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Zusammenfassung

Im ersten Kapitel, charakterisieren wir p-adischen algebrischen Gruppen mit
Haagerup Eigenschaft. Wir charakterisieren auch zusammenhängenden Lie Gruppen
mit Haagerup Eigenschaft als diskreten Gruppen gesehen, und wir geben ein Beispiel
einer endlich definierbar Gruppe die hat nicht Haagerup Eigenschaft, aber hat keine
unendlich Untergruppe mit relativen Eigenschaft (T). Dieses Beispiel begründet die
Einführung, im zweiten Kapitel, der relativen Eigenschaft (T) für irgendeine Teil-
menge einer lokalkompakte Gruppe. In einer zusammenhängenden Lie Gruppe, wir
charakterisieren die Teilmengen mit relativen Eigenschaft (T). Wir führen “Auflö-
sungenëin um diese Ergebnisse auf ihren [diskrete Untergruppen] auszudehnen.

Im dritten Kapitel charakterisieren wir zusammenhängenden Lie Gruppen die
ein endlich erzeugbar Untergruppe mit Eigenschaft (T) haben. Im vierten Kapitel
geben wir ein Beispiel einer endlich definierbar Gruppe mit der Hopf Eigenschaft
und unendlich äußeren automorphismus Gruppe. Im fünften Kapitel charakterisieren
wir lokal nilpotenten Gruppen, alle dessen unitären Darstellungen null reduzierte
1-kohomologie haben. Im sechsten Kapitel zeigen wir dass, wenn F eine endliche
vollkommene Gruppe ist und X eine Menge ist, denn das direkte Produkt FX stark
geschrankt ist. Das meint dass sie keine [isometric] Wirkung auf einen metrischen
Raum besitzt. Endlich im siebten Kapitel, stellen wir einige kurzen Bemerkungen
zusammen, davon eine Liste von geöffneten Fragen.
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Abstract

In the first chapter, we characterize p-adic linear algebraic groups with the
Haagerup Property. We also characterize connected Lie groups having the Haagerup
Property viewed as discrete groups, and we provide an example of a finitely presented
group not having the Haagerup Property, but having no infinite subgroup with rel-
ative Property (T). This example motivates the introduction in the second chapter
of the relative Property (T) for an arbitrary subset of a locally compact group. In
a connected Lie group, we characterize the subsets with relative Property (T). We
introduce a notion of “resolutions” so as to extend the latter results to lattices in
connected Lie groups.

In the third chapter, we characterize connected Lie groups having a dense finitely
generated subgroup with Property (T). In the fourth chapter, we provide an example
of a finitely presented group having Property (T), non-Hopfian, and with infinite
outer automorphism group. In the fifth chapter, we characterize locally nilpotent
groups for which all unitary representations have vanishing reduced 1-cohomology.
In the sixth chapter, we show that if F is a finite perfect group, and X is any set,
then the unrestricted direct product FX is strongly bounded. This means that it
has no isometric action on any metric space with unbounded orbits. Finally in the
seventh chapter, we collect several short notes, including a list of open questions.
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Introduction

La thèse que voici a été réalisée sous la direction conjointe de Peter Buser (École
Polytechnique Fédérale de Lausanne) et Alain Valette (Université de Neuchâtel),
entre octobre 2003 et décembre 2005.

Bref historique du sujet. En introduisant la propriété (T) en 1967 [Kaz67],
Kazhdan a apporté une méthode totalement novatrice pour montrer que des groupes
sont de type fini, reposant sur leurs représentations unitaires. Elle s’applique à de
nombreux réseaux dans des groupes de Lie. En dehors de l’engendrement fini, la
propriété (T) a des conséquences tout-à-fait non triviales, comme le fait que tout
sous-groupe d’indice fini a un abélianisé fini. Elle joue ainsi un rôle essentiel dans un
résultat de Margulis, disant que, pour les réseaux dans certains groupes de Lie, tout
quotient strict est fini (voir [Mar91]). La propriété (T) relative, introduite à l’origine
comme outil technique servant par exemple à démontrer que SL3(R) a la propriété
(T), est aujourd’hui considérée comme intéressante en elle-même ; elle peut en effet
se voir comme une version faible de la propriété (T) et possède des conséquences
similaires.

