
On Kazhdan’s Property T
Lectures in Fudan University

Shanghai, July 9–13∗

Yves Cornulier

(last modification: July 13, 2012)

1 Preliminaries

1.1 Positive definite and conditionally negative definite
kernels

An R-valued (or C-valued) kernel1 on a set X is a function κ : X × X → R
(or X ×X → C). We can think of it as a matrix, whose rows and columns are
indexed by X. In particular, the kernel is symmetric if κ(j, i) = κ(i, j) for all
i, j, and is hermitian if κ(j, i) = κ(i, j) for all i, j, where z 7→ z̄ denotes complex
conjugation.

Denote by R(X) the real vector space with basis X. It can be interpreted
as the space of finitely supported functions X → R (i.e., functions f : X → R
such that {x : f(x) 6= 0} is finite, which admits, as a basis, the family of Dirac
functions (δx)x∈X , defined by δx(x) = 1 and δx(y) = 0 for all y /∈ x. (Exercise:
check it is indeed a basis.) Define similarly C(X), complex vector space with basis
X.

Each real kernel κ defines a bilinear form Bκ on R(X) by

Bκ(f, g) =
∑
x,y∈X

κ(x, y)f(x)g(y).

Exercise 1.1. Check that κ → Bκ is a linear isomorphism from the set of
real kernels on X, to the set of bilinear forms on R(X), and restricts to a linear

∗Lectures given in the Franco-Chinese Summer Mathematical Science Research Institute
CNRS/NSFC “Non-commutative Geometry”, July 9–28, 2012.

1This is one of the analytic definitions of “kernel”. It is unrelated to the (more recent)
algebraic notion of kernel Ker(f) of a homomorphism or operator f .
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isomorphism from the set of real symmetric kernels on X, to the set of symmetric
bilinear forms on R(X).

Similarly, every complex kernel κ defines a sesquilinear form on C(X) by

Bκ(f, g) =
∑
x,y∈X

κ(x, y)f(x)g(y).

We say that the symmetric (or hermitian) kernel κ is positive definite2 if
Bκ(f, f) ≥ 0 for all f ∈ R(X) (or all f ∈ C(X)).

For a real-valued kernel, can be positive definite as real-valued or complex-
valued kernel. The following result shows that the two definitions match.

Proposition 1.2. A real-valued kernel on the set X is positive definite as real
kernel if and only if it is positive definite as complex-valued kernel.

Proof. The “if” direction is trivial. So assume that κ is positive as real kernel.
We have to show that Bκ(f, f) ≥ 0 for all f ∈ C(X). Write f = u + iv, where
u, v ∈ R(X). Then

Bκ(f, f) =Bκ(u+ iv, u+ iv)

=Bκ(u, u)− iBκ(u, v) + iBκ(v, u)− i2Bκ(v, v)

=Bκ(u, u) +Bκ(v, v) ≥ 0.

Endow the set of kernels with the pointwise convergence topology, so that
κi → κ if and only if κi(x) → κ(x) for all x.

Proposition 1.3. In the space of all (real-valued or complex-valued) kernels, the
set of positive definite kernels is closed. Besides, it is stable under addition and
multiplication by non-negative real numbers.

Proof. Suppose that κi → κ. If f ∈ C(X), then since the support Supp(f) is
finite, the convergence of κi to κ is uniform on Supp(f)× Supp(f). Therefore

lim
i

∑
x,y∈X

κi(x, y)f(x)f(y) =
∑
x,y∈X

κ(x, y)f(x)f(y);

since the left-hand term is non-negative for all i, so is the right-hand term.
The other verifications are left to the reader as an exercise.

Exercise 1.4. Show that every kernel of the form κ(x) = `(x)`(y), where ` :
X → C is any function, is positive definite.

2Since it is not required that Bκ(f, f) > 0 for f 6= 0, it would be more consistent to call
such kernels positive semidefinite, but this is, unfortunately, the established terminology.
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Exercise 1.5. Here #(X) = d. Check that the real matrix
λ −1 · · · · · · −1

−1 λ
. . .

...
...

. . . . . . . . .
...

...
. . . λ −1

−1 · · · · · · −1 λ


(λ on the diagonal, −1 everywhere else) is positive definite if and only if λ ≥ d−1.

Now define R
(X)
0 as the hyperplane of R(X) consisting of functions f such that∑

x∈X f(x) = 0. We say that the symmetric kernel κ is conditionally negative

definite if Bκ(f, f) ≤ 0 for all f ∈ R
(X)
0 .

Exercise 1.6. Check that the matrix

0 α γ
α 0 β
γ β 0

 is conditionally negative def-

inite if and only if α, β, γ ≥ 0 and

α2 + β2 + γ2 − 2αβ − 2βγ − 2γα ≤ 0.

Exercise 1.7. Show that in the space of all real-valued kernels, the set of con-
ditionally negative definite kernels is closed, and stable under addition and mul-
tiplication by non-negative real numbers.

Proposition 1.8. If κ is a positive definite and real-valued kernel, then ν(x, y) =
(κ(x, x) + κ(y, y))/2− κ(x, y) is a conditionally negative definite kernel.

Proof. If f ∈ R
(X)
0 then∑

x,y∈X

ν(x, y)f(x)f(y) =
∑
x,y∈X

(κ(x, x)+κ(y, y))f(x)f(y)/2−
∑
x,y∈X

κ(x, y)f(x)f(y);

since ∑
x,y∈X

κ(x, x)f(x)f(y) =
∑
x∈X

κ(x, x)f(x)
∑
y∈X

f(x) = 0,

we deduce ∑
x,y∈X

ν(x, y)f(x)f(y) = −
∑
x,y∈X

κ(x, y)f(x)f(y) ≤ 0.
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1.2 GNS constructions for kernels

We present here the so called GNS-construction (GNS stands for Gelfand-Naimark-
Segal).

Proposition 1.9. Let X be a set. Let H be a real (resp. complex) Hilbert space,
with scalar product denoted by 〈·, ·〉. Consider a function u : X → H. Then the
kernel κu on X defined by κu(x, y) = 〈u(x), u(y)〉 is positive definite.

Proof. We can suppose that the Hilbert space is complex, since the real case is
then a particular case (by embedding a real Hilbert space into its complexification,
details are left as an exercise). Write Bu = Bκu . Clearly Bu is hermitian. If
f ∈ C(X) then

Bu(f, f) =
∑
x∈X

∑
y∈X

〈u(x), u(y)〉f(x)f(y)

=

〈∑
x∈X

u(x)f(x),
∑
y∈X

u(y)f(y)

〉
≥ 0

The kernel κu is often called the Gram (or Gramian) kernel of the family
of vectors (u(x))x∈X . In applications, X is often finite and this is called Gram
matrix.

