trans-
fixed by G if and only if the number of S-indeterminacy points of g is
bounded independently of g ∈ G;

Moreover, if X is a topological manifold with no boundary and finitely many ends,
then `−S (σ) = `−S (σ−1) and mS,σ = mS,σ−1 for all σ ∈ PCS(X).

Proof. The proof follows the same (two!) lines as that of Corollary 6.1 (applied
to αS instead of α). The last statement rather follows from the easy fact, checked
in the proof of Corollary 6.2, that the complement of n and m points in such a
topological manifold X are never homeomorphic for n 6= m. �

In cases such as the pseudogroup of local isometries of R/Z, we have α = αS
so in this case Corollary 6.4 does not provide anything new. On the other hand,
it yields something when αS is finer than α. Let us provide some illustrations:

Example 6.5. Fix k ∈ N. Let Ck be the pseudogroup of local diffeomorphisms
of class Ck on the circle R/Z. Then the Ck-indeterminacies of σ are the set of
points at which either σ or one of its derivatives σ(i) for some i ∈ {1, . . . , k} has
no outer limit at x; call this k-singular points.

Another example is the pseudogroup Aff of local affine homeomorphisms; we
have Aff ⊂ C1 and these two pseudogroups have the same indeterminacies: in-
deed at the neighborhood of a real number x (minus {x}), a piecewise affine map
σ coincides with a local affine homeomorphism if and only it coincides with a
local C1-diffeomorphism. In the piecewise affine context, 1-singular points are
often called breakpoints. This proves that the number of 1-singular points of fn,
for f piecewise affine and n ∈ Z, can be written as q|n| + b(n) with b bounded
and q ∈ N. In particular, this retrieves Guelman and Liousse’s result [GuL,
Proposition 4.1] that this number, when n → ∞, grows linearly as soon as it is
unbounded.

One more example is P1
R with the pseudogroup Proj consisting of restrictions

of projective transformations (that is, homographies). On the circle (or any
standard curve), the isometric charts in R being isometric, they endow it with
a Proj-modeled structure, which itself defines a C2-structure, with the same
S-indeterminacy points for both S: this reflects the fact that the germ at a
neighborhood x (minus {x}) of a piecewise projective transformation σ at a
point x coincides with a germ of projective transformation if and only if x is
not 2-singular at x.

Note that the pseudogroup Proj transfers as a pseudogroup on R/Z (local
homeomorphisms that are written locally as homographies), so it is less natural
but harmless to stick to pseudogroups on R/Z.
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We now apply this to counting singularities of piecewise continuous or differ-
entiable self-transformations. We use the notation introduced before Corollary
2.4.

Corollary 6.6. For every k ∈ N and every parcelwise-Ck self-transformation
σ of R/Z, there exist integers 0 ≤ m0 ≤ · · · ≤ mk and bounded non-negative
even functions bi : Z → N such that for all i ∈ {0, . . . , k}, we have k≤i(σ

n) =
mi|n|+ bi(n).

In particular, ki(σ
n) = (mi−mi−1)|n|+O(1) and k≤i and ki have the property

of growing either linearly or being bounded.

As mentioned in the introduction, in the piecewise affine case Guelman and
Liousse [GuL, §4] proved that k≤1(σn) (and k0(σn)) are either bounded of have
linear growth. Their proof, more precisely, consists in

• proving that either k0(σn) is either bounded, or it belongs to [n− c, Cn]
for some constants c, C and all n ∈ N;
• if k0(σn) is bounded, proving that k1(σn) is either bounded, or it belongs

to [n− c′, C ′n] for some constants c′, C ′ and all n ∈ N.

6.B. The main theorem. Let S be a pseudogroup on a topological space A.
Consider two S-modeled spaces X,X ′ with topological S-preserving partial

actions of a group G. A cofinite S-preserving G-biequivariant isomorphism is the
data of cofinite subsets Y ⊂ X, Y ′ ⊂ X ′ (thus endowed with the corresponding
partial actions of G by partial automorphisms of S-modeled space) and a G-
biequivariant isomorphism ψ : Y → Y ′ of S-modeled spaces.

Thanks to all the preparatory work, we can formulate and obtain:

Theorem 6.7. Let X be a Hausdorff S-modeled space. Let G be a group with
a topological S-preserving partial action on X. Suppose that G transfixes X.
Then there exists a Hausdorff S-modeled space X ′ endowed with an S-preserving
continuous G-action, and a cofinite S-preserving G-biequivariant isomorphism ψ
from X to X ′.

Moreover, we can require that every finite G-orbit in X ′ is included in Y ′.

Proof. Let X̂ be the universal globalization of X (§3.B.2). By Corollary 4.21,

X̂ canonically inherits an S-structure. Since X is transfixed, by Proposition 4.9
there exists an open Hausdorff G-invariant subset X ′ of X̂ such that X 4X ′ is
finite. Removing all finite G-orbits meeting X ′ r X if necessary, we can ensure
that X ′ rX only meets infinite G-orbits. Then we have reached the conclusion,
with Y = Y ′ = X ∩ X ′ and ψ being the identity map from X ∩ X ′. (It is
on purpose that the statement of the theorem does not refer to the universal
globalization X̂, so we do not view X and X ′ as subsets of the same space.) �

As a first corollary, we have the following. Recall that S℘ denotes the pseu-
dogroup of parcelwise-S local homeomorphisms §3.E.3.
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Corollary 6.8. Let X be a curve. Let G be a group with a homomorphism
G → PCS(X). Suppose that G transfixes X for the partial action α (restricted
from PC(X)). Then there exists an S-modeled compact curve X ′ endowed with an
S℘-preserving continuous G-action, and a cofinite S℘-preserving G-biequivariant
isomorphism from X to X ′.

Proof. We use Proposition 4.12 to have a cofinite-partial action, and thus apply
Theorem 6.7. This yields the result, except compactness of X ′. First obtain X ′′

possibly not compact; 1-point compactify each component to obtain a space X ′,
which is naturally a curve. Extend the continuous action; since S℘ is stable under
concatenation, the resulting action is S℘-preserving. �

6.C. Applications of Corollary 6.8. Let us provide applications of Corollary
6.8. It is mostly interesting when S = S℘. First, recall from Corollary 6.1(2)
that the transfixing property is equivalent to the boundedness of the number of
discontinuities.

6.C.1. Pseudogroup of all local homeomorphisms. Then S = S℘; here an S-
modeled curve is just a curve. So Corollary 6.8 concerns homomorphisms into
PC(X). It says that when the partial action of G is transfixing, we can find a
continuous action on another compact curve that coincides with the original one
on a cofinite subset.

6.C.2. Pseudogroup of all local orientation-preserving homeomorphisms. Again,
S = S℘. This concerns homomorphisms into PC+(R/Z). Here an S-modeled
curve is just an oriented curve. Corollary 6.8 then says that the conjugation can
be chosen to be piecewise orientation-preserving.

6.C.3. Local isometries. Then S = S℘. This is the study of homomorphisms
into IET./. Here an S-modeled curve is the same as a 1-dimensional Riemannian
manifold with finite volume (thanks to the finiteness assumption in the definition
of S-model); in particular every S-modeled curve is S-preserving homeomorphic
to a standard curve. Hence Corollary 6.8 says that for a homomorphism G →
IET./, the transfixing condition implies a piecewise isometric conjugation to an
isometric action on a compact curve.

This has various consequences: for instance if the original homomorphism G→
IET./ is transfixing and injective, then this forces G to be virtually abelian. For
instance, this implies that IET./ has no infinite subgroup with Property FW. In
particular, it has no infinite subgroup with Kazhdan’s Property T. The latter fact
was established in [DFG, Theorem 6.1] for IET+ by a distinct method (rather
related to amenability); it implies the result for IET./ because IET./ embeds into
IET+ as the centralizer of x 7→ −x (see Lemma 3.9).

This notably applies when Γ is cyclic and distorted in G. In the case of IET or
IET./, this narrows possibilities for distorted cyclic subgroups, but is not enough
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to discard them; additional work [Nov, §4], conceptualized in §5 allows to conclude
that cyclic subgroups of IET./ are undistorted.

Corollary 6.9. Every finitely generated abelian subgroup of IET./ is undistorted.

Proof. Let A be a finitely generated abelian subgroup, with a finite generating
subset W ′. If A is distorted, then there exists a finite subset W in IET./ and
a sequence (ni) tending to infinity, a sequence (ai) in A such that |ai|W ′ ' ni
and lim |ai|W/ni = 0. Let ` be the cardinal-definite function associated to this
partial action. By Proposition 4.4, there exists a finite index subgroup of A
of the form B ⊕ A′, such that ` is bounded on B and equivalent to the word
length on A′. We can suppose that ai = (bi, a

′
i) ∈ B ⊕ A′ for all i. Then

`(b, a′) ≥ c|a′|W ′ − C for some some c > 0, C ∈ R and all (b, a′) ∈ B × A′. In
particular, `(ai) ≥ c|a′i|W ′ − C for all n. It follows that lim |a′i|W ′/ni = 0, and in
turn that lim inf |bi|W ′/ni > 0. Given that lim |a′i|W/ni = 0 and lim |ai|W/ni = 0,
we deduce that lim |bi|W/ni = 0. Thus B is a distorted subgroup.

Since B transfixes X, after changing the model and using Corollary 6.8, we
can suppose that B acts by isometries. Hence it is undistorted by Proposition
5.3. This reaches a contradiction. �

An immediate consequence is that the only virtually polycyclic groups embed-
ding into IET./ are the virtually abelian ones; the latter fact being proved in
[DFG2] with another method, handling more general virtually torsion-free solv-
able groups. Indeed, it is an easy exercise to show that a virtually polycyclic
group is virtually abelian if and only if all its abelian subgroups are undistorted
(beware that there exist non-virtually-abelian polycyclic groups of the form Z4oZ
in which all cyclic subgroups are undistorted).

6.C.4. Local motions. Again, S = S℘, and we obtain the same with the bonus of
a piecewise orientation-preserving conjugation.

