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Abstract
Let G be a real Lie group and H a lattice or, more generally, a

closed subgroup of finite covolume in G. We show that the unitary
representation λG/H of G on L2(G/H) has a spectral gap, that is, the
restriction of λG/H to the orthogonal of the constants in L2(G/H)
does not have almost invariant vectors. This answers a question of
G. Margulis. We give an application to the spectral geometry of locally
symmetric Riemannian spaces of infinite volume.

1 Introduction

Let G a locally compact group. Recall that a unitary representation (π,H) of
G almost has invariant vectors if, for every compact subset Q of G and every
ε > 0, there exists a unit vector ξ ∈ H such that supx∈Q ‖π(x)ξ − ξ‖ < ε. If
this holds, we also say that the trivial representation 1G is weakly contained
in π and write 1G ≺ π.

Let H be a closed subgroup of G for which there exists a G-invariant
regular Borel measure µ on G/H (see [BHV, Appendix B] for a criterion of
the existence of such a measure). Denote by λG/H the unitary representation
of G given by left translation on the Hilbert space L2(G/H, µ) of the square
integrable measurable functions on the homogeneous space G/H. If µ is finite,
we say that H has finite covolume in G. In this case, the space C1G/H of the
constant functions on G/H is contained in L2(G/H, µ) and is G-invariant as
well as its orthogonal complement

L2
0(G/H, µ) =

{
ξ ∈ L2(G/H, µ) :

∫
G/H

ξ(x)dµ(x) = 0

}
.
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In case µ is infinite, we set L2
0(G/H, µ) = L2(G/H, µ).

Denote by λ0
G/H the restriction of λG/H to L2

0(G/H, µ) (in case µ is infinite,

λ0
G/H = λG/H). We say that λG/H (or L2(G/H, µ)) has a spectral gap if λ0

G/H

has no almost invariant vectors. In the terminology of [Marg91, Chapter III.
(1.8)], H is called weakly cocompact.

By a Lie group we mean a locally compact group G whose connected
component of the identity G0 is open in G and is a real Lie group. We
prove the following result which has been conjectured in [Marg91, Chapter
III. Remark 1.12].

Theorem 1 Let G be a Lie group and H a closed subgroup with finite covol-
ume in G. Then the unitary representation λG/H on L2(G/H) has a spectral
gap.

It is a standard fact that L2(G/H) has a spectral gap when H is co-
compact in G (see [Marg91, Chapter III, Corollary 1.10]). When G is a
semisimple Lie group, Theorem 1 is an easy consequence of Lemma 3 in
[Bekk98]. Our proof is by reduction to these two cases. The crucial tool
for this reduction is Proposition (1.11) from Chapter III in [Marg91] (see
Proposition 5 below). From Theorem 1 and again from this proposition, we
obtain the following corollary.

Corollary 2 Let G be a second countable Lie group, H a closed subgroup
with finite covolume in G and σ a unitary representation of H. Let π = IndG

Hσ
be the representation of G induced from σ. If 1H is not weakly contained in
σ, then 1G is not weakly contained in π.

Observe that, by continuity of induction, the converse result is also true: if
1H ≺ σ, then 1G ≺ π.

From the previous corollary we deduce a spectral gap result for some
subgroups of G with infinite covolume.

Recall that a subgroup H of a topological group G is called co-amenable in
G if there is a G-invariant mean on the space Cb(G/H) of bounded continuous
functions on G/H. When G is locally compact, this is equivalent to 1G ≺
λG/H ; this property has been extensively studied by Eymard [Eyma72] for
which he refers to as the amenability of the homogeneous space G/H. Observe
that a normal subgroup H in G is co-amenable in G if and only if the quotient
group G/H is amenable.
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Corollary 3 Let G be a second countable Lie group and H a closed subgroup
with finite covolume in G. Let L be a closed subgroup of H. Assume that L
is not co-amenable in H. Then λG/L has a spectral gap.