Proposition 1.10. Let X be a set. Let H be a real Hilbert space, with scalar
product denoted by 〈·, ·〉. Consider a function u : X → H. Then the kernel νu on
X defined by νu(x, y) = ‖u(x)− u(y)‖2 is conditionally negative definite.

Proof. Write Bu = Bνu . Clearly Bu is symmetric. If f ∈ R
(X)
0 then

Bu(f, f) =
∑
x∈X

∑
y∈X

〈u(x)− u(y), u(x)− u(y)〉f(x)f(y) (1)

=
∑
x∈X

∑
y∈X

〈u(x), u(x)〉f(x)f(y)

− 2
∑
x∈X

∑
y∈X

〈u(x), u(y)〉f(x)f(y)

+
∑
x∈X

∑
y∈X

〈u(y), u(y)〉f(x)f(y).

Note that

∑
x∈X

∑
y∈X

〈u(x), u(x)〉f(x)f(y) =

(∑
x∈X

〈u(x), u(x)〉f(x)

)(∑
y∈X

f(y)

)
,
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which is equal to zero, because
∑

y∈X f(y) = 0 by definition of R
(X)
0 . So the first

term in (1) vanishes, and similarly the third term in (1) vanishes. Therefore

Bu(f, f) =− 2
∑
x∈X

∑
y∈X

〈u(x), u(y)〉f(x)f(y)

=− 2

〈∑
x∈X

u(x)f(x),
∑
y∈X

u(y)f(y)

〉
≤ 0

Proposition 1.9 gives a lot of instances of positive definite kernels. The first
GNS construction is the remarkable fact that these are actually the only ones.

Theorem 1.11. Let X be a set, and let κ be a complex-valued positive definite
kernel on X. Then there exists a complex Hilbert space H and a map u : X → H
such that κ = κu. Moreover, if κu(X) generates a dense subspace in H, then it
satisfies the universal property that for every Hilbert space H′ and u′ : X → H′

such that κu′ = κ, there exists a unique linear isometry v : H → H′ such that
u′ = v ◦ u.

For real-valued positive definite kernels, the same construction holds (with real
Hilbert spaces).

Proof. We only do the complex case, since the proof in the real case is essentially
the same.

Start with κ as in the statement. First define on C(X) a sesquilinear form B
by

B(f, g) =
∑
x∈X

∑
y∈X

κ(x, y)f(x)g(y).

Clearly, B is hermitian; in particular B(f, f) is real for all f ∈ C(X). It follows
from the definition of positive definiteness that B(f, f) ≥ 0 for all f .

We can then define a completion of (C(X), B) as follows: first consider the
set C of Cauchy sequences in C(X), namely those sequences (vn) such that
limn,m→+∞B(vn − vm, vn − vm) = 0. Clearly, C is a complex vector subspace of
the set of all sequences. On C, define a sesquilinear form B0 by B0((vn), (wn)) =
limnB(vn, wn) (exercise: show that this limit indeed exists, by checking that
(B(vn, wn))n is Cauchy). Passing to the limit, we see that B0 is hermitian
and B0((vn), (vn)) ≥ 0 for all (vn) ∈ C. So the set C0 of (vn) such that
B0((vn), (vn)) = 0 is a complex subspace and B0((vn), (wn)) = 0 for all (wn) ∈ C
and (vn) ∈ C0. Define C ′ = C/C0. Then B0 factors through a bilinear hermitian
form B′ on C ′, which is a scalar product (i.e., B′(v, v) > 0 for all v). There is a
natural map from C(X) to C ′, mapping f to the class of the constant sequence
(f). This map is an isometry from (C(X), B) to (C ′, B′), which has dense image
(exercise: check it). To check that (C ′, B′) is complete, it is enough to check
that every Cauchy sequence in some dense subset, namely the image of C(X), is
convergent; this can be checked as an exercise as well.
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Now if u′ : X → H′ is as in the statement of the theorem, then u′ extends to a
unique C-linear map C(X) → H′. This map is an isometry from (C(X), B) to H′.
By evaluation on Cauchy sequences, we see that it extends to C, and being an
isometry, it vanishes on C0 and thus factors through a linear isometry C ′ → H′.
This shows the existence, the uniqueness is clear by linearity and density.

Corollary 1.12. If u : X → H, u′ : X → H′ are maps whose image generate
dense subspaces and κu = κu′, then there is a unique linear bijective isometry
v : H → H′ such that v ◦ u = u′.

Proof. By the theorem, there exists a unique linear isometry v such that v◦u = u′

and there exists a linear isometry v′ such that v′ ◦ u′ = u. Also by the theorem
and uniqueness, we have v′ ◦ v = IdH and similarly v ◦ v′ = IdH′ . Thus v is
bijective.

An application of the GNS-construction is a nice proof of the following

Proposition 1.13. The product of two positive definite kernels is positive defi-
nite.

Proof. Let κ1, κ2 be positive definite and let us show that the kernel κ defined by
κ(x, y) = κ1(x, y)κ2(x, y) is positive definite. By the GNS construction, there are
Hilbert spaces H1,H2 and maps ui : X → Hi such that κi(x, y) = 〈ui(x), ui(y)〉
for all x, y ∈ X and i = 1, 2. Consider the Hilbert space H = H1 ⊗ H2 (if
Hi = `2(Yi) where Yi is a discrete set endowed with the counting measure, H =
`2(Y1 × Y2)). Define u(x) = u1(x) ⊗ u2(x). Then 〈u(x), u(y)〉 = κ(x, y) for all
x.

Exercise. Find a direct proof of Proposition 1.13 not relying on the GNS con-
struction. Hint: reduce to the case when X is finite so as to interpret κ2 as a
matrix, and write κ2 = MM∗ (matrix product, M denoting the conjugate of the
transpose of M).

Corollary 1.14. If κ is positive definite, then so is eκ.

Proof. Since the set of positive kernels is stable by multiplication by non-negative
scalars and by taking products (and thus positive powers), for every n, the kernel∑n

k=0 κ
n/n! is positive definite. Passing to the pointwise limit, we deduce that

eκ is positive definite.

There is also a GNS-construction for conditionally negative definite kernels.

Theorem 1.15. Let ν be a conditionally definite kernel on the set X, such that
ν(x, x) = 0 for all x ∈ X. Then there exists a real Hilbert space H and a map
u : X → H such that ν(x, y) = ‖u(x)− u(y)‖2 for all x, y ∈ X.

If moreover the affine subspace generated by u(X) is dense in H, and if H′ is
another Hilbert space and u′ : X → H′ satisfies ν(x, y) = ‖u′(x)− u(y)′‖2 for all
x, y ∈ X, then there is a unique affine isometry v : H → H′ such that u′ = v ◦ u.
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Lemma 1.16. Let X be a set and x0 ∈ X. Let ν be a conditionally definite
kernel on the set X, such that ν(x, x) = 0 for all x ∈ X. Define

κ(x, y) =
1

2
(ν(x, x0) + ν(y, x0)− ν(x, y)) .