6.D. Refinement of the partial action. Applying Theorem 6.7 with αS in-
stead of α, we often obtain stronger conclusions:

Corollary 6.10. Let X be a finitely-charted S-modeled curve. Let G be a group
with a homomorphism G→ PCS(X). Suppose that G transfixes X for the partial
action αS. Then there exists a finitely-charted S-modeled curve X ′ endowed with
an S-preserving continuous G-action, and a cofinite S-preserving G-biequivariant
isomorphism from X to X ′.

Proof. This is a direct application of Theorem 6.7, applied to the partial action
αS. �

For continuous actions, we can get a better control on the change of model.
Denote by PC0

S(X) the set of self-homeomorphisms of X that induce an element
of PCS(X). If X has no isolated point, the canonical map PC0

S(X) → PCS(X)
is injective.
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Corollary 6.11. Fix two pseudogroups S ⊂ T on R/Z. Let X be a finitely-
charted S-modeled curve. Let G be a group with a homomorphism α : G →
PC0

S(X)∩AutT (X). Suppose that G transfixes X for the partial action αS. Then
there exists a cofinite G-invariant subset Y of X, finitely-charted S-modeled curve
X ′ endowed with an S-preserving continuous G-action, and a T -preserving and
parcelwise S-preserving G-biequivariant homeomorphism from Y to X ′.

In particular, if G has no finite orbit on X, then Y = X.

Proof. Corollary 6.10 yields a cofinite subset V of X, an S-modeled curve W
with an S-preserving continuous G-action, a cofinite subset V ′ of W , and a G-
biequivariant S-preserving homeomorphism f : V → V ′. Here X is endowed with
the partial action αS, while W is endowed with its given action, and the cofinite
subsets V and V ′ are endowed with the induced partial actions.

We can apply Proposition 4.10 to X. It ensures that there is a cofinite G-
invariant subset Z0 of X such that for every cofinite subset Z1 of Z0, denoting
Z∨1 the smallest G-invariant subset including Z1, the inclusion map (Z1, αS) →
(Z∨1 , α) is a universal globalization. Similarly, we apply Proposition 4.10 toW (for
W , we view the global action as a partial action as well): it yields a G-invariant
subset Z ′0 of W with the analogous property.

We can suppose, replacing simultaneously V and V ′ with smaller subsets, that
V ⊂ Z0 and V ′ ⊂ Z ′0. Then the inclusions V → V ∨ and V ′ → (V ′)∨ are
universal globalizations. Then the isomorphism f : V → V ′ of topological partial
actions extends, by the universal property, to a G-biequivariant homeomorphism
V ∨ → (V ′)∨. So we obtain the conclusion, with Y = V ∨ and X ′ = (V ′)∨.

Let us observe that f is T -preserving. Indeed, this follows from the construction
and the proof of Theorem 6.7: we have inclusions X → X̂ ← W . The G-invariant
T -structure is inherited by X̂ and then by W , still G-invariant, and hence by the
G-invariant subsets Y on the one hand and X ′ on the other hand. The map
f : Y → X ′, constructed inside X̂, is just the identity map. Hence it is T -
invariant.

This argument for T does not apply to S, but applies to the pseudogroup S℘

of local parcelwise-S homeomorphisms. Hence f is T -preserving and parcelwise
S-preserving. �

We now apply it to various pseudogroups S on R/Z. In each case the study
has several steps: identifying domains of definition for αS, identifying S-modeled
curves, and drawing consequences.

6.E. Pseudogroup of local affine homeomorphisms. Here PCS(X) is the
group of piecewise affine self-transformations. The domain of definition is the set
of non-singular points, which is the same as points at which both the function
and its derivative have an outer limit. Hence, transfixing is equivalent to have a
uniformly bounded number of singularities.
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Classifying affinely modeled curves is not hard, see Appendix A. In particular
the affine automorphism group of any affinely modeled finitely-charted curve is
virtually abelian. As a consequence, we have:

Corollary 6.12. Let Γ be a group with a faithful piecewise affine action on a
standard curve, and a subgroup Λ. Suppose that (Γ,Λ) has relative Property FW.
Then Λ is virtually torsion-free abelian. In particular, if Γ has Property FW
(e.g., Kazhdan’s Property T) then it is finite.

Andrés Navas informed me that even the failure of Property T is a new result:
for instance the above applies to the subgroup V{2,3} of piecewise affine maps
with slopes in the multiplicative group 〈2, 3〉 and singularities in Z[1/6], as well
as its subgroup T{2,3} of elements acting continuously on the circle; the failure of
Property T was unknown for both groups.

Lodha, Matte Bon and Triestino have independently obtained Corollary 6.12
in the case of continuous piecewise affine maps (thereby also proving the failure
of Property T for T{2,3}).

In the case of distortion, we deduce the following, which is essentially due to
Guelman and Liousse [GuL].

Corollary 6.13. For any distorted cyclic subgroup 〈c〉 of the group of piece-
wise affine self-transformations on R/Z, there is a cofinite piecewise affine con-
jugation to an affine action on a standard curve. In the piecewise orientation-
preserving case, we can choose the cofinite conjugation to be piecewise orientation-
preserving.

Proof. Since 〈c〉 is distorted, its cofinite-partial action is transfixing (Corollary
4.3). Therefore, by Corollary 6.10, there a cofinite piecewise affine conjugation to
an affine action on an affinely modeled curve C. Some finite index subgroup 〈c′〉
preserves each component. Then Corollary 5.7 ensures that 〈c′〉, and hence 〈c〉,
acts with finite order on any non-standard circle occuring in C. Hence, removing
a finite 〈c〉-invariant subset, we can suppose that there is no non-standard circle
in C. �

The minor nuance is that Guelman and Liousse work in the piecewise orientation-
preserving case, and obtain the conjugation after passing to a subgroup of finite
index.

Also in the continuous case, we can refine the conjugacy and deduce the fol-
lowing:

Corollary 6.14. For any distorted cyclic subgroup 〈c〉 of the group of piecewise
affine self-homeomorphisms of the circle PC0

Aff (R/Z), there exists a piecewise
self-homeomorphism of R/Z conjugating 〈c〉 to a cyclic group of irrational rota-
tions.
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Proof. By Corollary 6.11, there is a cofinite 〈c〉-invariant subset Y of X, another
affinely modeled curve X ′ and and a piecewise affine homeomorphism Y → X ′

conjugating the 〈c〉-action to an affine action on Y .
If Y 6= X, then X ′ is homeomorphic to a finite disjoint union of intervals, each

being finitely-charted; hence each is isomorphic as affinely modeled curve to ]0, 1[
and hence has a finite automorphism group; since 〈c〉 is distorted, it is infinite
and we get a contradiction.

So Y = X. Thus X ′ is an affinely modeled curve homeomorphic to the circle,
and 〈c〉 acts as an irrational rotation. By Corollary 5.7, irrational rotations of
non-standard affine circles are undistorted. Hence X ′ is a standard circle, and
hence we can suppose (conjugating with an affine isomorphism X ′ → X) that
X ′ = X. �

Let us provide different equivalent restatements the question asked after Corol-
lary distortedaff.

Corollary 6.15. Denote by θr the rotation x 7→ x + r on R/Z. Let Xd be
a disjoint union of d copies of standard circles Y1, . . . , Yd. The following are
equivalent.

(i) The group PCAff (R/Z) admits a distorted cyclic subgroup;
(ii) The group PC+

Aff (R/Z) admits a distorted cyclic subgroup;
(iii) There exists r ∈ R/Z r Q/Z such that θr t idY is a distorted element in

PCAff (X2).
(iv) There exists r ∈ R/Z r Q/Z such that θr t θr t idY3 is a distorted element

in PC+
Aff (X3).

Also, the following are equivalent:

(i’) The group PC0
Aff (R/Z) admits a distorted cyclic subgroup;

(ii’) There exists r ∈ R/ZrQ/Z such that θr is a distorted element in PC0
Aff (R/Z).

What comes out of [GuL] is the equivalence between (ii) and a slightly weaker
analogue of (iv): the existence of n and a non-identity self-homeomorphism f of
Xn acting on each Yi as either the identity or an irrational rotation, such that f
is distorted in PC+

Aff (Xn).
In the continuous case we did not make the orientation-preserving case explicit,

because this is a trivial reduction, since the orientation-preserving subgroup has
index 2. This is in contrast to the first case, where the piecewise orientation-
preserving subgroup has infinite index.

Proof of Corollary 6.15. For the second equivalence, one implication is trivial,
and the other follows from Corollary 6.14.

Let us prove the first equivalence. (i)⇐(iii)⇐(iv)⇒(ii)⇒(i) is trivial. That (i)
implies (ii) follows from the group embedding

PCAff (R/Z)→ PC+
Aff ((R/Z)±) ' PC+

Aff (R/Z)
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from Lemma 3.9, and where the second, non-canonical isomorphism is induced by
a piecewise affine transformation between (R/Z)± and R/Z. To obtain (iii)⇒(iv),
we again use this embedding but more carefully: for X = X2, it maps θrt idY2 to
(after suitable identifications) the element θr t idY2 t θr t idY4 of PC+(X4). After
conjugating Y2tY4 to Y3 by a piecewise affine transformation and Y3 to Y2 by an
affine transformation, we get the result.

It remains to prove (i)⇒(iii). First, one uses Corollary 6.13 to show that
there exists a standard curve X with with c ∈ PC0

Aff (X) such that the cyclic
subgroup 〈c〉 is distorted PCAff (X). Replacing c with a power, we can suppose
that c preserves each component Y of X, and that as an automorphism of Y ,
c is either the identity or has infinite order. Hence c is the identity on each
noncompact component of X, and is an irrational rotation on every compact
component of X. Then we fix one component Y of X on which c acts as an
irrational rotation, and we let w be an isometry of X, acting as a reflection on Y
and as the identity outside. Let q be equal to c on Y and the identity elsewhere.
Then cnwc−nw−1 = q2n. Hence c being distorted, so is q. Then conjugating
the complement of Y by an affine transformation to a single standard circle, we
obtain (iii). �

In the case of the pseudogroup Ck of local diffeomorphisms of class Ck, the
classification of Ck-modeled curves is “trivial” in the sense that there are only
two such connected curves up to isomorphism: the open interval and the circle.
In particular, Corollary 6.10 yields:

Corollary 6.16. Fix k ∈ N. Let G act by piecewise-Ck (resp. parcelwise-Ck)
self-transformations on R/Z. Suppose that G transfixes R/Z for the correspond-
ing partial action. Then there exists a cofinite subset Y ⊂ R/Z, a curve X ′ with
a structure of a Ck-manifold and a G-action by Ck-diffeomorphisms, a cofinite
subset Y ′ ⊂ X ′ and a G-biequivariant piecewise-Ck (resp. parcelwise-Ck) homeo-
morphism h : Y → Y ′.