Corollary 3 is a direct consequence of Corollary 2, since the representation
λG/L on L2(H/L) is equivalent to the induced representation IndG

HλH/L.
Here is a reformulation of the previous corollary. Let G be a Lie group

and H a closed subgroup with finite covolume in G. If a subgroup L of H is
co-amenable in G, then L is co-amenable in H. Observe that the converse (if
L is co-amenable in H, then L is co-amenable in G) is true for any topological
group G and any closed subgroup H which is co-amenable in G (see [Eyma72,
p.16]).

Using methods from [Leuz03] (see also [Broo86]), we obtain the following
consequence for the spectral geometry of infinite coverings of locally symmet-
ric Riemannian spaces of finite volume. Recall that a lattice in the locally
compact group G is a discrete subgroup of G with finite covolume.

Corollary 4 Let G be a semisimple Lie group with finite centre and maximal
compact subgroup K and let Γ be a torsion-free lattice G. Let Ṽ be a covering
of the locally symmetric space V = K\G/Γ. Assume that the fundamental

group of Ṽ is not co-amenable in Γ.

(i) We have h(Ṽ ) > 0 for the Cheeger constant h(Ṽ ) of Ṽ .

(ii) We have λ0(Ṽ ) > 0, where λ0(Ṽ ) is the bottom of the L2 -spectrum of

the Laplace– Beltrami operator on Ṽ .

There is in general no uniform bound for h(Ṽ ) or λ0(Ṽ ) for all coverings Ṽ .
However, it was shown in [Leuz03] that, when G has Kazhdan’s Property
(T), such a bound exists for every locally symmetric space V = K\G/Γ.

Observe also that if, in the previous corollary, the fundamental group of Ṽ
is co-amenable in Γ and has infinite covolume, then h(Ṽ ) = λ0(Ṽ ) = 0, as
shown in [Broo81].

2 Proofs of Theorem 1 and Corollary 4

The following result of Margulis (Proposition (1.11) in Chapter III of [Marg91])
wil be crucial.
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Proposition 5 ([Marg91]) Let G be a second countable locally compact
group, H a closed subgroup of G, and σ a unitary representation of H. As-
sume that λG/H has a spectral gap and that 1H is not weakly contained in σ.
Then 1G is not weakly contained in IndG

Hσ.

In order to reduce the proof of Theorem 1 to the semisimple case, we will
use several times the following proposition.

Proposition 6 Let G a separable locally compact group and H1 and H2 be
closed subgroups of G with H1 ⊂ H2 and such that G/H2 and H2/H1 have G-
invariant and H2-invariant regular Borel measures, respectively. Assume that
the H2-representation λH2/H1 on L2(H2/H1) and that the G-representation
λG/H2 on L2(G/H2) have both spectral gaps. Then the G-representation λG/H1

on L2(G/H1) has a spectral gap.

Proof Recall that, for any closed subgroup H of G, the representation
λG/H is equivalent to the representation IndG

H1H induced by the identity
representation 1H of H. Hence, we have, by transitivity of induction,

λG/H1 = IndG
H1

1H1 = IndG
H2

(IndH2
H1

1H1) = IndG
H2

λH2/H1 .

We have to consider three cases:

• First case: H1 has finite covolume in G, that is, H1 has finite covolume in
H2 and H2 has finite covolume in G. Then

λ0
G/H1

= λ0
G/H2

⊕ IndG
H2

λ0
H2/H1

.

By assumption, λ0
H2/H1

and λ0
G/H2

do not weakly contain 1H2 and 1G, re-

spectively. It follows from Proposition 5 that IndG
H2

λ0
H2/H1

does not weakly

contain 1G. Hence, λ0
G/H1

does not weakly contain 1G.

• Second case: H1 has finite covolume in H2 and H2 has infinite covolume in
G. Then

λG/H1 = λG/H2 ⊕ IndG
H2

λ0
H2/H1

.

By assumption, λ0
H2/H1

and λG/H2 do not weakly contain 1H2 and 1G. As
above, using Proposition 5, we see that λG/H1 does not weakly contain 1G.