Then κ is positive definite.

Proof. We have to check that for all f ∈ R(X) we have Bκ(f, f) ≥ 0. First observe
that Bκ(δx0 , f) = 0 for all f , where δx0 is the Dirac function at x0. Indeed,

2Bκ(δx0 , f) =
∑
x,y∈X

ν(x, x0)δx0(x)f(y) +
∑
x,y∈X

ν(y, x0)δx0(x)f(y)

−
∑
x,y∈X

ν(x, y)δx0(x)f(y)

= 0 +
∑
y

ν(y, x0)f(y)−
∑
y

ν(x0, y)f(y) = 0.

Write f = f0 + cδx0 , where f0 ∈ R
(X)
0 , δx0 is the Dirac function at x0 and c ∈ R.

Then

2Bκ(f, f) =2Bκ(f0, f0)

=2
∑
x,y∈X

κ(x, y)f0(x)f0(y)

=
∑
x,y∈X

ν(x, x0)f0(x)f0(y) +
∑
x,y∈X

ν(y, x0)f0(x)f0(y)

−
∑
x,y∈X

ν(x, y)f0(x)f0(y)

=0 + 0−
∑
x,y∈X

ν(x, y)f0(x)f0(y) ≥ 0

because ν is conditionally negative definite.

Proof of Theorem 1.15. If X = ∅ there is nothing to prove, so fix x0 ∈ X. Define

κ(x, y) =
1

2
(ν(x, x0) + ν(y, x0)− ν(x, y)) .

By Lemma 1.16, κ is positive definite. By the GNS construction, there exists a
real Hilbert space H and a map u : X → H such that κ(x, y) = 〈u(x), u(y)〉 for
all x, y and u(X) generates a dense subspace of H. Note that since κ(x0, x0) = 0,
we have u(x0) = 0. It follows that the affine subspace generated by u(X) is also
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dense. Finally, we have

‖u(x)− u(y)‖2 = 〈u(x)− u(y), u(x)− u(y)〉
= 〈u(x), u(x)〉+ 〈u(y), u(y)〉 − 2〈u(x), u(y)〉
=κ(x, x) + κ(y, y)− 2κ(x, y)

= 2ν(x, x0)/2 + 2ν(y, x0)/2− 2(ν(x, x0) + ν(y, x0)− ν(x, y))/2

= ν(x, y).

Given u′ as in the statement of the theorem, define u′′(x) = u′(x) − u(x0).
The “moreover” statement in the GNS construction (Theorem 1.11) implies that
there is a linear isometry q : H → H′ such that u′′ = q ◦u. If v = q+u′(x0), then
v is an affine isometry and u′ = v ◦ u. The uniqueness is clear.

Exercise. Using the GNS construction, show that the matrix


0 1 1 1
1 0 4 4
1 4 0 4
1 4 4 0

 is

not conditionally negative definite.

Theorem 1.17 (Schoenberg, 1938). Let ν be a real-valued symmetric kernel such
that ν(x, x) = 0 for all x. Then ν is conditionally negative definite if and only if
e−tν is positive definite for all t ≥ 0.

Proof. Suppose that e−tν is positive definite for all t ≥ 0. Since its value on the
diagonal is 1, by Proposition 1.8 we deduce that 1−e−tν is conditionally negative
definite. So for t > 0, (1− e−tν)/t is conditionally negative definite as well. Since
for t tending to zero this tends pointwise to ν, we deduce that ν is conditionally
negative definite.

Conversely assume that ν is conditionally negative definite. Observe that the
constant kernel equal to 1 is positive definite (this is for instance a particular case
of Exercise 1.4). The case of t > 0 boils down to t = 1 (replacing ν by tν). So
let us prove that e−ν is positive definite. We can suppose that X 6= ∅; let us fix
x0 ∈ X. Define

κ(x, y) = (ν(x, x0) + ν(y, x0)− ν(x, y)) .

By Lemma 1.16, κ is positive definite and thus eκ is positive definite by Corollary
1.14. We have

e−ν(x,y) = eκ(x,y)e−ν(x,x0)e−ν(y,x0). (2)

The kernel (x, y) 7→ e−ν(x,x0)e−ν(y,x0) is also positive definite, by Exercise 1.4.
Since a product of positive definite kernels is positive definite (Proposition 1.13),
we deduce from (2) that κ is positive definite.
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1.3 Functions on groups

Given a complex or real-valued function ϕ on a group G, we can associate the
kernel

κϕ(g, h) = ϕ(g−1h).

It is left-invariant, in the sense that κϕ(gh, gk) = κϕ(h, k) for all g, h, k ∈ G.
Conversely, if κ is a left-invariant kernel on G, then κ = κϕ, where ϕ(g) = κ(1, g).

Note that κϕ is symmetric if and only if ϕ(g) = ϕ(g−1) for all g, and hermitian

if and only if ϕ(g) = ϕ(g−1) for all g (we then say that ϕ is symmetric, resp.
hermitian).

The function ϕ is defined to be positive definite if the kernel κϕ is positive
definite, and (if real-valued), is said to be conditionally negative definite if κϕ is
conditionally negative definite.

Lemma 1.18. Let H be a subgroup of the group G and ϕ the indicator function
of H. Then ϕ is positive definite.

Proof. If κ(g, h) = ϕ(g−1h), let us show that κ is a positive definite kernel. For
g ∈ G, define ug as the Dirac function at g ∈ G/H in `2(G/H). Then 〈ug, uh〉 = 1
if g−1h ∈ H and 0 otherwise. Thus 〈ug, uh〉 = κ(g, h). So κ is positive definite
by Proposition 1.9.

The GNS constructions can be nicely interpreted in terms of groups represen-
tations and actions. Let us begin by the easy part

Proposition 1.19. Consider a unitary representation π of G on a complex
Hilbert space H and ξ ∈ H. (This means that π is a homomorphism from G
to the unitary group of H.) Then for every ξ ∈ H, the complex-valued function

ϕξ(g) = 〈ξ, π(g)ξ〉

is positive definite.
Similarly, consider an orthogonal representation π of G on a real Hilbert space

H and ξ ∈ H. Then for every ξ ∈ H, the real-valued function

ϕξ(g) = 〈ξ, π(g)ξ〉

is positive definite.

Proof. If ϕ = ϕξ, then

κϕ(g, h) = 〈ξ, π(g−1h)ξ〉 = 〈π(g)ξ, π(h)ξ〉,

which is a positive definite kernel by Proposition 1.9.
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The GNS construction then provides a converse. Given a representation of G
in a Hilbert space H by continuous operators and ξ ∈ H, the vector ξ is called
a cyclic vector for the representation if π(G)ξ generates a dense subspace of H.
Note that every ξ ∈ H is cyclic inside the closure of the subspace generated by
π(G)ξ.