In the continuous case, this yields the following, with a little refinement to pass
from parcelwise to piecewise conjugacy:

Corollary 6.17. Let G be group acting continuously on R/Z, with no finite
orbit. Suppose the action is parcelwise-Ck (i.e., G maps into PC0

Ck(R/Z). If
G transfixes R/Z for the corresponding partial action αCk , then the action is
conjugate (in PC0

Ck(R/Z)) to a Ck-action.
If moreover G acts by piecewise-C` self-transformations for some ` ≤ k, then

the conjugating map can be assumed to have the same property.

Proof. Both are direct applications of Corollary 6.11 with S being the Ck pseu-
dogroup. In the first case, we consider no T (technically, this means we take T
as the pseudogroup of all local homeomorphisms). In the second case, we take T
as the pseudogroup of all self-homomorphisms that piecewise-C`. �
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Lodha, Matte Bon and Triestino [LMT] obtain a result which is very close to
Corollary 6.17. Actually the result of Corollary 6.17 (at least both the first state-
ment and the second for ` = k) is a consequence of their work, but they mainly
formulate results for groups with Property FW or T, which, using Thurston’s sta-
bility theorem on the one hand and Navas’ theorem about groups with Property
T of class C3/2 on the other hand, yield stronger conclusions [LMT, Corollaries
1.3, 1.4].

As regards the piecewise projective case, let us write the corollaries:

Corollary 6.18. Let G be a group with a piecewise projective action on a finitely-
charted projectively modeled curve X. Suppose that the corresponding partial
action transfixes X. Then there is another finitely-charted projectively modeled
curve X ′, cofinite subsets Y ⊂ X and Y ′ ⊂ Y , and a piecewise projective G-
biequivariant homeomorphism h : Y → Y ′.

Moreover, if G acts continuously on X with no finite orbit, we can choose
Y = X, Y ′ = X ′. If G acts by C1 diffeomorphisms, we can choose h to be of
class C1. If G both acts by C1 diffeomorphisms without finite orbit, we can choose
Y = X, Y ′ = X, and h a C1-diffeomorphism.

Given the classification of projectively modeled curves and their automor-
phisms, we obtain as corollaries, also proved in the companion note [Cor4]:

Corollary 6.19. Under the same hypotheses, G has a subgroup of finite index H
with a finite normal subgroup Z such that H/Z can be embedded as a subgroup of
PSL2(R)k for some k. If moreover X is connected and G acts continuously, we
can choose k = 1.

Proof. By Corollary 6.18, we can suppose that G ⊂ AutProj(X). Let (Xi) be
the connected components of X; by Appendix A, the automorphism group of
each Xi has finitely many components. There exists a subgroup H of finite index
in G stabilizing each component, and mapping into Aut(Xi)

◦. By Appendix
A, Aut(Xi) is isomorphic to either R, R/Z, R o R, or PSL2(R)m (the m-fold
connected covering of PSL2(R)). The first three, as well as the quotient of the
latter by its center, embed as subgroups into PSL2(R). We thus obtain the
conclusion. �

Corollary 6.20. For every finitely-charted curve X, the group PCProj(X) has
no infinite subgroup with Kazhdan’s Property T.

Proof. If we suppose so, using Corollary 6.19 and the fact that Kazhdan’s Prop-
erty T passes to finite index subgroups (and obviously to quotients), we would
deduce the existence of an infinite subgroup with Property T in PSL2(R). But
it is well-known that there is no such group. Indeed, by Faraut-Harzallah [FH],
it would be conjugate into the maximal compact subgroup PSO2(R), which is
abelian, a contradiction. �

This is new even in the continuous case. See also Example 1.10.
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As suggested by A. Valette, we have the following more precise consequence:

Corollary 6.21. For every finitely-charted curve X, every subgroup of PCProj(X)
with Property FW, has the Haagerup Property.

Proof. Indeed, the Haagerup Property is inherited from finite index subgroups
and extensions with finite kernels, and is true for subgroups of PSL2(R) [GHW].

�

7. More on piecewise projective self-homeomorphisms

7.A. Construction of actions. The results of this paper were mainly obtained
by using the formalism of partial action and the notion of universal globaliza-
tion. We now provide more explicit actions for the group of piecewise projective
self-homeomorphisms of the circle. This was actually our initial approach be-
fore realizing how that formalism could avoid a more computational approach.
However, we believe it is interesting to write down these formulas, since they can
convey more intuition about the proofs, and since they indicate what is hidden
behind taking universal globalizations.

For a standard curve X, denote X± = X × {+,−} (see §3.F); for s ∈ X, we
usually write s+ and s− rather (s,+) and (s,−). For x = (s, ε) ∈ X±, we write
x̂ = (s,−ε) (for obvious sign conventions). Define L2(X) = X± ×R>0 ×R.

Let X, Y be standard curves. The first and second one-sided derivatives of
piecewise-C2 functions f on X can be interpreted as functions f ′, f ′′ : X± → R.
Define CPD2(X, Y ) as the set of continuous, piecewise-C2 functions, whose one-
sided first derivatives do not vanish. For f ∈ CPD2(X, Y ), define f(2) : L2(X)→
L2(Y ) by

f(2)(x, t, u) =

(
f(x),

f ′(x)

f ′(x̂)
t,

1

f ′(x)
u+

f ′′(x)

2f ′(x)2
− f ′′(x̂)

2f ′(x)f ′(x̂)
t−1

)
.

A simple computation shows if Z is another standard curve and g : Y → Z is
continuous and piecewise of class C2, then that (g ◦ f)(2) and g(2) ◦ f(2) are both
equal: indeed, they are equal to

(x, t, u) 7→
(
g(f(x)),

f ′(x)g′(f(x))

f ′(x̂)g′(f(x̂))
t, a(x)u+ b(x)− c(x)t−1

)
,

where

a(x) =
1

f ′(x)g′(f(x))
, b(x) =

f ′′(x)

2g′(f(x))f ′(x)2
+

g′′(f(x))

2g′(f(x))2
;

c(x) =
1

2g′(f(x))f ′(x)

(
f ′′(x̂)

f ′(x̂)
+
g′′(f(x̂))f ′(x̂)

g′(f(x̂))

)
.

Let X, Y be standard curves. In the following proposition, we use this action to
define a natural pull-back for functions X± → R>0×R, which is used throughout
the sequel.
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Proposition 7.1. Let µ = (µ1, µ2) be a function Y ± → R>0×R (with µ1 : Y ± →
R>0 and µ2 : Y ± → R), and Pµ ⊂ L2(X) its graph. Then f−1

(2) (Pµ) = Pf∗µ, where

for all x ∈ X we have

(f ∗µ)1(x) =
f ′(x̂)

f ′(x)
µ1(f(x))

and

(f ∗µ)2(x) = f ′(x)µ2(f(x))− f ′′(x)

2f ′(x)
+
f ′′(x̂)f ′(x)

2f ′(x̂)2
µ1(f(x))−1.

Proof. We have (x, t, u) ∈ f−1
(2) (Pµ) if and only if (x′, t′, u′) := f(2)(x, t, u) ∈ Pµ.

This means that µ1(x′) = t′ and µ2(x′) = u′. This means that µ1(f(x)) = f ′(x)
f ′(x̂)

t

and µ2(f(x)) = 1
f ′(x)

u + f ′′(x)
2f ′(x)2

− f ′′(x̂)
2f ′(x)f ′(x̂)

t−1. In turn, this means that t =
f ′(x̂)
f ′(x)

µ1(f(x)) and u = f ′(x)µ2(f(x)) − f ′′(x)
2f ′(x)

+ f ′′(x̂)
2f ′(x̂)

t−1. Thus f−1(Pµ) is indeed

the graph of the given function. �

From the covariant functoriality of f 7→ f(2), we immediately deduce the con-
travariant functoriality of f 7→ f ∗, acting on all (R>0 ×R)-valued functions.

In addition, define an involution τX : L2(X)→ L2(X) by τX(x, t, u) = (x̂, t−1,−tu).
Denote τ(t, u) = (t−1,−tu). Then a computation shows that τY ◦ f(2) = f(2) ◦ τX .

Let A2(X) be the set of functions ν : X± → R>0×R, that take the value (1, 0)
outside a finite subset, and such that ν(x̂) = τ(ν(x)) for all x ∈ X±. Equivalently,
this symmetry condition means that the graph of ν is τX-invariant. Hence any
proper function f ∈ CPD2(X, Y ) induces f ∗ : A2(Y )→ A2(X).

On a standard curve, denote by νX0 ∈ A2(X) the “trivial” constant function
(1, 0).

Lemma 7.2. Let V, V ′ be standard curves and f a piecewise projective homeo-
morphism V → V ′. Then f is projective if and only f ∗νV

′
0 = νV0 .

Proof. By definition, for any f ∈ CPD2(V, V ′), we have(
f ∗νV

′

0

)
(x) =

(
f ′(x̂)

f ′(x)
,− f

′′(x)

2f ′(x)
+
f ′′(x̂)f ′(x)

2f ′(x̂)2

)
=

(
f ′(x̂)

f ′(x)
,
f ′′(x̂)− f ′′(x) + f ′′(x̂)

f ′(x̂)2
(f ′(x)2 − f ′(x̂)2)

2f ′(x)

)
.