La propriété de Haagerup, introduite dans [AkWa81], apparaît notamment parce
qu’elle est satisfaite par les groupes les plus “simples”, à savoir les groupes virtuel-
lement résolubles (et plus généralement moyennables), les groupes libres et plus
généralement les groupes kleiniens, les groupes de Coxeter, les groupes de Thomp-
son. Pour beaucoup de gens, son principal intérêt réside dans le fait que, pour un
groupe donné, elle implique la conjecture de Baum-Connes. En ce qui me concerne,
je m’y suis surtout intéressé en tant que négation forte de la propriété (T) relative
(et vice-versa).

Propriété de Haagerup et propriété (T) relative. On renvoie au chapitre 0
pour les définitions de la propriété (T) relative et de la propriété de Haagerup. Rap-
pelons simplement qu’un groupe localement compact, σ-compact G a la propriété de
Haagerup s’il agit proprement par isométries sur un espace de Hilbert [CCJJV01].
D’autre part, si H est un sous-groupe de G, on dit que la paire (G,H) a la pro-
priété (T) relative [HaVa89] si, pour toute action de G par isométries sur un espace
de Hilbert, H fixe au moins un point ; si (G,G) a la propriété (T) relative on dit
simplement que G a la propriété (T).

J’ai été amené à étudier les problèmes suivants :
(1) Généraliser la classification des groupes de Lie connexes ayant la propriété

de Haagerup, aux groupes algébriques p-adiques.
(2) Trouver un groupe n’ayant pas la propriété de Haagerup, mais n’ayant aucun
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sous-groupe avec la propriété (T) relative (ce problème est posé dans [CCJJV01,
Chapitre 7]).

(2bis) Soit Γ un réseau irréductible dans SO(4, 1) × SO(3, 2). Est-ce que Γ (qui
n’a pas la propriété de Haagerup) répond à (2) ?

Le problème (1) est résolu dans le Chapitre 1.

Théorème. (Voir Theorem 1.23.)
Soit G ou bien un groupe de Lie connexe, ou bien G = G(K), où G est un

groupe algébrique linéaire sur un corps local K de caractéristique zéro. Les assertions
suivantes sont équivalentes.

(i) G a la propriété de Haagerup.
(ii) Pour tout sous-groupe fermé non compact H de G, la paire (G,H) n’a pas

la propriété (T) relative.
(iii) On a une décomposition G = MS, pour des sous-groupes fermés M et S, où

[M,S] = 1, M est moyennable, et S est semi-simple, ayant tous ses facteurs
simples de rang un, et de plus, si K = R ou dans le cas des groupes de Lie,
S n’a pas de facteur localement isomorphe à Sp(n, 1) pour un n ≥ 2, ou au
groupe exceptionnel de rang un F4(−20).

La démarche est la suivante : soit G un groupe algébrique sur Qp, R son radical
moyennable, et S un facteur de Levi semi-simple sans facteurs compacts. Supposons
que [S,R] 6= 1. Alors G possède un sous-groupe fermé isomorphe, à un revêtement
d’ordre 2 près, au produit semi-direct de SL2 par un sous-groupe normal N , qui est
soit une représentation irréductible non triviale, soit un groupe de Heisenberg, sur
lequel SL2 agit irréductiblement modulo le centre. Dans les deux cas, on vérifie que
(SL2 ⋉N,N) a la propriété (T) relative, ce qui est une obstruction à la propriété de
Haagerup.

Un résultat récent [GHW05, §5, Theorem 4] montre que SL2(C), vu comme
groupe discret, a la propriété de Haagerup. Il me semblait que les méthodes déve-
loppées pour résoudre (1) pouvaient permettre de résoudre le problème suivant :

(3) Déterminer exactement les groupes de Lie connexes qui, vus comme groupes
discrets, ont la propriété de Haagerup.

La réponse est que les exemples donnés dans [GHW05] sont essentiellement les
seuls.

Théorème. (Voir Theorem 1.28.) Soit G un groupe de Lie connexe, et g son algèbre
de Lie. Alors G, vu comme groupe discret, a la propriété de Haagerup si et seulement
si g⊗RC est isomorphe à une algèbre de Lie de la forme sl2(C)n×r avec r résoluble.

De manière inattendue, cette étude a permis de résoudre le problème (2). En
effet, le groupe SO3(R) ⋉ R3, vu comme groupe discret, n’a pas la propriété de
Haagerup alors qu’on peut vérifier par ailleurs qu’il n’a aucun sous-groupe avec la
propriété (T) relative, comme conséquence du résultat de [GHW05] mentionné plus
haut. Il restait à piocher un sous-groupe de type fini convenable.

