
THE SPACE OF FINITELY GENERATED RINGS

YVES CORNULIER

Abstract. The space of marked commutative rings on n given generators
is a compact metrizable space. We compute the Cantor-Bendixson rank of
any member of this space. For instance, the Cantor-Bendixson rank of the
free commutative ring on n generators is ωn, where ω is the smallest infinite
ordinal. More generally, we work in the space of finitely generated modules
over a given commutative ring.

1. Introduction

All rings in the paper are commutative with unity. The spaceRn of finitely gen-
erated rings marked on n generators is by definition the set of pairs (A, (x1, . . . , xn))
where A is a ring endowed with a family of ring generators (x1, . . . , xn), up
to marked ring isomorphism. This is a topological space, where a prebasis of
neighbourhoods of the marked ring (A, (x1, . . . , xn)) is given by the sets VP =
VP (A, (x1, . . . , xn)), for P ∈ Z[x1, . . . , xn], defined as follows: if P = 0 (respec-
tively P 6= 0) in A, VP is the set of marked rings on n generators in which P = 0
(resp. P 6= 0), where P is evaluated on the n-tuple of marked generators. The
space Rn is a compact metrizable, totally disconnected topological space, which
is moreover countable by noetherianity. Hence every element of this space has a
well-defined Cantor-Bendixson rank. Informally, this is the necessary (ordinal)
number of times we have to remove isolated points so that the point itself becomes
isolated. It is easy to check that the Cantor-Bendixson rank of a given marked
ring does not depend on the choice of generators, and only on the isomorphism
class within rings. See the beginning of Section 4 for more details.

To every noetherian ring, we can associate an ordinal-valued length, charac-
terized by the formula

`(A) = sup{`(B) + 1|B proper quotient of A} (Agreeing `({0}) = 0).

This length was introduced in [Bass, Gull] and further studied in [Krau, Bro1,
Bro2]. It can be computed in a more explicit way (see Section 2). In particular,
if the Krull dimension of A is an ordinal α, then ωα ≤ `(A) < ωα+1, where the
left-hand inequality is an equality if and only if A is a domain.

This length provides an obvious upper bound for the Cantor-Bendixson rank,
but this is not optimal as every finite nonzero ring is isolated and therefore has
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zero Cantor-Bendixson rank, while it has finite but nonzero length. Accordingly
we introduce the reduced length, an ordinal-valued function characterized by the
formula

`′(A) = sup{`′(B) + 1|B quotient of A with non-artinian kernel}.

In the context of finitely generated rings, non-artinian just means infinite. A
precise formula is given in Section 3. In particular, if the Krull dimension of A is
a finite number d, then ωd−1 ≤ `′(A) < ωd, where the left-hand inequality is an
equality if A is a domain, and agreeing ω−1 = 0.

Theorem 1. Let A be a finitely generated ring. Then its Cantor-Bendixson rank
coincides with its reduced length.

Corollary 2. If A is a finitely generated domain of Krull dimension d, then its
Cantor-Bendixson rank is ωd−1.

Actually, every ring can be viewed as a module over itself generated by one
element, and ideals and submodules coincide; therefore it is a more general point
of view if we consider the space of modules generated by k marked elements over
Z[x1, . . . , xn] (or even any commutative ring), the case k = 1 corresponding to the
space of rings marked by n elements. Actually the point of view and language
of modules (extensions, etc.) are very natural and useful in this context and
it would have been awkward to restrict to rings. The definition of length and
reduced length is extended to modules in the next sections, and in Section 4 we
will obtain Theorem 1 as a particular case of Theorem 12, which holds in the
general context of modules over finitely generated rings. Comments on the case
of modules over some infinitely generated rings are included in Section 5.

Remark 3. It also makes sense to talk about the set of integral domains generated
by n given elements; this can be viewed as a closed subset of Rn and corresponds
bijectively to Spec(Z[X1, . . . , Xn]). It is proved in [CDN] that, inside this space,
the Cantor-Bendixson rank of any d-dimensional domain is d and in particular is
finite (this contrasts with Corollary 2).

2. Length

Let A be a ring (always assumed commutative). If M is an A-module, define
Λ(M) as the set of elements m ∈ M such that Am has finite length. This is a
submodule of M ; if moreover M is noetherian, then Λ(M) itself has finite length.

Let P be a prime ideal in A and M a noetherian A-module. As usual, AP
denotes the local ring of A at P (AP = S−1A, where S = A − P), and `AP

denotes the length function for finite length AP-modules.
Define

`P(M) = `AP (Λ(M ⊗A AP)).
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Recall that AssoA(M) is defined as the set of prime ideals P of A such that
A/P embeds as a submodule of M . It is known to be finite if M is noetherian,
and non-empty if moreover M 6= 0.