It follows immediately that f is of class C2 at x ∈ V if and only if f ∗νV
′

0 (x) =
(1, 0), which equals νV0 (x). Therefore, f is of class C2 on V if and only if f ∗νV

′
0 =

νV0 .
In particular, since we assume that f is a piecewise projective homeomorphism,

f is projective on V if and only if f ∗νV
′

0 = νV0 . �

Lemma 7.3. Let X be a standard curve, x ∈ X and ν ∈ A2(X). Suppose that,
at the neighborhood of x, the function ν is invariant by homographies that are
close enough to the identity. Then ν = νX0 around x.
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Proof. More explicitly, since this is local at x, we can suppose that X ⊂ R. For
all intervals I, J around x such that the closure in R of I is contained in J , we can
consider the subset of homographies f ∈ PSL2(R) mapping I into J . This is a
neighborhood WI,J of the identity in PSL2(R). Precisely, the assumption is that
we assume that for some such I, J , the identity element has a subneighborhood
W contained in WI,J such that f ∗ν = ν on I for all f ∈ W .

We can suppose that x = 0. Then the translation Ta : x 7→ x + a belongs to
W for a small enough, say |a| ≤ a0. The local condition T ∗a ν = ν, read at the
first coordinate, implies that ν1(t±) = ν1(t± + a) for every t small enough (say,
|t| ≤ t0: note that this does not depend on a). Then, since ν1 − 1 is finitely
supported, we deduce that ν1 − 1 vanishes at the neighborhood of 0±.

Let us now rewrite the definition of f ∗µ when f is of class C2, for each t such
that µ1(f(t)) = 1. Namely it simplifies to (f ∗µ)(t) =

(
1, f ′(t)µ2(f(t))

)
. We now

choose a homothety Lc(t) = ct with c > 1 close enough to c to ensure L∗cν = ν at
the neighborhood of 0, and in particular at zero. Thus we have ν2(0±) = cν2(0±),
which implies ν2(0±) = 0.

Hence (ν1, ν2) takes the value (1, 0) at 0. Since ν and νX0 coincide outside a
finite subset, they thus coincide at the neighborhood of 0. �

Definition 7.4. Denote by πX0 (or π0 when the context is clear) the standard
projective structure on a standard curve X. On a standard curve with standard
projective structure π0, we say that a projective structure π is compatible if the
identity (X, π0)→ (X, π) is piecewise projective. We say that it is C1-compatible
if in addition this identity map is of class C1.

We reach the goal of this preparatory work: encoding a compatible projective
structure in an element of A2(X):

Proposition 7.5. Let X be a standard curve and µ ∈ A2(X). Define a system
of charts on X by considering piecewise projective homeomorphisms h : U → V ,
with U open in X and V a standard curve, such that h∗νV0 = µ|U . Then this
defines a projective structure π = πµ on X, such that the identity map is a
piecewise projective homeomorphism (X, πX0 )→ (X, π).

Given f ∈ PC0
Proj(X, Y ) with Y another standard curve and ν ∈ A2(Y ), the

map f is a projective isomorphism (X, πµ)→ (Y, πν) if and only if f ∗ν = µ.
Conversely, every projective structure π on X, such that the identity map

(X, πX0 )
i→ (X, π) is a piecewise projective homeomorphism, has the form πµ

for a unique µ ∈ A2(X).

Proof. To check that this defines a projective structure, the compatibility is clear
from functoriality of f 7→ f ∗. The only thing to check is that X is covered by
charts. This will of course make use of the “τ -condition” saying that ν(x̂) =
τ(ν(x)). Let x ∈ X; we have to show that x belongs to a chart. We can
suppose (by an orientation-preserving isometric change of standard coordinates)
that x = 0.
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If µ(0+) = (1, 0) then µ(0−) = (1, 0) by the τ -condition, and hence the identity
map at a small neighborhood does the job. Otherwise, we can choose a small
interval around 0 on which µ equals (1, 0) except at 0. Then first composing
locally with a piecewise affine local homeomorphism fixing 0 with a singular
point at 0, boils down to the case when µ(0+) = (1, u) for some u ∈ R. By the
τ -condition, µ(0−) = (1,−u). Then consider the formula in the proof of Lemma
7.2, assuming in addition that f is of class C1: for every t(

f ∗νV
′

0

)
(t) =

(
1,
f ′′(t̂)− f ′′(t)

2f ′(t)

)
.

We can indeed find f of class C1 and piecewise projective and C1 around 0 with
f ′(0) = 1 and f ′′(0+)− f ′′(0−) arbitrary. Namely, choose fc(t) = t for t ≤ 0, and
fc(t) = t/(1− ct) for some c ∈ R. Then f ′(0) = 1, f ′′(0−) = 0 and f ′′(0+) = c/2.
Hence locally composing with such a map with c well-chosen, we can ensure that
µ(0+) = (1, 0); the τ -condition ensures that µ(0−) = (1, 0), and we have found
our projective chart.

The second assertion is straightforward from the definition and functoriality of
f 7→ f ∗.

As regards the third statement, let us start with uniqueness: consider µ, µ′

defining the same projective structure. Since this is a local assertion, we can use
the first statement to assume that µ′ = νX0 . Then the result follows from Lemma
7.3. The existence is immediate: just define µ = (i−1)∗νX0 . �

Proposition 7.6. Let X be a standard curve. Let G be a subgroup of PC0
Proj(X)

with no finite orbit on X. Then there is at most one compatible G-invariant
projective structure π on X. If moreover G acts by C1-diffeomorphisms, then π
has to be C1-compatible.

Proof. By Proposition 7.5, this is equivalent to showing that there is at most one
G-invariant element ν ∈ A2(X).

For the first coordinate, the G-invariance of ν says that ν1(x) = f ′(x̂)
f ′(x)

ν1(f(x)).

If µ is also G-invariant, it satisfies the same formula, and we deduce, taking the
quotient η1 = ν1/µ1, that η(x) = η(f(x)) for all x ∈ X± and all f ∈ G. Hence
{x ∈ X± : η1(x) 6= 1} is G-invariant. Since G has no finite orbit and η1 = 1
outside a finite subset, we deduce η = 1 and hence µ1 = ν1.

Next, the G-invariance of ν, read at the second coordinate, says that, for all
x ∈ X± and f ∈ G,

ν2(x) = f ′(x)ν2(f(x))− f ′′(x)

2f ′(x)
+
f ′′(x̂)f ′(x)

2f ′(x̂)2
ν1(f(x))−1.

Given that µ satisfies the same invariance, and that µ1 = ν1, we deduce, sub-
stracting and setting η2 = ν2 − µ2, that for all x ∈ X± and f ∈ G,

η2(x) = f ′(x)η2(f(x)).
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In particular, the subset {x ∈ X± : η2(x) 6= 0} is G-invariant; since it is finite
and G has no finite orbit, we deduce η2 = 0 and hence ν = µ.

For the last statement, observe that if G consists of C1-diffeomorphisms, then
the G-invariance of ν implies that the finite subset {x ∈ X± : ν1(x) 6= 1} is
G-invariant. Hence it is empty. This means that π is C1-compatible. �

Corollary 7.7. Let X be a standard curve. Consider two conjugate subgroups
G1, G2 in PC0

Proj(X), that have no finite orbit on X, and preserve compatible pro-
jective structures π1, π2. Then (X, π1) and (X, π2) are isomorphic as projectively
modeled curves.

If moreover G1, G2 consist of C1-diffeomorphisms, then they are conjugate by
some C1-diffeomorphism.

Proof. When G1 = G2, we deduce from Proposition 7.6 that π1 and π2 are equal.
When G2 = fG1f

−1 with f ∈ PC0
Proj(X), this implies that π1 = f ∗π2 is the

pull-out by f of π2, and hence f induces an isomorphism from (X, π1) to (X, π2).
In the C1-case, Proposition 7.6 implies that π1 and π2 are C1-compatible. Then

the condition π1 = f ∗π2 forces f to be of class C1. �

7.B. Classification of exotic circles. It is easy and standard that every closed
subgroup of the group of self-homeomorphisms of the circle X = R/Z, if topolog-
ically isomorphic to R/Z, is conjugate by an orientation-preserving self-homeo-
morphism to the group R/Z of translations. Roughly speaking, given a sub-
group W of Homeo(R/Z) (typically, the automorphism group of some enrich-
ing structure), an “exotic circle” is a subgroup conjugate to the group R/Z of
translations in Homeo(R/Z), but not in W . In the context of piecewise affine
self-homeomorphisms, exotic circles were defined and classified by Minakawa [Mi].

Denote by PC1
Proj(X) the group of C1-diffeomorphisms in PC0

Proj(X). Also
use the notation of the appendix. Roughly speaking, below, Θ1 is the standard
circle, Θt for t > 1 are the non-standard affine circles, Ωn is the connected n-fold
covering of the projective line, and are interpolated by the “metaelliptic circles”
Ωr (which come from lifts of elliptic elements in the universal covering of SL2(R)).

Theorem 7.8. Let X be the standard circle R/Z with its subgroup K of isome-
tries and its subgroup K+ ' SO(2) of orientation-preserving isometries. Fix
H ∈ {K,K+}. Consider a faithful continuous action of H on X, whose image
G is contained in PC0

Proj(X) Then the following hold.

(1) G preserves a unique compatible (Definition 7.4) projective structure π
on X.

(2) π is C1-compatible if G consists of C1-diffeomorphisms.
(3) The projectively modeled curve (X, π) is isomorphic to Ωr for some r > 0,

or Θt for some t ≥ 1.
(4) The conjugacy class of G among subgroups of PC0

Proj(X) is characterized
by the isomorphy type of the projectively modeled curve (X, π), thus by
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either the case Θt for t ≥ 1 (“affine case”) or Ωr for r > 0 (“metaelliptic
case”). We thus say that G is of type Θt, or of type Ωr. This also
characterizes G modulo conjugation by PC0,+

Proj(X).

(5) if G ⊂ PC1
Proj(X), then this also characterizes the conjugacy class modulo

the conjugation action of PC1
Proj(X), or also PC1,+

Proj(X).
(6) G preserves an affine structure on X if and only if it is of type Θ1, or if

H = K+ and G is of type Θt for some t > 1.
(7) Consider the corresponding conjugacy classification for the corresponding

action of H, the classification is the same when considered modulo conju-
gation by PC0

Proj(X), or PC1
Proj(X) in the C1-case.