• Third case: H1 has infinite covolume in H2. By assumption, λH2/H1 does
not weakly contain 1H2 . By Proposition 5 again, it follows that λG/H1 =
IndG

H2
λH2/H1 does not weakly contain 1G. �

For the reduction of the proof of Theorem 1 to the case where G is second
countable, we will need the following lemma.
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Lemma 7 Let G be a locally compact group and H a closed subgroup with
finite covolume. The homogeneous space G/H is σ-compact.

Proof Let µ be the G-invariant regular probability measure on the Borel
subsets of G/H. Choose an increasing sequence of compact subsets Kn of
G/H with limn µ(Kn) = 1. The set K =

⋃
n Kn has µ-measure 1 and is

therefore dense in G/H. Let U be a compact neighbourhood of e in G. Then
UK = G/H and UK =

⋃
n UKn is σ-compact.�

Proof of Theorem 1
Through several steps the proof will be reduced to the case where H is

a lattice in G and where G is a connected semisimple Lie group with trivial
centre and without compact factors.

• First step: we can assume that G is σ-compact and hence second-countable.
Indeed, let p : G → G/H be the canonical projection. Since every compact
subset of G/H is the image under p of some compact subset of G (see [BHV,
Lemma B.1.1]), it follows from Lemma 7 that there exists a σ-compact subset
K of G such that p(K) = G/H. Let L be the subgroup of G generated by
K∪U for a neighbourhood U of e in G. Then L is a σ-compact open subgroup
of G. We show that L ∩ H has a finite covolume in L and that λG/H has a
spectral gap if λL/L∩H has a spectral gap.

Since LH is open in G, the homogeneous space L/L∩H can be identified
as L-space with LH/H. Therefore L ∩ H has finite covolume in L. On
other hand, the restriction of λG/H to L is equivalent to the L-representation
λL/L∩H , since LH/H = p(L) = G/H. Hence, if λL/L∩H has a spectral gap,
then λG/H has a spectral gap.

• Second step: we can assume that G is connected. Indeed, let G0 be the
connected component of the identity of G. We show that G0 ∩H has a finite
covolume in G0 and that λG/H has a spectral gap if λG0/G0∩H has a spectral
gap.

The subgroup G0H is open in G and has finite covolume in G as it contains
H. It follows that G0H has finite index in G since G/G0H is discrete. Hence
λG/G0H has a spectral gap.

On the other hand, since G0H is closed in G, the homogeneous space
G0/G0 ∩H can be identified as a G0-space with G0H/H. Therefore G0 ∩H
has finite covolume in G0. The restriction of λG0H/H to G0 is equivalent to
the G0-representation λG0/G0∩H .
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Suppose now that λG0/G0∩H has a spectral gap. Then the G0H-represent-
ation λG0H/H has a spectral spectral, since L2

0(G
0H/H) ∼= L2

0(G
0/G0 ∩ H)

as G0-representations. An application of Proposition 6 with H1 = H and
H2 = G0H shows that λG/H has a spectral gap. Hence, we can assume that
G is connected.

• Third step: we can assume that H is a lattice in G. Indeed, let H0 be the
connected component of the identity of H and let NG(H0) be the normalizer
of H0 in G. Observe that NG(H0) contains H. By [Wang76, Theorem 3.8],
NG(H0) is cocompact in G. Hence, λG/NG(H0) has a spectral gap. It follows
from the previous proposition that λG/H has a spectral gap if λNG(H0)/H has
a spectral gap.

On the other hand, since H0 is a normal subgroup of H, we have

L2
0(NG(H0)/H) ∼= L2

0((NG(H0)/H0)/(H/H0)),

as NG(H0)-representations. Hence, λNG(H0)/H has a spectral gap if and only

if λN/H has a spectral gap, where N = NG(H0)/H0 and H = H/H0.

The second step applied to the Lie group N/H shows that λN/H has a

spectral gap if λ
N

0
/(N

0∩H)
has a spectral gap. Observe that N

0 ∩ H is a

lattice in the connected Lie group N
0
, since H is discrete and since H has

finite covolume in NG(H0).
This shows that we can assume that H is a lattice in the connected Lie

group G.