Théorème. (Voir Remark 1.34.) Le groupe de type fini SO3(Z[1/5]) ⋉ Z[1/5]3 n’a
pas la propriété de Haagerup, mais n’a aucun sous-groupe infini avec la propriété
(T) relative.
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Le fait d’avoir résolu (2) signifiait que l’existence d’un sous-groupe avec la pro-
priété (T) relative n’était plus la seule obstruction connue à la propriété de Haagerup.
Dans le cas de SO3(Z[1/5]) ⋉ Z[1/5]3, l’obstruction a l’inconvénient de ne pas être
intrinsèque : elle consiste en effet à plonger le groupe comme réseau dans un groupe
n’ayant pas la propriété de Haagerup. Il est alors peu à peu devenu clair dans mon
esprit qu’il était naturel de formuler la définition de propriété (T) relative pour une
paire (G,X) où G est toujours un groupe, mais X est non plus un sous-groupe mais
un sous-ensemble quelconque. J’en viens alors au chapitre 2, qui est le point central
de ma thèse. Dans la première partie, j’étends le résultat consistant à démontrer
l’équivalence entre diverses définitions à la propriété (T) relative par rapport à un
sous-ensemble. En fait, le plus souvent, les arguments donnés dans [Jol05] pour la
propriété (T) relative par rapport à un sous-groupe s’étendent sans difficulté. Puis, je
montre que, dans un groupe localement compact, la propriété relative est “contenue”
dans les sous-groupes à engendrement compact : cela étend un résultat de Kazhdan,
à savoir que les groupes ayant la propriété (T) sont compactement engendrés ; ce-
pendant, si on reprend l’argument de Kazhdan, on obtient seulement que si (G,X)
a la propriété (T) relative, alors X est contenu dans un sous-groupe ouvert Ω à
engendrement compact de G. L’autre moitié consiste à trouver un sous-groupe à
engendrement compact H, contenant Ω, tel que (H,X) a la propriété (T) relative.
Enfin, dans le cas d’un groupe G localement compact à engendrement compact, je
définis une métrique (H-métrique ; H comme Hilbert), essentiellement canonique,
telle qu’une partie X ⊂ G est bornée si et seulement si (G,X) a la propriété (T)
relative.

Parallèlement, j’avais cherché à caractériser les groupes de Lie connexes G tel que
(G, rad(G)) a la propriété (T) relative : les cas bien compris jusque là étaient à radical
abélien (typiquement, SL2(R) ⋉ R2). Un lemme sur les extensions centrales, inspiré
par [CCJJV01, Chapitre 4], permettait de “remonter” dans le radical, et finalement
d’obtenir la caractérisation voulue1. Une fois cela montré, je me suis aperçu que
cela donnait une réponse à une question plus générale, à savoir : caractériser, dans
G, les parties X telles que (G,X) a la propriété (T) relative. La caractérisation a
la forme suivante : on définit un sous-groupe caractéristique fermé RT (G) de G (le
“T-radical”).

Théorème. (Voir Corollary 2.51.) Soit X une partie du groupe de Lie connexe G.
Alors (G,X) a la propriété (T) relative si et seulement si l’image de X dans G/RT

est relativement compacte.

Le résultat vaut également (Corollary 2.47) pour un groupe algébrique p-adique ;
cela fait l’objet de la deuxième partie du chapitre 2. Si G a la propriété de Haagerup,
RT doit être compact et on peut alors montrer sans difficulté qu’il est en fait trivial.
On réobtient ainsi une nouvelle fois la réponse à (1) (bien que l’essentiel du travail
dans le chapitre 1 reste largement indépendant). Le fait, nouveau, qu’un groupe de
Lie connexe n’ayant pas la propriété de Haagerup possède un sous-groupe normal
non trivial avec la propriété (T) relative (à savoir RT ) est utilisé par Florian Martin
dans son étude de la cohomologie réduite des groupes de Lie connexes [Mrt05].

1On trouve, ceci dit, un raisonnement similaire dans [Sha99t].
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Passons à la troisième partie du chapitre 2. Son point de départ est l’étude de la
question (2bis), que j’avais attaquée avant de répondre à (2). Donnons-nous donc Γ
comme dans la question (2bis) et Λ un sous-groupe ; soit p la projection vers SO(4, 1) ;
par irréductibilité, elle est d’image dense. Une observation immédiate est que si (Γ,Λ)
a la propriété (T) relative, alors p(Λ) est relativement compact. Cependant, un
argument simple montre que l’ensemble des éléments elliptiques (autrement dit : la
réunion des sous-groupes compacts) de SO(4, 1) est d’intérieur non vide ; on obtient
ainsi l’existence de sous-groupes cycliques infinis Λ ⊂ Γ tels que p(Λ) est relativement
compact2, ce qui soulève naturellement la question de savoir si, réciproquement, cela
implique que (Γ,Λ) a la propriété (T) relative. C’est là qu’intervient un résultat de
Margulis [Mar91, Chapitre 3, §6], qui implique cette réciproque. Ainsi, la réponse à
(2bis) est négative.