Proof. Write G+ as the image of K+ in G. First observe that G has no finite
orbit. Otherwise G+ would fix a point and it is easy to check and well-known
that K+ has no nontrivial continuous action on an interval.

By Lemma 4.5, there is a dense subgroup Γ of G such that (G,Γ) has relative
Property FW (where G is considered as discrete group). By Corollary 6.18, there
exists a finitely charted projectively modeled curve X ′, and a piecewise projective
homeomorphism f : X → X ′ such that the conjugate Γ-action preserves the
projective structure. Pulling back to X, we obtain a compatible Γ-invariant
projective structure π. By Proposition A.6, the automorphism group of (X, π) is
closed in Homeo(X), and hence G preserves π.

When Gi consists of C1-diffeomorphisms, Proposition 7.6 ensures that π is
C1-compatible.

So (1) and (2) are proved. (3) follows from the classification of projective
structures on the circle and their maximal compact subgroups of automorphisms,
established in the appendix.

For (4), one direction is provided by Corollary 7.7: the conjugacy class of G
determines the isomorphism type of (X, π). In the other direction, suppose that
the isomorphism type of (X, π) is given. Proposition A.7, based on classification,
provides the converse: once G preserves π, it is uniquely determined modulo
conjugation by the orientation-preserving automorphism group of (X, π).

For (5), the only nontrivial improvement with respect to (4) lies in the C1

assertion of Corollary 7.7.
(6) if G preserves an affine structure ξ, it preserves the corresponding projec-

tive structure πξ, which is then equal to π. By the affine classification (see the
appendix), (X, ξ) is isomorphic as affinely modeled curve to Θt for some t ≥ 1.
In the case of H = K, the affine action does not preserve the orientation, which
excludes Θt if t > 1.

(7) As a topological group, the outer automorphism group of K is trivial,
and hence the result is immediate. For K+, the classification implies that every
action of K+ on a projectively modeled curve extends to K, and then we obtain
the equivalences of both conjugacy notions. (Of course this does not extend
to conjugacy modulo orientation-preserving elements. This comes from the plain
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topological setting: the only action of K+ on the circle is not orientation-reversing
isomorphic to itself; that is, its centralizer in the self-homeomorphism group of
the circle consists of orientation-preserving self-homeomorphisms.) �

Theorem 7.9. Fix n ∈ N≥1. Let X be the connected n-covering of the projective
line P1

R (with respect to the basepoint∞) and let H be either the connected n-fold

covering of PSL
(n)
2 (R), or the corresponding overgroup PGL

(n)
2 (R) of index two.

Let G be the image of H in a faithful continuous action α of H on X, valued in
PC0

Proj(X). Then:

(1) G is conjugate to H by some element of PC0,+
Proj(X), which can be chosen

in PC1,+
Proj(X) if G ⊂ PC1

Proj(X);
(2) the action α itself of H is conjugate to the inclusion action by some ele-

ment of PC0
Proj(X), which can be chosen in PC1,+

Proj(X) if G = α(H) ⊂
PC1

Proj(X).

Proof. As in the proof of Theorem 7.8, we first need to have some Property FW
phenomenon: actually we find a dense subgroup with Property FW: If H = PSL2

or PGL2, we consider PSL2(Z[
√

2]) or PGL2(Z[
√

2]), and for their finite coverings
we consider their inverse images.

Clearly the G-action has no finite orbit, and as in the proof of Theorem 7.8,
using Property FW we find a compatible Γ-invariant projective structure π (C1-
compatible if G acts by C1-diffeomorphisms), and again using Proposition A.6,
the automorphism group of (X, π) is closed, and hence G preserves π.

By the classification in the appendix, the only possibility1 is that (X, π) is
isomorphic to Ωn, the n-fold connected covering of the projective line, that is,
X itself (chosen by anticipation!). This precisely means that G is conjugate, by
some element of PC0,+

Proj(X), to a subgroup of H, and hence to H itself (since
clearly any injective continuous homomorphism G→ H is an isomorphism). Also
in the C1-case, since π is C1-compatible, the conjugating element has to be C1 as
well.

By post-conjugation by an orientation-reversing element of PGL
(n)
2 (R) if nec-

essary, we can arrange also the conjugation to be orientation-preserving. �

The following answers a question in an early version of [LMT].

Corollary 7.10. Fix n ∈ N>0. Let H be either equal to PSL
(n)
2 (R) or PGL

(n)
2 (R).

Let G be the image of a faithful continuous action of H on R/Z. Suppose that
G ⊂ PC0

Proj(R/Z).

1Hint (added after publication): since the automorphism group is not solvable, this implies
that (X,π) is isomorphic to Ωm for some m. But then the existence of a continuous injective

homomorphism PSL
(n)
2 (R)→ PGL

(m)
2 (R) forces n = m.
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Then G is closed in Homeo(R/Z), and is uniquely defined up to conjugation
in PC0

Proj(R/Z). If moreover G ⊂ PC1
Proj(R/Z), then it is uniquely defined up

to conjugation in PC1
Proj(R/Z).

Proof. Choose a piecewise projective C1-diffeomorphism fn from R/Z to the n-
fold covering of P1

R to inherit the result from Theorem 7.9. �

Let us now provide the affine version of Theorem 7.8. In Minakawa’s original
formulation [Mi], it consists of the classification of subgroups of PC0,+

Aff (R/Z)
modulo conjugation, among those conjugate to the group R/Z of translations
within Homeo(R/Z).

In analogy with Definition 7.4, an affine structure ξ on a standard curve X
is compatible if, ξ0 being the standard structure, the identity map from X to
(X, ξ0) to (X, ξ) is piecewise affine.

Theorem 7.11. Let X be the standard circle R/Z with its subgroup K of isome-
tries and its subgroup K+ ' SO(2) of orientation-preserving isometries. Con-
sider a faithful continuous action of K+ on X, whose image G is contained in
PC0

Aff (X). Then

(1) G preserves a unique compatible affine structure ξ on X;
(2) the affinely modeled curve (X, ξ) is isomorphic to Θt for some t ≥ 1. We

then say that G is of type Θt;
(3) the conjugacy class of G among subgroups of PC0

Aff (X) is characterized
by the isomorphy type of the affinely modeled curve (X, ξ), thus by the
number t ≥ 1;

(4) define t′ = 1 if t = 1 and t′ as equal to t or t−1 according to whether the
universal covering of (X, ξ), endowed with its orientation inherited from
R/Z, is isomorphic as an affinely modeled curve to R>0 or R<0. Then
the conjugacy class of G modulo conjugacy by PC0,+

Aff (X) is characterized
by the number t′ ∈ R>0.

(5) Consider the corresponding conjugacy classification for the corresponding
action of K+ modulo conjugation by PC0,+

Aff (X): then t′ is a full invariant.
(6) Given the K+-action, define t′′ as equal to t′ or −t′ according to whether

the orientation determined by the action of small positive element and the
given orientation on X coincide. Then t′′ ∈ R∗ is a full invariant for
such faithful K+-actions, modulo conjugation by PC0,+

Aff (X).

In contrast, if G is the image of K for such an action, then G is conjugate to K
by some element of PC0,+

Aff (X), and similarly the action of K is conjugate to its
canonical isometric action by some element of PC0

Aff (X).

Sketch of proof. This can be done similarly as Theorem 7.8, but with the sig-
nificant simplification of “erasing all order 2 terms” in the preliminary work.
Namely, we work with L1(X) = X± × R>0, and A1(X) defined as those func-
tions ν : X± → R>0 such that ν(x̂) = ν(x)−1 for all x and equal to 1 outside a
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finite subset. Then one can encode compatible affine structures by elements of
A1(X); here compatible is in the affine sense, meaning that the identity map is
piecewise affine.

The sequel is similar, with some specific points we now emphasize. The affinely
modeled curves Θt for t > 1 have no orientation-reversing automorphism. This
has no such analogue in the projective setting. Since the oriented isomorphism
type of (X, ξ) is determined by the PC0

Aff (X)-conjugacy class of G, this conjugacy
classification corresponds to oriented affine structures, as described.

This phenomenon reappears if one considers classification of actions, since the
action of “small positive” elements of K+ determines an orientation. �

7.C. Explicit formulas for commensurating actions. Let us provide explicit
commensurating actions of groups of piecewise Ck-transformations for k = 0, 1, 2.
I obtained them I started this work, before I realized that the formalism of partial
actions could get around such computations: while for k = 0 it is easy and
practical, for k = 2 it becomes quite cumbersome and I did no attempt beyond.
Still, it may be instructive to mention these formulas, notably to show what the
universal globalization allows to conceal. I will provide no proof.

7.D. The continuous case. Let X be an oriented standard curve. Define X± =
X × {±1}. We let PC(X) act on X± exactly as in the proof of Lemma 3.9. For
y = (x, ε) ∈ X±, we write ŷ = (x,−ε).

Define L0
X = (X±)2, and let PC(X) act diagonally. Define M = M0

X ⊂ L0
X

as the set of pairs (y, ŷ) when y ranges over X±. Then M r σ−1M is the set of
(y,±1) when y ranges over outer discontinuity points of σ. For most applications
this is enough; for precise counting results it can be convenient to rather work in
the set of unordered pairs of distinct elements. It is instructive to interpret what
M being transfixed means and to thus prove the conjugacy results (for PC, PC+,
IET./, IET+).

7.E. The derivable/affine case. Define L1
X = (X±)2 × R>0. Recall that

PCC1](X) denotes the set of piecewise-C1 self-diffeomorphisms of X. For σ ∈
PCC1](X), we define

σ · (u, v, y) =

(
f(u), f(v),

f ′(u)

f ′(v)
y

)
.

A simple computation (or a computation-free interpretation of the formula)
shows that this is an action.

Here f ′(u) for u = (x, ε) is defined in the only natural way: choosing a local
orientation-preserving affine chart around the first coordinate f(u)1 of f(u), we
have f ′(u) = limt→0+(f(x+ εt)− f(u)1)/t.