Lemma 4. We have `P(M) > 0 if and only if P ∈ AssoAM .

Proof. If P ∈ AssoAM , then A/P embeds into M ; by flatness of AP , this implies
that AP/PAP embeds into M⊗AP ; so that Λ(M⊗AP) is non-zero and therefore
has non-zero length.

Conversely suppose that Λ(M ⊗AP) is non-zero. Then there exists an associ-
ated ideal Q′ ∈ AssoAP (Λ(M ⊗ AP)). We can write Q′ as QAP , for some prime
ideal Q of A contained in P . Now AP/QAP embeds into Λ(M ⊗AP) and there-
fore has finite length; this forces Q = P . In other words, we have just proved
that

AssoAP (Λ(M ⊗ AP)) = {PAP}.
On the other hand,

AssoAP (Λ(M ⊗ AP)) ⊂ AssoAP (M ⊗ AP)

= {QAP |Q ∈ AssoA(M),Q ⊂ P}.
Therefore P ∈ AssoA(M). �

Lemma 5. Consider a short exact sequence 0 → K → M → N → 0 of noe-
therian A-modules. Let P be a prime ideal in A. Suppose that the AP-module
K ⊗ AP has finite length. Then `P(M) = `P(N) + `P(K).

Proof. By flatness of AP , we get an exact sequence

0 → K ⊗ AP → M ⊗ AP → N ⊗ AP → 0,

which by the assumption on K induces an exact sequence

0 → K ⊗ AP → Λ(M ⊗ AP) → Λ(N ⊗ AP) → 0.

�

Lemma 6. Let P be a prime ideal in a noetherian ring A. Equivalences:

(i) The sequence (`P(A/Pn)) is bounded;
(ii) P is a minimal prime ideal.

Proof. `P(A/Pn) = `AP (Λ(AP/PnAP)) = `AP (AP/PnAP).
If P is minimal, then PAP is the radical of the artinian ring AP , so that PnAP

is eventually zero and therefore the sequence AP/PnAP eventually stabilizes.
Conversely, if the sequence above is bounded, then it is stationary, so that in

the local ring AP , (PAP)n = (PAP)n+1 for some n. By Nakayama’s Lemma, this
forces (PAP)n = 0, so that AP is actually artinian, i.e. P is a minimal prime
ideal. �
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Let now A be a ring. Say that a prime ideal P in A is conoetherian if A/P
is noetherian. Define, for every conoetherian prime ideal P , its coheight as the
ordinal

coht(P) = sup{coht(Q) + 1|Q prime ideal properly containing P}.

The noetherianity assumption makes this definition valid.
If M is a noetherian A-module, then every P ∈ AssoA(M) is conoetherian.

Define, for every ordinal α,

`α(M) =
∑

`P(M),

where P ranges over conoetherian prime ideals of coheight α in A. This is a finite
sum as `P(M) 6= 0 only when P ∈ AssoA(M). Besides, the (ordinal-valued) Krull
dimension of M is defined as sup coht(P), where P ranges over prime ideals of
A containing the annihilator of M (or, equivalently, over all associated primes of
M).

Lemma 7. Consider a short exact sequence 0 → K → M → N → 0 of noether-
ian A-modules. Let α be an ordinal. Suppose that K has Krull dimension ≤ α.
Then `α(M) = `α(N) + `α(K).

Proof. It suffices to prove that for every prime ideal P of coheight α, we have
`P(M) = `P(N) + `P(K). In view of Lemma 5, it is enough to obtain that the
AP-module K ⊗ AP has finite length. Indeed, K can be written as a composite
extension of modules A/Qi, where Qi are prime ideals of A. Then all Qi have
coheight ≤ α. Therefore either Qi = P or Qi is not contained in P . In the
latter case, we have A/Qi ⊗ AP = 0, while A/P ⊗ AP is the residual field of
AP and therefore has length one. By flatness of AP , we can thus write K ⊗ AP
as a composite extension of modules of length ≤ 1, so that K ⊗ AP has finite
length. �

Let M be a noetherian A-module. Define the ordinal-valued length function
of M as

`(M) =
∑

α

ωα · `α(M),

when the sum ranges over the ordinals α in reverse order.
Note that if M has finite Krull dimension (as most usual noetherian modules)

then the exponents in the above “polynomial” are finite, i.e. `(M) < ωω.
The following proposition gives a characterization of the ordinal-valued length

function `.