Theorem 1.20. Let ϕ be a complex-valued, positive definite function on G. Then
there exists a unitary representation π of G in a complex Hilbert space, a cyclic
vector ξ ∈ H such that ϕ = ϕξ. Moreover, π is essentially unique, in the sense
that if π′ is another unitary representation with a cyclic vector ξ′ such that ϕ = ϕξ′
then there exists a (unique) linear isometry f : H → H′, mapping ξ to ξ′, and
intertwining the representations, in the sense that f(π(g)v) = π′(g)f(v) for all
v ∈ H and g ∈ G.

If ϕ is real-valued, the same statement holds with unitary replaced by orthog-
onal, and complex Hilbert replaced by real Hilbert.

Proof. We only do the complex case, since the real case is a straightforward
adaptation. By the GNS construction for kernels, there exists a Hilbert space
H and a map u : G → H such that 〈u(g), u(h)〉 = ϕ(g−1h) for all g, h, and
u(G) generates a dense subspace of H. If g, h ∈ G, define ug(h) = u(gh). Then
〈ug(h), 〉ug(k)〉 = ϕ(g−1h). The “moreover” statement in Theorem 1.11 implies
that there exists a unique linear isometry jg : H → H such that ug = jg ◦ u. By
uniqueness, u1 = u. Also, we have, for g, h, k ∈ G

jgh(u(k)) = ugh(k) = u(ghk) = ug(hk) = jg(uh(k)) = jg ◦ jh(u(k)).

Since jgh and jg ◦ jh are bounded operators and coincide on u(G), they are equal.
Thus π(g) = jg defines a unitary representation, and by construction, if ξ = u(1),
we have ϕ = ϕξ.

Now if ϕ = ϕξ = ϕξ′ , where ξ, ξ′ are cyclic vectors for unitary representations
of G into Hilbert spaces H, H′, define u(g) = π(g)ξ and u′(g) = π′(g)ξ′. Then by
the “moreover” statement in Theorem 1.11, there exists a unique bijective linear
isometry f : H → H′ such that u′ = f ◦ u, i.e.

π′(g)ξ′ = f(π(g)ξ)

for all g ∈ G. So

f(π(g)(π(h)ξ)) = π′(gh)ξ′ = π′(g)π′(h)ξ′ = π′(g)f(π(h)ξ);

since the closure of the linear span of {π(h)ξ : h ∈ G} is all of H, we deduce that
for all v ∈ H we have

f(π(g)(v) = π′(gh)ξ′ = π′(g)π′(h)ξ′ = π′(g)f(v);

i.e., f ◦ π(g) = π′(g) ◦ f . Thus f intertwines π and π′.
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If X is a discrete set and f : X → C a function, recall that f is proper if
f−1(B) is finite for every bounded subset B of C. Intuitively, this means that f
tends to infinity at “infinity of X”. Also, we say that f is C0 on X if for every
subset B of C whose closure does not contain 0, we have f−1(B) finite.

Exercise 1.21. Show that f : X → C is proper if and only if 1/(1 + |f |) is C0.

Theorem 1.22. Given a subset X of the countable group G, we have equiva-
lences:

(1) The set of real-valued positive definite functions on G vanishing at F , en-
dowed with the pointwise convergence topology, admits the constant function
1 as a limit point;

(2) There exists a conditionally negative definite function on G that is proper at
F .

Proof. Assume (2) and let ψ be a conditionally negative definite function on G
that is proper on X. By Schoenberg’s Theorem (Theorem 1.17), e−tψ is positive
definite; clearly they vanish at 0 for t > 0 and for t tending to 0, they tend
pointwise to 1.

Conversely assume (1). Let Dn be an increasing sequence of finite sets in
G, whose union is G. By assumption, there exists a real-valued positive definite
function ϕn on G, which is C0 on X, such that |ϕn − 1| ≤ 2−n on Dn; by a
normalization we can suppose that ϕn(1) = 1. It follows from Proposition 1.8
that ψn = 1 − ϕn is conditionally negative definite. By construction, we have
|ψn| ≤ 2−n onDn and there exists Yn ⊂ X withXrYn finite, such that |ψn| ≥ 1/2
on Yn. Also ψn ≥ 0, because every conditionally negative kernel vanishing on the
diagonal has non-negative values.

Define ψ =
∑

n ψn. This series is pointwise absolutely convergent: if g ∈ G,
then for some k, we have g ∈ Dn for all n ≥ k and thus |ψn(g)| ≤ 2−n for all
n ≥ k. On Y =

⋂2n
k=1 Yk, we have ψ ≥ n, and X r Y is finite. Thus ψ is proper

on X.

Theorem 1.23. Given a subset L of the countable group G, we have equivalences:

(1) For every net (ϕi) of real-valued positive definite functions on G converging
to 1, the convergence is uniform on L;

(2) Every conditionally negative definite function on G is bounded on L.

Proof. Suppose (1). Let ψ be a conditionally negative definite function on G. By
Schoenberg’s Theorem (Theorem 1.17), e−tψ is positive definite for t > 0 and for
t→ 0 they tend pointwise to 1. By (1), the convergence is uniform on L and in
particular there exists t > 0 such that we have e−tψ ≥ 1/2 on L. So ψ ≤ log(2)/t
on L.
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Conversely suppose (1) fails. Let Dn be an increasing sequence of finite sets in
G, whose union is G. Let Pn be the set of real-valued positive definite functions
ϕn on G such that |ϕn − 1| ≤ 3−n on Dn and such that ϕ(1) = 1. Define
λn = inf{|ϕ(g)| : ϕ ∈ Pn, g ∈ L}. Clearly (λn) is non-decreasing. If λn → 1 then
(1) follows, so let λ < 1 be the limit of (λn).

Pick ϕn ∈ Pn with infL |ϕn| ≤ (1 + λ)/2. Define ψn = 1− ϕn, so supL |ψn| ≥
(1 − λ)/2. Define ψ =

∑
2nψn. Similarly as in the proof of Theorem 1.22, the

series is absolutely convergent. By construction, we have supL |ψ| ≥ 2n(1− λ)/2
for all n and thus ψ is unbounded on L.

Definition 1.24. If G is a countable discrete group and L a subset, we say that
(G,L) has relative Property T (or relative Kazhdan Property T) if it satisfies the
equivalent conditions of Theorem 1.23. If L = G, we simply say that G has
Property T.

Remark 1.25. Clearly, if L is a finite subset of G, then (G,L) has relative
Property T. These are the trivial examples. There are no obvious other examples.
We will see in the sequel that (SL2(Z)nZ2,Z2) has relative Property T (although
SL2(Z) n Z2 does not have Property T) and that SL3(Z) has Property T.