Define M = M1
X = {(x, x̂, 1) : x ∈ X}. Then M r σM is the set of (x, x̂, 1)

where σ cannot be assigned a value at x for which it is of class C1 at x.
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Then the transfixing property implies the transfixing property of the coarser
quotient action on L0

X , and then the piecewise continuous setting yields a first
(piecewise affine) conjugacy to a continuous action. This allows, in a second
step, to work in the continuous setting (the conjugacy preserves the transfixing
property in the new model).

Assume now that we are working with piecewise affine self-homeomorphisms
and the invariant subset L1

X = (X±)2 ×R>0, with the induced action. Consider
the set A1

X of functions ν defined on a cofinite subset X± to R>0, taking the
value 1 outside a finite subset, and satisfying the condition ν(û) = 1/ν(u) for all
u ∈ X± at which it is defined, and encode an affine structure on X such that the
identity map becomes piecewise affine, with such a function.

Since the set of functions from X± to R>0 can be thought of as a subset
of L1,0

X = {(u, v, y) ∈ L1
X : v = û}, it inherits an action of PC0

C1](X). Then
given such ν, defined on the complement of a finite subset Fν , the condition of
preserving ν, for σ ∈ PC0

C1](X), is equivalent to leaving Fν invariant and acting

as C1-diffeomorphisms on the complement of Fν . In particular, if σ is piecewise
affine, it means leaving Fν invariant and acting as affine automorphisms on the
complement of Fν . Finally, one checks that for a subgroup of PC0

C1](X), the

condition of transfixingM1
X is equivalent to the existence of a Γ-invariant element

ν ∈ A1,0
X .

The above commensurating action (modulo a minor nuance), or rather the
affine isometric Hilbertian action it induces, appears in [LMT, §5] in the contin-
uous case, but without the interpretation in terms of affine structures.

7.F. The doubly derivable/projective case. To simplify, we stick to the
continuous case. Indeed, the set has already been defined in §7.A, namely
L2(X) = X± ×R>0 ×R, with a somewhat complicated action.

A commensurated subset M2 is given by the set of triples (x, 1, 0) when x
ranges over X±. This illustrates how it is frequent in commensurating actions
that the commensurated subset is simpler to define than the whole set, and the
benefit of using partial actions.

Now consider the set A2
X of functions µ defined on a cofinite subset of X±,

valued in R>0 ×R, taking the value (1, 0) outside a finite subset, and satisfying
the condition µ(x̂) = τ(µ(x)). This is a little generalization of A2(X) which
only considers everywhere defined functions. Such functions define a compatible
projective structure outside a finite subset.

The point is that the transfixing property implies the existence of such an
invariant partially defined function (which, in the absence of finite orbit, implies
the existence of a globally defined one), defined outside an invariant finite subset
F and then, the conjugation to an action of class C2 outside F , and projective
outside F if we started from a piecewise projective action.
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Appendix A. Affinely, projectively modeled curves and their
automorphisms

This section classifies affinely and projectively modeled curves and describe
their automorphism groups.

A.1. Historical remarks: a recurrent mistake. The easy affine classification
was obtained by Kuiper [Ku1]: the complete case is trivial: there are only R and
R/Z, while the non-complete case puts forward the non-standard circles R>0/〈t〉.
Paradoxically, while in the affine case the complete case is the most trivial and
less surprising part, in the projective case the non-complete case brings essentially
nothing new (the compact ones come from the affine world) while the complete
case is richer. The classification was established by Kuiper (1954) [Ku2], with
an inaccuracy (namely, in the notation below, Kuiper did not distinguish the
metaparabolic circles Ξn,+ and Ξn,−). With a similar approach, Goldman [Go1]
later claimed to also obtain this classification, but actually rather establishes a
correspondence to the classification of conjugacy classes in the universal covering

of P̃SL2(R), without providing details on the latter. In the analytic context of Hill
equations, an equivalent classification to Kuiper’s was obtained by Lazutkin and
Pantrakova (1975) [LP] which fixes Kuiper’s error in another language (Kuiper
is not quoted). Later, G. Segal (1981) [Seg], also not quoting Kuiper, claims to
correct an error in [LP], but instead resurrects Kuiper’s error, based on the same

incorrect classification of P̃GL2(R)-conjugacy classes in P̃SL2(R)!
Kuiper’s error reappeared at various places (often “rediscovered”), and was

fixed at other places, often not even noticing that there is an error, or by authors
quoting several contradictory results without noticing the difference. The error is
fixed in [LP], and a careful classification appears in [BFP, Gor]; Gorinov [Gor] is
the first to explicitly mention the error, and also the first to fix it in the language
of geometric structures (used in [Ku2] and also here). Most other references
are concerned with the Hill equation, which amounts to classifying orbits of the
Bott-Virasoro extension of the diffeomorphism group on its Lie algebra, and this
approach is much more complicated.

Below, the classification and the computation of automorphism groups are
done in the same impetus (carrying out the classification allowing to introduce
notation). A description of orientation-preserving automorphism groups of pro-
jectively modeled curves is claimed in [Gui], but the result is incorrect (and the
proof way too long). Indeed, for the projectively modeled curves Ξn,± and Ξn,t,
he obtains that the orientation-preserving automorphism group is isomorphic to
(R/Z)×(Z/nZ), while it is actually isomorphic to R×(Z/nZ). Since the classifi-
cation of maximal compact subgroups of automorphisms is needed here, this is an
essential difference. So I am not aware of any prior reference for the classification
of automorphism groups of projectively modeled curves.
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A.2. Generalities. We consider the pseudogroups Aff and Proj of Example
6.5. By affinely and projectively modeled curves we mean Aff -modeled and
Proj-modeled curves.

Denote by Σ∞ the universal covering of P1(R). We identify it with ]−∞,+∞]×
Z with the lexicographic order. Restricting the universal covering map (t, n) 7→ t
to open subsets on which it is injective, we obtain charts for a Proj-structure on
Σ∞ (note that it is not finitely-charted).

Lemma A.1. Any Aff-modeled Hausdorff simply connected curve X is isomor-
phic to an open interval in R.

Any Proj-modeled Hausdorff simply connected curve X is isomorphic to an
open interval in Σ∞.

Proof. In the affine case, by [Go2, Prop. 4.5], there is a locally projective im-
mersion X → R. Since a locally injective continuous map between intervals is
injective, the latter map has to be injective.

In the projective case, by [Go2, Prop. 4.5], there is an locally projective immer-
sion X → P1

R, which therefore lifts to a locally projective immersion X → Σ∞.
We deduce injectivity by the same argument. �

A.3. The affine case. This is especially an apéritif to the projective case, oth-
erwise we would just give a list without proof.

The group of affine self-transformations of R is 2-transitive and contains orientation-
reversing elements. Hence there are only three open intervals up to affine auto-
morphism: R, R>0, and ]−1, 1[.

Let us list in each case the fixed-point-free automorphisms up to conjugation.

• For ]−1, 1[ the automorphism group is reduced to a group of order 2, and
hence there is no fixed-point-free automorphism.
• For R>0, the automorphism group is reduced to positive homotheties
ut = x 7→ tx, t > 0; note that it preserves an orientation: indeed, this
interval R>0 has one “complete” end (+∞) and a non-complete one (0).
The automorphisms ut for t > 0 are pairwise non-conjugate in R>0, and
fixed-point-free for t 6= 1. We have u−1

t = ut−1 . We endow the quotient
Θt = R>0/〈ut〉 with the orientation inherited from R>0 if t > 1, and
with the reverse orientation if t < 1. Thus the oriented affinely modeled
curves Θt for t ∈ R>0 are pairwise non-isomorphic. In the non-oriented
setting, for t > 1, they are pairwise non-isomorphic, while Θt and Θt−1

are isomorphic (indeed equal!).
The affine automorphism group of Θt is the normalizer of 〈ut〉 (hence

the whole affine automorphism group of R>0 here) modulo 〈ut〉, hence is
naturally isomorphic to R>0/〈t〉 and non-canonically isomorphic to R/Z;
it coincides with the oriented automorphism group.
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• For R, the automorphism group consists of all affine automorphisms, and
the fixed-point-free ones are translations, and are all conjugate; actu-
ally the cyclic subgroups generated by translations are all conjugate by
orientation-preserving affine automorphisms, and the quotient of R by
such cyclic subgroups we obtain is unique up to affine isomorphism: one
representative is the standard circle R/Z. The normalizer of the given
cyclic subgroup is the group of isometries of R and hence the affine auto-
morphism group is isomorphic to (R/Z) o (Z/2Z), and can be identified
to the group of isometries of R/Z. We denote it by Θ1.

We conclude the following classification of affinely modeled curves and their au-
tomorphism groups. In the left column, • and ◦ mean complete vs non-complete.

•/◦ aff. mod. curve univ. cover Aut+ ' Aut '
• R itself R o R>0 R o R∗

◦ R>0 itself R>0 ' R = Aut+

◦ ]−1, 1[ itself {1} {±1}
• Θ1 R R/Z (R/Z) o (Z/2Z)
◦ Θt t>1 R>0 R>0/〈t〉 ' R/Z = Aut+

Note that we have several ways of defining affinely modeled curves using a
pseudogroup. The chosen way does not affect the classification as above. How-
ever, it affects the notion of being finitely charted (i.e. having a finite atlas in the
model space). For the most standard way to define affinely modeled curves, one
uses R as model space and all the above curves are finitely-charted. However, in
our work and applications, the natural model space is rather the standard affine
structure on R/Z. Then R and R>0 are not finitely-charted and only ]−1, 1[, Θ1

and Θt remain; in particular the orientation-preserving automorphism group of
any finitely-charted affine manifold (modeled on R/Z) is always abelian.

A.4. The projective case. As reminded in §A.2, we have to classify open in-
tervals in Σ∞, and then classify their fixed-point-free automorphisms to obtain
the compact projective manifolds.

The automorphism group of Σ∞ contains the orientation-preserving automor-
phism group as a subgroup of index 2, and the latter can be identified with the

universal covering S̃L2 of SL2(R). Since the conjugation by a reflection yields
a automorphism of order 2, we can view the automorphism group as a group

P̃GL2, projecting to PGL2(R) with an infinite cyclic kernel (which is the center

of S̃L2). The action of P̃GL2 on R is transitive, but not transitive on ordered
pairs. Namely, the stabilizer of (∞, 0) ∈ Σ∞ acts on Σ∞ with countably many
orbits: the singletons (∞, n), n ∈ Z, and the intervals in between. Therefore,
we can classify open intervals in Σ∞ up to automorphisms. (Since parenthe-
ses are used for pairs, we use the “French” notation ]a, b[ for the open interval
{x : a < x < b}.)