Proposition 8. Let A be a ring and M a noetherian A-module. Then

`(M) = sup{`(N) + 1|N proper quotient of M}.
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In other words, ` coincides with the “Krull ordinal” of the Noetherian ordered
set of submodules of M , introduced in [Gull], as well as (with a slight variant) in
[Bass]. This inductive definition makes sense more generally for any noetherian
module over any ring (commutative or not); it can be viewed as a quantitative
gauge of noetherianity.

Proof. Suppose that we have an exact sequence

0 → K → M → N → 0,

with K 6= 0. Let α be the Krull dimension of K, and pick β ≥ α. Then, by
Lemma 7, `β(M) = `β(N)+ `β(K). In particular, if β > α, then `β(M) = `β(N),
and `α(M) > `α(N). Therefore `(M) > `(N).

Now let us prove the other inequality, namely

`(M) ≤ sup{`(N) + 1|N proper quotient of M}.
• Zeroth case: M = 0. Then we just get 0 = sup ∅.
• First case: `(M) is a successor ordinal. This occurs if and only if `P(M) >

0 for some maximal ideal P , in which case P ∈ AssoA(M) by Lemma 4,
i.e. M has a submodule K isomorphic to A/P . It is then straightforward
that `(M) = `(M/K) + 1.

• Second case: the least α such that `α(M) 6= 0 is a limit ordinal. Pick
P ∈ AssoA(M) with coht(P) = α. Find an exact sequence 0 → K →
M → N → 0 with K ' A/P . For every β < α, there exists a prime ideal
Pβ containing P with coht(Pβ) = β. Find a submodule Vβ of K such that
K/Vβ is isomorphic to A/Pβ. From the exact sequences 0 → K → M →
N → 0, 0 → K/Vβ → M/Vβ → N → 0 and Lemma 7, we get:

`γ(M/Vβ) = `γ(M) if γ > α;

`α(M/Vβ) = `α(M)− 1;

`β(M/Vβ) ≥ 1.

Now write `(M) = P + ωα, where

P =
∑
γ>α

ωγ · `γ(M) + ωα · (`α(M)− 1).

Then we get
`(M/Vβ) ≥ P + ωβ,

and thus

sup
β<α

`(M/Vβ) ≥ P + sup
β<α

ωβ = P + ωα = `(M).

• Third case: the least α such that `α 6= 0 is a successor ordinal α = β + 1.
Pick P ∈ AssoA(M) with coht(P) = α and choose a prime ideal Q of
coheight β containing P . Find an exact sequence 0 → K → M → N → 0
with K ' A/P . For every n, there exists a submodule Vn of K such
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that K/Vn is isomorphic to A/(Qn + P). By Lemma 6, (`β(K/Vn)) is
unbounded when n → ∞. From the exact sequences 0 → K → M →
N → 0, 0 → K/Vn → M/Vn → N → 0 and Lemma 7, we get:

`γ(M/Vn) = `γ(M) if γ > α;

`α(M/Vn) = `α(M)− 1;

`β(M/Vn) →∞ when n →∞,

and therefore supn `(M/Vn) ≥ `(M).

�

3. Reduced length

Define, for every ordinal α, the ordinal α′ as α′ = α + 1 if α < ω and α′ = α
otherwise. If M is a noetherian A-module, define its reduced length as follows

`′(M) =
∑

α

ωα · `α′(M),

where as usual the sum ranges over ordinal in reverse order. Observe that the
reduced length is characterized by the length, as a consequence of the formula

`(M) = ω · `′(M) + `0(M).

Proposition 9. If M is any noetherian A-module, then `′(M) = supN(`′(N)+1),
where N ranges over all quotients of M with non-artinian kernel. Moreover,
`′(N) = `′(M) if N is a quotient of M with artinian kernel.

Proof. The proof is similar to that of Proposition 8, so let us just sketch it,
stressing on the differences.

First we have to prove that `(N) < `(M) for every quotient N of M with
non-artinian kernel K. The proof is the same, just noticing that then the Krull
dimension of K is at least one.

It remains to prove the reverse inequality

`′(M) ≥ sup{`′(N) + 1|N quotient of M with non-artinian kernel}.

• Zeroeth case: M is artinian. Then we just get 0 = sup ∅.
• First case: `1(M) 6= 0. Then M has a submodule K isomorphic to A/P

for some prime ideal P of coheight one. Then `′(M) = `′(M/K) + 1.
• Second case (respectively third case): the least α ≥ 1 such that `α(M) 6= 0

is a limit ordinal (resp. is a successor ordinal ≥ 2). Go on exactly like in
the case of non-reduced length.