Exercise 1.26. If f : G→ H is a homomorphism and (G,L) has relative Prop-
erty T then show that (H, f(L)) also has relative Property T.

Exercise 1.27. Show that Z does not have Property T in two different ways:

• using (1) of Theorem 1.23;

• using (2) of Theorem 1.23.

If G is a group and π a unitary representation of G in a Hilbert space. If
L ⊂ G and ε ≥ 0, we call ξ a (L, ε)-invariant vector if ‖π(g)ξ − ξ‖ ≤ ε for all
g ∈ X. We say that π almost has invariant vectors if for every ε > 0 and K finite
subset of G, there exists a (K, ε)-invariant unit vector.

Exercise 1.28. If G is countable and π is a unitary representation, then show
that π almost has invariant vectors if and only if there exists a sequence (ξn) of
unit vectors such that for every g ∈ G, we have

lim
n→∞

‖π(g)ξn − ξn‖ = 0.

Theorem 1.29. For a discrete countable group G and L ⊂ G, relative Property
T for (G,L) is also equivalent to each of:

(3) For every unitary representation π of G with almost invariant vectors and
ε > 0, there is a (L, ε)-invariant vector;

12



(4) For every affine isometric action α of G on a Hilbert space H and v ∈ H,
the set α(X) is bounded.

If X = H is a subgroup, it is also equivalent to:

(3)′ For every unitary representation π of G with almost invariant vectors, there
is an L-invariant vector;

(4)′ For every affine isometric action α of G on a Hilbert space H and v ∈ H,
L has a fixed point.

Proof. Let us first show that (1)⇒(3). Let (ξn) be a sequence of invariant vectors
and ϕn(g) = 〈π(g)ξn, ξn the corresponding positive definite function. Then ϕn
converges pointwise to 1, so the convergence is uniform on X. Thus, for n large
enough, ξn is (X, ε)-invariant.

Suppose (3) and let us show (1). Let (ϕn) be a sequence of positive definite
functions converging pointwise to 1; we can suppose that ϕn(1) = 1 for all n. By
the GNS construction, there exists a unitary representation πn of G in a Hilbert
space Hn and a unit vector ξn such that 〈π(g)ξn, ξn〉 = ϕn(g) for all g ∈ G.
Consider the representation

⊕
πn of G into the Hilbert space

H =
⊕
n

Hn = {(xn) : xn ∈ Hn,
∑
n

‖xn‖2 <∞.

Then the (ξn) are almost invariant vectors in H. So we have

lim
n→∞

sup
g∈L

‖π(g)ξn − ξn‖ = 0.

We have

|1− ϕn(g)| =|〈ξn, ξn〉 − 〈πn(g)ξn, ξn〉|
=|〈ξn − πn(g)ξn, ξn〉|
≤‖ξn − πn(g)ξn‖,

thus
lim
n→∞

sup
g∈L

|1− ϕn(g)| = 0,

which means that the convergence of ϕn to 1 is uniform on L.
For the equivalences with (3)′ and (4)′] (which we do not use here), we refer to

Chapter 2 in [BHV]. It makes use of the “center lemma”: any non-empty bounded
subset of a Hilbert space is contained in a unique ball of minimal radius.

Lemma 1.30. Suppose that G is a discrete countable group, L ⊂ G and (G,L)
has relative Property T. Then L is contained in a finitely generated subgroup of
G. In particular, if G has Property T then it is finitely generated.

13



Proof. WriteG = {g1, g2, . . . , } and letHn be the subgroup generated by {g1, . . . , gn},
it is finitely generated. Let ϕn be the indicator function of Hn. Then ϕn is posi-
tive definite by Lemma 1.18 and ϕn tends to 1 pointwise. So the convergence is
uniform on X. So there exists n such that ϕn ≥ 1/2 on X. So ϕn = 1 on X; this
means that X ⊂ Hn.

1.4 Representations of abelian groups

Let V be a discrete abelian group. Its Pontryagin dual V̂ is by definition the
group of homomorphisms V → R/Z, endowed with the addition law (f+g)(v) =
f(v) + g(v), and with the topology of pointwise convergence.

Lemma 1.31. The Pontryagin dual V̂ of the discrete abelian group V , is a
compact (Hausdorff) topological group.

Proof. V̂ is a subgroup of the group H of all functions V → R/Z and thus is
a Hausdorff topological group. Since H = (R/Z)V is compact by the Tychonoff
Theorem, to show that V̂ is compact it is enough to check that it is closed inH. To
check that it is closed, for v, w ∈ V , define Hv,w = {f : f(v+w) = f(v) + f(w)};
it is closed by definition of the product topology and V̂ =

⋂
v,wHv,w.

Exercise 1.32. Let (ei)1≤i≤k be the basis of Zk. Show that the mapping

Ẑk → (R/Z)k

f 7→ (f(ei))1≤i≤k

is an isomorphism of topological groups (thus the Pontryagin dual of Zk is the
k-torus).

Proposition 1.33. Let V be a discrete abelian group. For every χ ∈ V̂ , consider
the unitary representation πχ of V in C defined by

πχ(v)z = e2iπχ(v)z.

Then πχ is a 1-dimensional irreducible representation of V ; the πχ for χ ∈ V̂ are
pairwise non-isomorphic, and every 1-dimensional unitary representation of V is
isomorphic to some πχ.

Proof. The proof is left as an exercise.

A less trivial result is that every irreducible representation of V has this form.
In turn, this follows from a considerably more general result, describing all unitary
representation in terms of irreducible representations.

Here we have to be cautious. It is not true that any unitary representation of a
discrete abelian splits as a direct sum of irreducible subrepresentations (necessar-
ily one-dimensional). For instance, the regular representation of Z on `2(Z) given
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by n · f(m) = f(n−m) admits no one-dimensional sub-representation (exercise).
For this reason, we need to introduce the following formalism.

Let H be a Hilbert space and Proj(H) the set of orthogonal projections of H.
If X is a topological space and B(X) the set of Borel subsets of X, a projection-
valued probability measure in X, into H, is a mapping

E : B(X) → Proj(H)

satisfying

1. E(∅) = 0, E(X) = IdH;

2. E(B ∩B′) = E(B)E(B′) for all B,B′ ∈ B(X);

3. E (
⊔
nBn) =

∑
nE(Bn) for every sequence (Bn) of disjoint Borel subsets

in X.

If f : X → C is a bounded Borel function, we can define, in a natural way, a
continuous operator H → H ∫

x∈X
f(x)dE(x)

as follows: for ξ, η ∈ H, the function B 7→ Eξ,η(B) = 〈E(B)ξ, η〉 is a complex-
valued Borel measure on X; the sesquilinear form (ξ, η) 7→

∫
x∈X f(x)dEξ,η(x) is

continuous and therefore has the form (ξ, η) 7→ 〈Φξ, η〉 for some unique continuous
operator Φ : H → H; by definition

∫
x∈X f(x)dE(x) = Φ.