• Fourth step: we can assume that G is a connected semisimple Lie group
with no compact factors. Indeed, let G = SR be a Levi decomposition of
G, with R the solvable radical of G and S a semisimple subgroup. Let C
be the maximal compact normal subgroup of S. It is proved in [Wang70,
Theorem B, p.21] that HCR is closed in G and that HCR/H is compact.
Hence, by the previous proposition, λG/H has a spectral gap if λG/HCR has a
spectral gap.

The quotient G = G/CR is a connected semisimple Lie group with
no compact factors. Moreover, H = HCR/CR is a lattice in G since
HCR/CR ∼= H/H ∩ CR is discrete and since HCR has finite covolume
in G. Observe that λG/HCR is equivalent to λG/H as G-representation.

• Fifth step: we can assume that G has trivial centre. Indeed, let Z be the
centre of G. It is known that ZH is discrete (and hence closed) in G (see
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[Ragh72, Chapter V, Corollary 5.17]). Hence, ZH/H is finite and λZH/H has
a spectal gap.

By the previous proposition, λG/H has a spectral gap if λG/ZH has a
spectral gap. Now, G = G/Z is a connected semisimple Lie group with no
compact factors and with trivial centre, H = ZH/Z is a lattice in G and
λG/ZH is equivalent to λG/H .

• Sixth step: by the previous steps, we can assume that H is a lattice in a
connected semisimple Lie group G with no compact factors and with trivial
centre. In this case, the claim was proved in Lemma 3 of [Bekk98]. This
completes the proof of Theorem 1.�

Proof of Corollary 4
The proof is identical with the proof of Theorems 3 and 4 in [Leuz03]; we

give a brief outline of the arguments. Let Λ be the fundamental group of Ṽ .
First, it suffices to prove Claims (i) and (ii) for G/Γ instead of K\G/Γ (see

Section 4 in [Leuz03]). So we assume that Ṽ = G/Λ.
Equip G with a right invariant Riemannian metric and G/Λ with the

induced Riemannian metric. Observe that G/Λ has infinite volume, since
Λ is of infinite index in Γ. Claim (ii) is a consequence of (i), by Cheeger’s

inequality
1

4
h(G/Λ)2 ≤ λ0(G/Λ). Recall that the Cheeger constant h(G/Λ)

of G/Λ is the infimum over all numbers A(∂Ω)/V (Ω), where Ω is an open
submanifold of G/Λ with compact closure and smooth boundary ∂Ω, and
where V (Ω) and A(∂Ω) are the Lebesgue measures of Ω and ∂Ω.

To prove Claim (i), we proceed exactly as in [Leuz03]. By Corollary 3,
there exists a compact neighbourhood H of the identity in G and a constant
ε > 0 such that

(∗) ε‖ξ‖ ≤ suph∈H ‖λG/Λ(h)ξ − ξ‖, for all ξ ∈ L2(G/Λ).

Let Ω be an open submanifold of G/Λ with compact closure and smooth

boundary ∂Ω. By [Leuz03, Proposition 1], we can find an open subset Ω̃ of
G/Λ compact closure and smooth boundary such that, for all h ∈ H,

(∗∗) V (U|h|(∂Ω)) ≤ CV (Ω̃)
A(∂Ω)

V (Ω)
,

where the constant C > 0 only depends on H. Here, |h| denotes the distance
dG(e, g) of h to the group unit and, for a subset S of G/Λ, Ur(S) is the
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tubular neighbourhood

Ur(∂Ω) = {x ∈ G/Λ : dG/Λ(x, S) ≤ r}

By Inequality (∗), applied the characteristic function χeΩ of Ω̃, there exists
h ∈ H such that

ε2V (Ω̃) ≤ ‖λG/Λ(h)χeΩ − χeΩ‖2 = V (X),

where

X =
{

x ∈ G/Λ : x ∈ Ω̃, hx /∈ ∂Ω̃
}⋃ {

x ∈ G/Λ : x /∈ Ω̃, hx ∈ ∂Ω̃
}

.

One checks that X ⊂ U|h|(∂Ω). It follows from Inequalities (∗) and (∗∗) that
ε2

C
≤ A(Ω)

V (Ω)
. Hence, 0 <

ε2

C
≤ h(G/Λ). �
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