Finally, if N is a quotient of M with artinian kernel, it follows from Lemma 7
that `i(N) = `i(M) for all i ≥ 1, and therefore `′(N) = `′(M). �
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4. Cantor-Bendixson rank

Let M be a module over a ring A. Let SubA(M) be the set of submodules
of M . This is a closed subset of 2M , endowed with the product topology which
makes it a Hausdorff compact space; if M has countable cardinality it is moreover
metrizable. Let QuoA(M) the set of quotients of M . It can be defined as a
topological space that coincides with SubA(M), in which we view its elements
as quotients of M through the correspondence K ↔ M/K. In particular, M ∈
QuoA(M) corresponds to {0} ∈ SubA(M).

If N is a quotient of M , then there is a natural embedding of QuoA(N) into
QuoA(M). It is continuous so has closed image; moreover its image is open if
and only if the Ker(M → N) is finitely generated (the easy argument is given in
a similar context in [CGP, Lemma 1.3]); this is fulfilled if M is Noetherian.

In any topological space X define by transfinite induction I0(X) as the set
of isolated points of X, and Iα(X) = I0(X −

⋃
β<α Iβ(X)). For x ∈ X, set

CB-rk(x, X) = ∞ if x /∈
⋃

Iα(X) and CB-rk(x, X) = α if x ∈ Iα. As all Iα(X)
are pairwise disjoint, this is well-defined. Agree that ∞ > α for every ordinal α.

Now for every A-module M , set CB-rk(M) = CB-rk(M, QuoA(M)). Observe
that if N is a quotient of M , then CB-rk(N) = CB-rk(N, QuoA(M)), as the
natural embedding QuoA(N) → QuoA(M) is open (because the kernel of M → N
is finitely generated by noetherianity). In particular, if N is generated by k
elements, then it can be viewed as a quotient of Ak, the free module of rank k,
and CB-rk(N) coincides with the Cantor-Bendixson rank of N inside the space
QuoA(Ak) of finitely generated A-modules over k marked generators.

Lemma 10. Every noetherian A-module M satisfying CB-rk(M) = 0 (i.e. M is
isolated) has finite length. More precisely, every noetherian A-module of infinite
length contains a decreasing sequence of non-zero submodules (Nn) with trivial
intersection.

Remark 11. The converse is not true in general: for instance if A is an infinite
field and M is a 2-dimensional vector space. However every module of finite
cardinality is obviously isolated.

Proof of Lemma 10. Otherwise, M has a non-maximal associated ideal P . As it
is clear that being isolated is inherited by submodules, we can suppose that M =
A/P . We can even suppose that P = {0}, so that A = M is a noetherian domain
which is not a field. Then if M is a maximal ideal in A, then {0} 6= Mn → {0}
in SubA(A) and we get a contradiction. �

Theorem 12. Let M be a noetherian A-module. Suppose that every artinian
subquotient of M has finite cardinality. Then CB-rk(M) = `′(M).

Proof. Suppose that the statement is proved for every proper quotient of M .
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Suppose that CB-rk(M) > `′(M). Then there exists a sequence of proper
quotients M/Wn, converging to M , such that CB-rk(M/Wn) ≥ `′(M). By in-
duction, `′(M/Wn) ≥ `′(M). By Proposition 9, this forces Wn to be artinian,
i.e. contained in the maximal artinian submodule S of M . By assumption, S is
finite. As Wn → {0} in the space of submodules of M , this forces that eventually
Wn = 0, a contradiction.

Suppose that CB-rk(M) < `′(M). Then, in view of Proposition 9, there exists
a quotient M/W , with W non-artinian, such that `′(M/W ) ≥ CB-rk(M). By
induction we get CB-rk(M/W ) ≥ CB-rk(M). As W is non-artinian, it contains
by Lemma 10 a properly decreasing sequence (Wn) of non-zero submodules with
trivial intersection. Then

`′(M/Wn) ≥ `′(M/W ) ≥ CB-rk(M),

and
CB-rk(M) ≥ sup(CB-rk(M/Wn) + 1)

= sup(`′(M/Wn) + 1) ≥ CB-rk(M) + 1,

a contradiction. �

The following lemma is well-known, and implies that Theorem 1 is a corollary
of Theorem 12.

Lemma 13. Let A be finitely generated ring. Then every finitely generated simple
A-module has finite cardinality.