Theorem 1.34. Let V be a discrete abelian group and π an unitary representa-
tion of V into a Hilbert space H. Then there exists a projection-valued probability
measure V̂ → Proj(H) such that for every v ∈ V we have

π(v) =

∫
χ∈V̂

χ(v)dE(χ).

See [BHV, Appendix D] for the proof.

Corollary 1.35. If π is irreducible then it is 1-dimensional.

Proof. Define the support of E as the set of χ ∈ V̂ such that every neighbourhood
N of χ satisfies E(χ) 6= 0. Clearly this is a closed subset, and is not empty if
H 6= 0. If reduced to a point {χ}, then the definition of integral implies that π is
the scalar multiplication by χ and thus H is 1-dimensional by irreducibility, so π
is equivalent to πχ.

If the support of χ contains at least two points, then there exists a partition
V̂ = X1 t X2 such that both E(X1) and E(X2) are nonzero. It follows that
H = H1⊕H2 (orthogonal sum), where E(Xi) is the orthogonal projection on Hi,
and π(V ) stabilizes both H1 and H2. This contradicts the irreducibility.
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Corollary 1.36. Let V be a discrete abelian group. If V̂ has an isolated point
then V is finite.

Proof. Since V̂ is a compact topological group, this would imply that V̂ is finite
(say with k elements), and by Theorem 1.34 this would imply that every unitary
representation of V is an orthogonal sum of k scalar representations. In particular,
V contains a one-dimensional subrepresentation, namely there exists f ∈ `2(V )r
{0} such that v·f = χ(v)f for all v ∈ V . So 〈v·f, f〉 = e2iπχ(v) (here π = 3.14 . . . ).
But 〈v · f, f〉 tends to 0 when v leaves compact subsets, by an easy verification,
while if V is infinite it is not possible that e2iπχ(v) tend to zero: indeed, this means
that χ(v) tends to 1/2 in R/Z; this is absurd becausd fixing v0, this would imply
that χ(v+v0) = χ(v)+χ(v0) tends to zero, implying that χ(v0) = 0 for all v0.

Exercise 1.37. Prove directly Corollary 1.36, without the use of unitary repre-
sentations.

2 SL2(R)

Let SL2(R) act on the projective line P = P1(R) = R ∪ {∞} by(
a b
c d

)
· x =

ax+ b

cx+ d

Exercise 2.1. Show that the action of SL2 on P does not preserve any finite
Borel measure.

Show that the diagonal action of SL2 on P × P , given by(
a b
c d

)
· (x, y) =

(
ax+ b

cx+ d
,
ay + b

cy + d

)
preserves, in restriction to the complement of the diagonal W = (P × P ) r
Diag(P ), the Borel measure µ with density given by 1/(x− y)2.
Hint. If Ω1,Ω2 are open subsets in Rk and Φ : Ω1 → Ω2 is a diffeomorphism, and
f is the density, with respect to the Lebesgue measure, of a measure µf , then
Φ∗µf also has a density g, given by

g(x) = det(dΦΦ−1(x))
−1f(Φ−1(x))

Show that µ takes finite values on compact subsets of W . Hint. Check that
for every compact subset K of W there exists ε > 0 such that K is contained in
Cε = {(x, y) ∈ W : |x − y| ≥ ε,min(x, y) ≤ 1/ε (draw a picture of this subset
and integrate g on it).

Define the hyperbolic plane H2 as the open upper-half space {z ∈ C : Im(z) >
0} and the compactified hyperbolic plane H2 as the one-point compactification of
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the closed upper-half-space {z ∈ C : Im(z) ≥ 0}, and P = R∪{∞} is interpreted
as the boundary of H2. The group SL2(R) acts on H2 by(

a b
c d

)
· z =

az + b

cz + d
,

preserving H2 and its boundary.

Lemma 2.2. The action of SL2(R) on H2 is proper, in the sense that the function

SL2(R)×H2 → H2 ×H2

(g, z) 7→ (z, gz)

is proper (the inverse image of any compact subset is compact).

Proof. This amounts to proving that if (gn, zn) is a sequence in SL2(R)×H2 such
that both (zn) and (gnzn) are bounded, then (gn) is bounded.

First consider the group T of upper triangular matrices; such a matrix acts
as (

a b
0 a−1

)
· z = a(az + b).

A simple verification shows that the orbital map

w : R>0 ×R ' T → H2

(a, b) '
(
a b
0 a−1

)
7→

(
a b
0 a−1

)
· i = a(ai+ b)

is a homeomorphism, with inverse given by z 7→ (
√

Im(z),Re(z)/
√

Im(z)).
Define hn = w(zn) and kn = w(gnzn), so that (hn) and (kn) are bounded. We

have
i = k−1

n gnzn = k−1
n gnhni,

so sn = k−1
n gnhn belongs to the stabilizer of i, which is equal (exercise) to the

compact group SO2(R). Thus gn = knsnh
−1
n is a product of three bounded

elements and thus is bounded.

If σ = (x, y) ∈ W , define Dσ as the unique (oriented) half circle in H2 joining
x to y if x, y 6= ∞, and call it hyperbolic line joining x and y. If we consider, by
extension, vertical half-lines to be half-circles, this definition extends to arbitrary
σ ∈ W . Define Hσ to be the closed half-subspace of the hyperbolic plane H2,
located on the right of the oriented line (xy).

Denote, for z ∈ H2,
Wz = {σ ∈ W : z ∈ Hσ};

this is a closed subset of W .
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Lemma 2.3. For all z, z′ ∈ H2, the symmetric difference Wz∆Wz′ has compact
closure. In particular, Wz∆Wz′ < ∞, where µ is the measure given in Lemma
2.1.

Proof. If Cε is given in Exercise 2.1 and Iε is its complement, then every Dσ with
σ ∈ Iε lies either on the band {w : Im(w) ≤ ε/2} or outside the disc of radius
ε−1. In particular, if ε/2 < min(Im(z), Im(z′), 1/|z|, 1/|z′|), then Hσ does not
separate z and z′ and thus Wz∆Wz′ ⊂ Cε.

Thanks to the lemma, we have a well-defined map

F : H2 ×H2 → L2(W,µ)

(z, z′) 7→ 1Wz − 1Wz′
.

Proposition 2.4. The kernel

κ : H2 ×H2 → R

(z, z′) 7→ µ(Wz∆Wz′)

is conditionally negative definite.

Proof. We have κ(z, z′) = ‖F (z, z′)‖2. Write W as an increasing union of a
sequence of compact subsets W [n]. Then

F (z, z′) = lim
n

1Wz∩W [n] − 1Wz′∩W [n],

so
κ(z, z′) = ‖F (z, z′)‖2 = lim

n
‖1Wz∩W [n] − 1Wz′∩W [n]‖2;

by Proposition 1.10, (z, z′) 7→ ‖1Wz∩W [n] − 1Wz′∩W [n]‖2 is conditionally negative
definite. Passing to the limit, we deduce that κ is conditionally negative definite.