• Σ∞ itself (not finitely-charted)
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• the interval Σ+
∞ of elements > (∞, 0) in Σ∞ (not finitely-charted)

• the interval Σn = ](∞, 0), (∞, n)[ in Σ∞ (n ≥ 1 integer).
• the interval Σn− 1

2
= ](0, 1), (∞, n)[ in Σ∞ (n ≥ 1 integer).

This yields the classification of simply connected projectively modeled curves.
It remains to obtain the classification of compact connected projectively mod-
eled curves, so we have to consider, among the above curves, which ones have
a fixed-point-free orientation-preserving automorphism, and classify these up to
conjugation by an automorphism. We start with the easier non-complete case,
that is, those for which the universal covering is properly contained in Σ∞.

In Σ+
∞, in Σn or Σn− 1

2
for n ≥ 2, the element (∞, 1) is fixed by every orientation-

preserving automorphism. The remaining intervals are Σ1 ' R and Σ 1
2
' R>0

(and Σ∞, which we consider afterwards). Here R and R>0 can be viewed as
subsets of the projective line.

• In Σ1 ' R, the automorphism group is the affine group. Fixed-point-free
elements are nonzero translations, and are all conjugate. Let Θ1 be the
corresponding curve; call it the round circle.
• In Σ 1

2
' R>0, the orientation-preserving automorphism group consists of

the positive homotheties ut : x 7→ tx; for t 6= 1 these are fixed-point-
free. The automorphism group also contains t 7→ t−1; thus ut is conjugate
to us if and only s ∈ {t, t−1}. Let Θt be the corresponding curve (t ∈
R>0 r {1}); thus Θt are pairwise non-isomorphic as oriented projectively
modeled curves, and Θt and Θt−1 are (orientation-reversing) isomorphic
as projectively modeled curves.

Remark A.2. Note that the Θt already appear in the affine classification. But
there are a few little differences: as affinely modeled curve, Θ1 is complete, while
it is not complete as projectively modeled curve. The other difference is that, for
t 6= 1, Θt and Θt−1 are isomorphic as oriented projectively modeled curves, an
isomorphism being induced by x 7→ x−1. This difference is also reflected in the
fact that Θt admits orientation-reversing projective automorphisms.

Now we have classified the non-complete projectively modeled curves, we need
to compute their automorphism groups (not anymore for classification, but be-
cause we obtain results of conjugation into the automorphism group of a pro-
jectively modeled curve). In the simply connected case we already did the job.
In the compact case, where it was obtained as quotient X = 〈r〉C of a simply
connected projectively modeled curve by a cyclic group of automorphisms acting
freely, we have to compute the normalizer Nr of this cyclic subgroup 〈r〉; then
the automorphism group A of X is Nr/〈r〉.

• For Σ1 ' R, and r(x) = x+1, the normalizer Nr is the group of isometries
of R, and A can be viewed as the group of of isometries of X ' R/Z.
• For Σ 1

2
' R>0 and r(x) = tx with t > 1, the cyclic subgroup 〈r〉 is normal

in the whole automorphism group R>0 o 〈τ〉 (where τ(x) = x−1). The
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quotient (R>0/〈t〉)o〈τ〉 is also (non-canonically) isomorphic to the group
of isometries of R/Z.

We summarize the classification of non-complete finitely-charted projectively
modeled curves up to isomorphism, along with their orientation-preserving auto-
morphism group. Note that the only infinitely-charted one is Σ+

∞.

proj. mod. curve universal cover Aut+ ' Aut '
Σn, n ∈ N>0 itself R o R>0 R o R∗

Σn− 1
2
, n ∈ N>0 itself R R o (Z/2Z)

standard affine Θ1 Σ1 ' R R/Z (R/Z) o (Z/2Z)
non-standard affine Θt, t > 1 Σ1/2 ' R>0 R/Z (R/Z) o (Z/2Z)

Let us now deal with complete curves. In Σ∞, the orientation-preserving auto-

morphism group consists of S̃L2. We call elements of S̃L2 metaelliptic, meta-
parabolic, or metahyperbolic according to the corresponding behavior of the
projection on PSL2(R), with the convention that elements mapping to 1 are
metaelliptic. We add “meta” because the wording “elliptic”, etc, does not reflect
the dynamical behavior on Σ∞: for instance non-identity metaelliptic elements
rather behave as loxodromic elements on Σ∞.

• Non-identity metaelliptic elements are fixed-point-free on Σ∞. Every

metaelliptic element is conjugate to an element in the inverse image S̃O2

of SO2. Write this 1-parameter subgroup as (ξr)r∈R, so that the center

of S̃L2 consists of the ξr for r ∈ Z. Lifting conjugation by the lift of an
orthogonal reflection conjugates ξr to ξ−r. These are the only conjugacies
among the ξr since the rotation number of ξr is r, and rotation number is

conjugacy-invariant up to sign in the whole automorphism group P̃GL2

(and is conjugacy-invariant in S̃L2). Since we are interested in the cyclic
subgroup generated by ξr, we can restrict to r > 0. We define Ωr (r > 0)
as the corresponding projectively modeled curve (quotient of Σ∞ by 〈ξr〉).
• Metahyperbolic and metaparabolic elements have a fixed point on P1

R;

up to conjugating in S̃L2, we can suppose that ∞ is fixed. Its action on
P1

R is therefore given by some affine map A : x 7→ tx + b with t > 0
and (t, b) 6= (1, 0). Conjugation inside the positive affine group reduces to
either b = 0 or (t = 1 and b ∈ {1,−1}), which we therefore assume. For
its action on Σ∞, the element ξ preserves the subset {∞} × Z, on which
it acts as a translation, say by some n ∈ Z. Then ξ = ξn,A is determined
by A and n, namely ξn,A(x,m) = (Ax, n+m) in the previous coordinates.
It is fixed-point-free if and only if n 6= 0. Write ξn,t (resp. ξn,±) for ξn,A
when A(x) = tx (resp. A(x) = x± 1)

We have to classify the cyclic subgroups 〈ξn,A〉 up to conjugation in

the automorphism group P̃GL2 of Σ∞. Let us start with the elements
ξn,A themselves. Since n is the rotation number, it is determined by
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conjugation up to sign; also {t, t−1} is determined by conjugation (by
conjugacy classification in PSL2(R)). Given this, the elements we have
not yet distinguished are (for a given n ∈ N>0 and t ≥ 1):

– on the one hand, the four elements ξn,t, ξn,t−1 , ξ−n,t(= ξ−1
n,t−1),

ξ−n,t−1(= ξ−1
n,t);

– on the other hand, the four elements ξn,+, ξn,−, ξ−n,+(= ξ−1
n,−),

ξ−n,−(= ξ−1
n,+).

Define two particular automorphisms of Σ∞ as follows: s(x,m) =
(−x,−m) for x 6=∞ and s(∞,m) = (∞,−m−1); w(x,m) = (−x−1,m+
1) for x > 0 and w(x,m) = (−x−1,m) for x ≤ 0. Note that w is
orientation-preserving.

Then w−1ξn,tw = ξn,t−1 , s−1ξn,ts = ξ−n,t, s
−1ξn,±s = ξ−1

n,±. This shows

that the first four elements ξ±n,t±1 are conjugate in P̃GL2, and the two

corresponding cyclic subgroups 〈ξn,t〉, 〈ξn,t−1〉 are conjugate within S̃L2.
On the other hand, this leaves the possibility that the subgroups 〈ξn,+〉
and 〈ξn,−〉 are not conjugate at all. It is indeed the case that they are not
conjugate: indeed, a conjugating element should fix the unique fixed point
in P1

R, and thus preserve {∞}×Z, and these are precisely the elements we
have tested. We write Ξn,t = Σ∞/〈ξn,t〉 for t > 1, and Ξn,± = Σ∞/〈ξn,±〉.

Remark A.3. 1) Recall that ξn,±(x,m) = (x ± 1, n + m) for (x,m) ∈ Σ∞
(identified as above to ]−∞,+∞]×Z with the lexicographic ordering). We have
observed that, for n ∈ Z r {0} the cyclic subgroups 〈ξn,+〉 and 〈ξn,−〉 are not

conjugate in P̃GL2. The error in Kuiper’s classification [Ku2], reproduced at
many other places (but fixed in [LP, BFP, Gor], and consciously only in [Gor])
is to not distinguish those elements (essentially, the error amounts to deducing
their conjugacy from the fact that their images in PSL2(R) are conjugate).

2) That w−1ξn,tw = ξn,t−1 is quite a subtle point (the subtlety is to consider
w). This is another gap in [Ku2], which takes for granted that we immediately
boil down to homotheties x 7→ tx for t > 1; this gap does not result in another
error thanks to this possibly unexpected conjugacy. This point is carefully taken
care of in [Gor].

Let us mention, as a digression of independent interest, that this lack of con-
jugacy exists at a purely topological level:

Proposition A.4. For every n ∈ N≥1, the cyclic subgroups 〈ξn,+〉 and 〈ξn,−〉 are

not conjugate in the group H̃omeo(P1
R), namely the normalizer in Homeo(Σ∞)

of the cyclic subgroup 〈ξ1〉. More precisely, for any k ∈ N≥3 ∪ {∞} not dividing
2n, the cyclic subgroups 〈ξn,+〉 and 〈ξn,−〉 are not conjugate in the normalizer

H̃omeo
(k)

(P1
R) of 〈ξ1〉 in the group of self-homeomorphisms of Σk (which contains

PGL
(k)
2 (R)).
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Proof. Indeed, suppose by contradiction that they are conjugate in Ek. It means
that the generators of these cyclic subgroups are conjugate, or that one is con-
jugate to the other’s inverse. Let us show that the latter case implies the former
case. In the latter case, there exists b ∈ Ek such that bξn,+b

−1 = ξ−1
n,−. This

changes the rotation number n to −n (which lives in R/kZ). By assumption,
n 6= −n in R/kZ. Hence necessarily b is orientation-reversing and thus c = bs is
orientation-preserving, that is, commutes with ξ1, and cξn,+c

−1 = ξn,−. Project-
ing on Homeo+(P1

R), we obtain an orientation-preserving self-homeomorphism γ
conjugating u to u−1, with u(x) = x + 1. Hence γ fixed the unique fixed point
∞ of u and thus this is a conjugacy in Homeo(R). But u(x) > x for all x, which
is clearly an obstruction for u to be conjugate to its inverse within orientation-
preserving self-homeomorphisms of R. This is a contradiction.