Proof. Every such A-module M can be viewed as a finitely generated Z-algebra
which is a field. Let F be its prime subfield. Then by the Nullstellensatz, M is
a finite extension of F . If F is a finite field we are done. If F = Q, then M =
Q[X]/P (X), where P is a monic polynomial with coefficients in Z[1/k] for some
integer k > 1. Hence M can be written as the increasing union of proper subrings
Z[1/n!k][X]/P (X), hence is not a finitely generated ring, a contradiction. �

5. Comments on some other rings

Theorem 12 fails when A possesses an infinite simple A-module M (i.e. A
has an infinite index maximal ideal). Indeed, we have `′(M × M) = 0, while
CB-rk(M ×M) = 1.

In all cases, we have:

Proposition 14.
`′(M) ≤ CB-rk(M) ≤ `(M).

Here we set (α + 1)− 1 = α, and α− 1 = α if α is not a successor ordinal.
The left-hand inequality has already been settled in the proof of Theorem 12,

where we did not make use of the assumption on maximal ideals. The right-
hand inequality is obtained by a straightforward induction. It is not optimal:
for instance if `(M) is a successor ordinal, it is easy to check that CB-rk(M) ≤
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`(M) − 1. I do not know to which extent this can be improved. However, the
following example provides a quite unexpected behaviour.

Let A be a local principal domain, with maximal ideal I of infinite index.
Denote the cyclic indecomposable A-modules Mn = A/In.

Let T ' M1
n1 ⊕ · · · ⊕ Mk

nk be an A-module of finite length `(T ) =
∑

ini,
where nk 6= 0. Set `∗(T ) = `(T )− k. (Agree that `∗(0) = 0.)

Lemma 15. Let M be a finitely generated A-module, and T its torsion submodule.
Then, for n ≥ 0,

• if M ' A2n ⊕ T , then CB-rk(M) = ω · n + `∗(T );
• if M ' A2n+1 ⊕ T , then CB-rk(M) = ω · n + `(T ) + 1.

Observe that on the other hand, `(Ak⊕T ) = ω ·k+`(T ), and `′(Ak⊕T ) = `(T ).

Proof. Let us argue by induction on `(M).
Suppose that M ' A2n ⊕ T with `∗(T ) 6= 0. Then T ' M1

n1 ⊕ · · · ⊕Mk
nk ,

where nk 6= 0 and
∑

ni ≥ 2. Inside the socle of T , one can find infinitely many
cyclic submodules Dj, with Dj ∩ Dm = {0} for n 6= m. Thus (M/Dj) is a
sequence of distinct modules tending to M . Now by induction CB-rk(M/Dj) =
ω · n + `∗(T/Dj) = ω · n + `∗(T ) − 1 (except maybe for one single value of j, if
nk = 1), so CB-rk(M) ≥ ω · n + `∗(T ).

Suppose now that M ' A2n ⊕ T (with in mind `∗(T ) = 0 although we do
not need it). If n ≥ 1, then M is a limit for d → ∞ of modules isomorphic
to A2n−1 ⊕ Md ⊕ T , which by induction have CB-rk ≥ ω · (n − 1) + d. So
CB-rk(M) ≥ ω · n. This also obviously holds if n = 0.

Suppose that M ' A2n+1 ⊕ T . Then M is a limit of modules isomorphic to
A2n⊕Md⊕T , for d →∞, which by induction have CB-rk ≥ ω ·n+ `∗(Md⊕T ) =
ω · n + `(T ) for d large enough. Thus CB-rk(M) ≥ ω · n + `(T ) + 1.

So we have established, in all cases, CB-rk(M) ≥ r(M), where r(M) is the
right-hand term given by the proposition. Let us now prove the upper bound
CB-rk(M) ≤ r(M), again by induction.

Suppose that M = A2n ⊕ T , and let M/N be a quotient of M . If N is not
contained in T , then the rank drops, so that by induction CB-rk(M/N) < r(M).
Otherwise, define k as in the beginning of the proof. Then, provided that N does
not contain the socle of Mk

nk , we have `∗(M/N) < `(M), so that CB-rk(M/N) <
r(M). We claim that at the neighbourhood of {0} in SubA(M), no N contains
the socle of M . Indeed, fix a nonzero element m in this socle (a “discriminator”).
The set of submodules N in which m /∈ N is an open neighbourhood of {0} in
SubA(M) (which corresponds to a neighbourhood of {M} in QuoA(M)); no such
N contains the socle. Thus we obtain CB-rk(M) ≤ r(M).

Suppose that M = A2n+1⊕T , and let M/N be a proper quotient of M . Then it
is straightforward that r(M/N) < r(M), and therefore we get CB-rk(M) ≤ r(M).
This concludes the proof. �
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