Lemma 2.5. κ is unbounded on H2 ×H2

Proof. If λ ∈ R, let us show that κ(λi, λ−1i) tends to infinity when λ tends to
+∞. It is easy to check that it is a non-decreasing function of λ ≥ 1, because the
set Wλi∆Wλ−1i itself grows with λ. Its union, when λ ranges over R, is the set
of pairs (x, y) ∈ R2 such that x < 0 < y or y < 0 < x. The integral of 1/(x− y)2

over this domain is easily checked to be infinite (check it as an exercise!).

Corollary 2.6 (Faraut–Harzallah, 1974). There exists on SL2(R) a continuous
proper conditionally negative definite function ψ (proper in the topological sense:
the ψ−1(K) is compact for every compact subset K (it is then said that SL2(R)
has the Haagerup Property as a topological group).

Corollary 2.7. Discrete subgroups of SL2(R) have the Haagerup Property.
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Proof of Corollary 2.6. If z ∈ H2, the function ψ(g) = κ(z, gz) is conditionally
negative definite and unbounded. To show it is proper, pick any sequence (gn)
tending to infinity in SL2(R) and let us show that ψ(gn) tends to infinity. We
use the fact (exercise!) that for all x, y ∈ H2 there exists λ ≥ 1 and g ∈ SL2(R)
such that gx = λ−1i and gy = λi. Apply this to (i, gni) to find a sequence
hn in SL2(R) such that hni = λ−1

n i and hngni = λni. By the properness of the
action of SL2(R) on H2, the sequence (λn) tends to infinity, since otherwise, after
possible extraction, both (hn) and (hngn) would be bounded and thus (gn) would
be bounded.

It follows that

ψ(gn) = κ(i, gni) = κ(hni, hngni) = κ(λ−1
n i, λni)

tends to infinity.

Remark 2.8. It is possible to compute κ. For instance, let us compute κ(αi, βi)
for 0 < α < β. If x, y ∈ R r {0,∞}, we can see that D(xy) separates x and y if
and only if y is in the segment joining −α2/x and −β2/x (thus [−α2/x,−β2/x]
if x < 0 and [−β2/x,−α2/x]. So

κ(αi, βi) =

∫ +∞

x=−∞
sign(x)

∫ −α2/x

y=−β2/x

dxdy/(y − x)2

=2

∫ +∞

x=0

∫ −α2/x

y=−β2/x

dxdy

(y − x)2

=2

∫ +∞

x=0

dx

[
− 1

y − x

]−α2/x

y=−β2/x

=2

∫ +∞

x=0

(
x

x2 + α2
− x

x2 + β2

)
dx.

Now use that for λ, u > 0∫ u

0

tdt

t2 + λ2
=

1

2
log(u2/λ2 + 1),

so

2

∫ u

x=0

(
x

x2 + α2
− x

x2 + β2

)
dx = log(u2/α2 + 1)− log(u2/β2 + 1)

now

log(u2/λ2 + 1) =2 log(u)− 2 log(λ) + log(1 + λ2/u2)

=2 log(u)− 2 log(λ) + o(1) (u→ +∞),

thus

2

∫ u

x=0

(
x

x2 + α2
− x

x2 + β2

)
dx = log(β)− log(α) + o(1);
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it follows that
κ(αi, βi) = log(β/α).

Thus turns out to coincide with the so-called hyperbolic distance on H2. Using
that every pair in H2 can be mapped by an element of SL2(R) into the imaginary
line iR+, it can be deduced that κ is actually equal to the hyperbolic distance on
H2 ×H2. This is known as the Crofton formula.

Remark 2.9. The distance in a tree is conditionally negative definite. The proof
is similar to the case of H2 and even simpler: the space W is now defined as the
set of oriented edges, and for each oriented edge (x, y), the set H(x,y) is defined as
the set of vertices that can be joined by a segment to y without passing through
x.

The same approach as the one for H2 also extends to higher-dimensional real
hyperbolic spaces Hn

R. However, the method of Faraut and Harzallah is different
and also carries over the complex hyperbolic space Hn

C.
In contrast, it was proved by Kostant that in the quaternionic hyperbolic

plane, no unbounded continuous function of the distance is conditionally negative
definite.

3 Relative Property T with a normal abelian

subgroup

Lemma 3.1. Consider a countable group of the form G = V o Γ, where V is
abelian. Suppose that there is a neighborhood N of 0 in V̂ such that the only
Γ-invariant mean µ on V̂ satisfying µ(N) = 1 is the Dirac measure at {0}. Then
(V o Γ, V ) has relative Property T.

Proof. We have to show that for every unitary representation π of G with almost
invariant vectors (ξn), we have

lim
n→∞

sup
v∈V

‖π(g)ξn − ξn‖ = 0.

Since N is a neighborhood of 0, there exists α and g1, . . . , gm ∈ V such that

{χ ∈ V̂ : ∀k = 1, . . . ,m, |1− χ′(gk)| < α} ⊂ N.

(Here, for χ ∈ V̂ = Hom(V,R/Z), we write χ′(g) = e2iπχ(g).
Let (Kn) be an increasing sequence of finite subsets of G whose union is G,

and let (εn) be a sequence of positive real numbers tending to 0. Let ξn ∈ H be a
(Kn, εn)-invariant unit vector in H. We can suppose that each Kn contains all gk.
We assume by contradiction (extracting if necessary) that supv∈V ‖σ(v)ξn−ξn‖ >
η, for some η > 0 and all n.
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Let E be the projection-valued probability measure associated to σ = π|V , so
that σ(v) =

∫
χ∈V̂ χ

′(v)dE(χ) for all v ∈ V . For ξ ∈ H of norm one, let µξ be the

probability measure on V̂ defined by µξ(B) = 〈E(B)ξ, ξ〉. We have, for every k

‖σ(gk)ξn − ξn‖2 =

∫
χ∈V̂

|1− χ′(gk)|2dµξn(χ) ≤ ε2
n.

Define Ak = {χ ∈ V̂ : |1 − χ′(gk)| < α} and Bk its complement in V̂ (so⋂
k Ak ⊂ N .

ε2
n ≥

∫
χ∈Bk

|1− χ′(g)|2dµξn(χ) ≥ α2µξn(Bk),

thus

µξn

(
n⋂
k=1

Ak

)
≥ 1−mε2

n/α
2,

so
µξn(N) ≥ 1−mε2

n/α
2.