(Note that conversely, whenever 2n = 0 [mod k], the elements ξn,+ and ξn,− are

inverse to each other in PSL
(k)
2 (R), and thus the cyclic subgroups they generate

are not only conjugate, but equal.) �

The classification of complete projectively modeled curves being completed,
it remains to compute their automorphism groups. In each case, the automor-
phism group of the projectively modeled curve Σ∞/〈ξ〉 is Nξ/〈ξ〉, where Nξ is the
normalizer of 〈ξ〉 in the automorphism group.

To determineNξ, define some auxiliary subgroups, easier to determine. Namely,
define Bξ as the stabilizer in PGL2(R) for conjugation of the image of {ξ, ξ−1}
in PSL2(R); let Bξ be its unit component. Let Mξ as the inverse image in P̃GL2

of the stabilizer Bξ, and M0
ξ the inverse image of B◦ξ (note that M0

ξ is not nec-
essarily connected). Clearly, Nξ ⊂ Mξ. Moreover, the unit component M◦

ξ is
included in Nξ (it is even included in the centralizer of ξ); since the center of

P̃GL2 is also included in the normalizer, it follows that M0
ξ is included in Nξ.

Thus M0
ξ ⊂ Nξ ⊂Mξ. We can deduce the automorphism group, in each case:

• For Ωr = Σ∞/〈ξr〉, we have to discuss on whether r ∈ Z. If r = n ∈ Z,
the subgroup 〈ξr〉 is normal in the whole automorphism group. Hence

the orientation-preserving automorphism group is the quotient PSL
(n)
2 (R),

the n-fold connected covering of PSL2(R); the full automorphism group

PGL
(n)
2 (R) is obtained as semidirect product with the automorphism in-

duced by a reflection.
• When r /∈ Z, the normalizer of 〈ξr〉 is reduced to the inverse image of the

orthogonal group, which has two components then s is contained in the
nontrivial component and normalizes 〈ξr〉, so in this case Nξ = Mξ. Thus
the automorphism group is isomorphic to (R/Z)o (Z/2Z) with action by
sign, and the orientation-preserving automorphism group is isomorphic to
R/Z.
• For Ξn,±, the normalizer is the inverse image of the group of upper tri-

angular matrices that are either scalar or trace-zero. In PSL2(R), the
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latter group has two connected components; the nontrivial component
corresponding to trace zero matrices. A subset of representatives for Mξ

modulo M0
ξ is given by {1, s}. Since sξn,±s

−1 = ξ−1
n,±, we deduce that

s ∈ Nξ and hence Nξ = Mξ. thus the automorphism group is isomorphic
to (R o Z/nZ) o (Z/2Z), with action by sign multiplication, and the
orientation-preserving automorphism group is isomorphic to R× Z/nZ.
• For Ξn,t (t > 1, n ∈ N>0) and ξ = ξn,t, the subgroup Bξ consists of

monomial matrices in PGL2(R), which has 4 components. A subset of
representatives of Bξ modulo B◦ξ is {1, s, w, sw}.

The element w, which belongs to Mξ, does not normalize 〈ξ〉 (because
w−1ξn,tw = ξn,t−1 /∈ 〈ξn,t〉). For the same reason, s does not normalize.
However, q = sw normalizes (and does not centralize) 〈ξn,t〉. Note that
q2 = 1.

So the normalizer of 〈ξ〉 in S̃L2, which is also its centralizer in P̃GL2, is
the direct product (ξ0,η)η>0×(ξm)m∈Z. Its quotient by 〈ξ〉 can be described
as the direct product (ξ0,η)η>0 × (ξm,tm/n)m∈Z/nZ, which is isomorphic to
R × (Z/nZ). This is the orientation-preserving automorphism group of
Ξn,t.

The normalizer in P̃GL2 is the semidirect product ((ξ0,η)η>0×(ξm)m∈Z)o
〈q〉, where q acts by sign. Its quotient by 〈ξ〉 can be described as the
semidirect product ((ξ0,η)η>0× (ξm,tm/n)m∈Z/nZ)o 〈q〉, which is isomorphic
to (R× (Z/nZ)) o (Z/2Z), again with action by sign.

Let us summarize the classification up to isomorphism of complete finitely-
charted projectively modeled curves (in each case the universal cover is Σ∞,
which is the only infinitely-charted complete projectively modeled curve up to
isomorphism):

projectively modeled curve Aut+ ' Aut '
special metaelliptic Ωn, n ∈ N>0 PSL

(n)
2 (R) PGL

(n)
2 (R)

metahyperbolic Ξn,t, t > 1, n ∈ N>0 R× Z/nZ (R× Z/nZ) o (Z/2Z)
metaparabolic Ξn,ε, ε ∈ {+,−}, n ∈ N>0 R× Z/nZ (R× Z/nZ) o (Z/2Z)

ordinary metaelliptic Ωr, r > 0, r /∈ Z R/Z (R/Z) o (Z/2Z)

Note that in all finitely-charted cases (non-complete and complete), the whole
automorphism group is a semidirect product of its orientation-preserving normal
subgroup by Z/2Z. This also holds for the infinitely-charted Σ∞, while Σ+

∞ has
no orientation-reversing automorphism.

Finally, note that in the metaelliptic case, the automorphism group is tran-
sitive, while in the metaparabolic and metahyperbolic cases Ξn,t and Ξn,±, the
automorphism group has exactly 2 orbits, one of which being finite (of cardinal
n in the metaparabolic case, of cardinal 2n in the metahyperbolic case).

Remark A.5. The non-complete structures Θt and Θ1 can be thought of as the
n = 0 case of Ξn,t and Ξn,± (note the collapse of the ± distinction when n = 0,
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which is not always well-reflected in the literature). We thus have a canoni-
cal bijection, as observed and used by Kuiper [Ku2], between the orbit space of

P̃SL2 r {1} modulo the conjugation action of P̃GL2, and the set of projective
structures on the circle, modulo diffeomorphism; in addition, it also corresponds
to the set of projective structures modulo oriented diffeomorphism, because (un-
like in the affine case) all such structures admit an orientation-reversing auto-
morphism.

Let us mention that Ghys [Ghy, §4.2] provides a direct argument of the follow-
ing alternative: for every projectively modeled curve homeomorphic to the circle,
either it is projectively isomorphic to a finite covering of the projective line, or
its oriented automorphism group is abelian.

We now use the classification to derive the following consequences. For the
following one, it is possible that there is a more elegant, classification-free argu-
ment.

Proposition A.6. For every projectively modeled curve X (with finitely many
components), the automorphism group A of X is closed in Homeo(X).

Proof. Since the componentwise preserving subgroup of A is open in A, we can
restrict to this one, and thus boil down to the case when X is connected, and thus
use the classification. Note that in each case, the description of the automorphism
group as a Lie group makes it clear that it acts continuously on the given curve.
Since in each case A has finitely many components, it is enough to check that A◦

is closed.
When A◦ is compact, since it acts continuously it is closed. When X is Σ+

∞, or
Σn for n ∈ N>0, the subgroup A◦ can be viewed as the subgroup of element point-
wise stabilizing some closed discrete subset and acting as orientation-preserving
affine transformation in each interval of its complement, and such that all these
affine maps (on all intervals) are equal. This is easily checked to be a closed
condition.

For Σ∞ and Ωn (n ∈ N>0), we start with Ω1: this is PGL2, and is the stabilizer
of the cross-ratio, and thus is closed. For others, we start observing that the cen-
tralizer of the deck transformation is closed in the whole homeomorphism group,
so it is enough to show that A◦ is closed in this centralizer, and then it consists
of the preimage of PSL2 for the projection of this centralizer to Homeo+(P1

R).
So it is closed.

The remaining cases are Ξn,t, Ξn,ε, and Σn−1/2. Then we observe that A◦

preserves a finite subset on which it acts trivially, and that it acts properly on
its complement. This implies that it is closed. �

Let us now deal with maximal compact subgroups. Let us recall a classical
result of Mostow [Mos] that in a virtually connected Lie group, all maximal
compact subgroups are conjugate by some element of the unit component, and
that moreover they have as many components as the whole group. We thus
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draw a table indicating, in the right column, one isomorphic copy in each case
of a maximal compact subgroup (we write no quantifiers on the left column: the
indices n, t, ε, r are meant to be the same as in the previous two tables). We then
derive a conjugacy result, which is used in the paper.

proj. mod. curve Aut ' Maximal compact '
Σ∞ PGL

(∞)
2 (R) Z/2Z

Σ+
∞, Σn R o R∗ Z/2Z
Σn− 1

2
R o (Z/2Z) Z/2Z

Ξn,t, Ξn,ε (R× Z/nZ) o (Z/2Z) (Z/nZ) o (Z/2Z)
Θt≥1, Ωr, r /∈ N (R/Z) o (Z/2Z) (R/Z) o (Z/2Z)

Ωn PGL
(n)
2 (R) (R/Z) o (Z/2Z)

As an immediate consequence of the classification and Mostow’s conjugacy
result, we derive:

Proposition A.7. Let A be the automorphism group of a connected projectively
modeled curve. Then any two closed subgroups of G that are topologically iso-
morphic to SO(2) are conjugate by some element of the identity component A◦.
The same holds with SO(2) replaced with O(2). �

Namely, such copies of SO(2) exist in the case of Θt for t ≥ 1 and Ωr for r ≥ 0,
but not in the other cases, i.e., for metahyperbolic and metaparabolic curves Ξn,t,
Ξn,ε (and for curves homeomorphic to an interval).
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