We have, for some v ∈ V , ‖σ(v)ξn − ξn‖ ≥ η. So

‖σ(v)ξn − ξn‖2 =

∫
χ∈V̂

|1− χ′(v)|2dµξn(χ)

=

∫
χ∈V̂r{0}

|1− χ′(v)|2dµξn(χ)

≤4µξn(V̂ r {0})

(because |1 − χ′|2 ≤ 4), so we deduce that µξn(V̂ r {0}) ≥ η2/4. Viewing

each µξn as a function B(V̂ ) → [0, 1], the set of such functions, with pointwise
convergence, is compact by Tychonoff’s Theorem, so that the sequence (µξn) has,
by compactness, a limit point µ, which is a mean. In particular, µ is a mean on
the Borel subsets of V̂ , µ(N) = 1 and µ(N r {0}) ≥ η2/4 > 0.

For every g we have

lim
n→∞

∫
χ∈V̂

|1− χ′(g)|2dµξn = lim
n→∞

‖σ(g)ξn − ξn‖2 = 0.

Let us now check that µ is Γ-invariant. This follows if we check that for every
Borel set B and g ∈ Γ, we have limn→∞ µξn(B)− µξn(gB) = 0. Indeed, for g ∈ Γ
and v ∈ V

σ(gvg−1) =

∫
χ∈V̂

χ′(gvg−1)dE(χ)

=

∫
χ∈V̂

(g−1 · χ)′(v)dE(χ)

=

∫
χ∈V̂

χ′(v)dE(g · χ)

21



and

σ(gvg−1) =σ(g)σ(v)σ(g−1)

=

∫
χ∈V̂

χ′(v)σ(g)dE(χ)σ(g−1)

by uniqueness of the projection-valued probability measure (Theorem 1.34), we
deduce that E(gB) = σ(g)E(B)σ(g)−1.

So we have, for g ∈ Γ, and writing σ(g)−1ξn = ξn + qn

µξn(gB) =〈E(gB)ξn, ξn〉
=〈σ(g)E(B)σ(g)−1ξn, ξn〉
=〈E(B)σ(g)−1ξn, σ(g)−1ξn〉
=〈E(B)(ξn + qn), ξn + qn〉
=〈E(B)(ξn), ξn〉+ 〈E(B)ξn, qn〉+ 〈E(B)qn, σ(g)−1ξn〉;

so

µξn(gB)− µξn(B) =〈E(B)ξn, qn〉+ 〈E(B)qn, σ(g)−1ξn〉
≤‖E(B)ξn‖ · ‖qn‖+ ‖E(B)qn‖‖σ(g)−1ξn‖
≤2‖qn‖ = 2‖σ(g−1)ξn − ξn‖,

which tends to zero, for g fixed, when n tends to ∞. Thus µ is Γ-invariant.
So if we define µ′(B) = µ(Br{0})/µ(V̂ r{0}), then µ′ is a Γ-invariant mean

on the Borel subsets of V̂ , µ′({0}) = 0 and µ′(N) = 1.

Theorem 3.2 (Kazhdan). (SL2(Z) n Z2,Z2) has relative Property T.

Proof. If V = Z2, we identify V̂ to the 2-torus R2/Z2. If by contradiction relative
Property T fails, by Lemma 3.1 there exists a Γ-invariant mean µ supported

by [−1/5, 1/5]2. So this mean is invariant by the two generators

(
1 1
0 1

)
and(

1 0
1 1

)
; since each of this generators, for its action on R2, maps [−1/5, 1/5]2

into [−2/5, 2/5]2, which is mapped injectively into R2/Z2, we deduce that µ, as
a mean on R2, is also invariant by the action of Γ on R2. Pushing forward, we
obtain a Γ-invariant mean on the projective line, but this is not possible.

Consider d×d matrices over any unital ring. Let Eij(a) be the matrix with all
entries 0 except the (i, j) entry, equal to a. For i 6= j, define eij(a) = I + Eij(a).
It is invertible, its inverse being given by eij(−a) These are called elementary
matrices in GLd(A).

Theorem 3.3 (Carter-Keller). Every matrix in SL3(Z) is a product of at most
60 elementary matrices.
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The proof is algebraic (including some arithmetic) and complicated, we omit
it, referring to Chapter 4 in [BHV].

Corollary 3.4. SL3(Z) has Property T.

Proof. Consider the subgroup Λ of Γ = SL3(Z) consisting of matrices1 x y
0 a b
0 c d

 , (x, y) ∈ Z2,

(
a b
c d

)
∈ SL2(Z);

there is an isomorphism f : SL2(Z) n Z2 → Λ such that f(Z2) = e12(Z)e13(Z).
Let ψ be a conditionally negative definite function on Γ. So ψ ◦ f is condi-

tionally negative definite on SL2(Z)nZ2 and thus is bounded on Z2, by Theorem
3.2. It follows that ψ is bounded on f(Z2) and thus is bounded on e12(Z). The
same proof (permuting the entries) shows that ψ is bounded on eij(Z) for all
i 6= j. Now observe that since ` =

√
ψ is a sub-additive (or length) function:

`(xy) ≤ `(x) + `(y), because the square root of any conditionally negative def-
inite kernel is a pseudo-distance. By Theorem 3.3, it follows that ` =

√
(ψ) is

bounded on SL3(Z) and thus ψ is bounded.

Exercise 3.5. Using Lemma 1.30, show that if R is unital ring but is not finitely
generated, then EL3(R) does not have Property T and (GL2(R) n R2, R2) does
not have relative Property T.

Remark 3.6. Lemma 3.1 is a variant of a result of Shalom (1999, Transac-
tions AMS). An elaboration on Theorem 3.2, based on Lemma 3.1, shows that
(GL2(R) n R2, R2) has relative Property T for every finitely generated unital
(associative) ring R; this was established by Shalom for R commutative (Publi-
cations IHES, 1999) and Kassabov later observed that the argument extends to
R not commutative.

The original proof by Kazhdan of Property T for SL3(Z) (1967) used its em-
bedding as a discrete subgroup of SL3(R) with finite covolume (the bounded gen-
eration for SL3(R) being much easier than the bounded generation for SL3(Z)).
This approach cannot carry over general rings.

For Theorem 3.3, the natural statement consists in considering the group
EL3(R) generated by elementary matrices. For R commutative (so that the de-
terminant makes sense), it is contained in SL3(R) and not equal in many examples
(related to the algebraic K-theory group K1(R)) although for polynomial rings
Z[t1, . . . , tk] they are equal, by a difficult result of Suslin. On the other hand,
it is not even known whether EL3(Z[t]) is boundedly generated by elementary
matrices.

However, for a unital finitely generated ring R, it was established later that
EL3(R) has Property T: Shalom and Vaserstein (2006) in the commutative case
(using a weak notion of bounded generation) and Ershov and Jaikin-Zapirain
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(2010) in the general case (by other methods, still relying on the relative Property
T for EL2(R) nR2.
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