Théorème. Voir Theorem 2.82 et Proposition 2.84. Dans SO(4, 1) ou SU(2, 1), il
existe des sous-groupes Λ ⊂ Γ de type fini, tel que (Γ,Λ) a la propriété (T) relative
et Λ infini, mais on ne peut pas choisir Λ distingué dans Γ.

Cela répond au problème suivant, posé notamment par Popa :
(4) Existe-t-il des paires (G,H) avec la propriété (T) relative, H sous-groupe de

G, qui ne proviennent pas d’un exemple3 où H est normal dans G ?
En effet, on peut vérifier que si Γ est un sous-groupe de SO(4, 1), il n’a aucun

sous-groupe normal infini avec la propriété (T) relative. Pour faire le lien avec la
H-métrique mentionnée plus haut, on peut montrer que la H-métrique de Γ est
équivalente à la métrique provenant de la racine carrée de la métrique des mots de
SO(4, 1) via p, et qu’ainsi, pour tout X ⊂ Γ, (Γ, X) a la propriété (T) relative si et
seulement si p(X) est relativement compact.

Le but de la troisième partie du chapitre 2 est de donner une généralisation
conceptuelle de ce type de phénomène. On systématise ainsi des idées déjà présentes
chez Lubotzky-Zimmer [LuZi89], et Margulis [Mar91]. Remarquons que, ci-dessus,
ce qui intervenait était le groupe Γ, et la projection p vers SO(4, 1). Le cadre général
est celui-ci : un groupe localement compact G, et un morphisme p d’image dense vers
un autre groupe localement compact Q. J’appelle un tel morphisme une résolution4

si toute représentation de G proche de la représentation triviale contient une sous-
représentation non nulle factorisant par Q via p. Lorsque p est le quotient par un
sous-groupe normal N , dire que G→ Q = G/N est une résolution revient à dire que
(G,N) a la propriété (T) relative. Le concept est nouveau quand, par exemple, p
n’est pas surjectif, par exemple dans le cas de la projection Γ → SO(4, 1), étudié plus
haut. Le théorème dans [Mar91, Chapitre III, §6] s’interprète sur cet exemple comme
ceci : la projection SO(3, 2) × SO(4, 1) → SO(4, 1) est une résolution, donc cela est
hérité par le réseau ; la projection de Γ sur SO(4, 1) est aussi une résolution. Dans le

2En prenant des exemples explicites de Γ, on obtient des exemples avec Λ libre non abélien.
3Par “paires qui proviennent d’un exemple où H est normal dans G”, on entend des exemples

tels que (SL2(Z) ⋉Z
2,Z×{0}) ou ((SL2(Z) ⋉Z

2) ∗Z,Z2), qui se ramènent immédiatement au cas
bien connu de la paire (SL2(Z) ⋉ Z

2,Z2).
4Cette terminologie, peut-être maladroite, m’est inspirée aussi bien par la notion de résolution

d’une singularité, utilisée en géométrie, que par la notion de résolution en algèbre homologique ;
l’idée ici est qu’on remplace G par un objet plus simple Q, mais qui contient la même information,
au moins lorsqu’on s’intéresse aux représentations unitaires proches de la représentation triviale.
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cas de SO3(Z[1/5])⋉Z[1/5]3 mentionné plus haut, l’inclusion dans SO3(Z[1/5])⋉R3

est une résolution, ce qui permet de montrer l’existence de parties infinies avec la
propriété relative (alors qu’on a évoqué plus haut le fait qu’il n’y a aucun sous-groupe
avec la propriété (T) relative).

La troisième partie du chapitre 2 consiste également à étudier systématiquement
les résolutions et notamment à montrer plusieurs caractérisations connues dans le
cas de la propriété relative à un sous-groupe normal ; contrairement au cas de la
propriété (T) relative par rapport à un sous-ensemble étudié dans la première partie
du chapitre 2, les preuves demandent cette fois-ci des arguments nouveaux. On
éclaircit également un point technique délicat : ce qu’on a appelé “résolution” plus
haut est appelé “prérésolution” dans le chapitre 2, où dans la définition de résolution,
on demande une hypothèse supplémentaire, à savoir que la sous-représentation non
nulle factorisant par Q ait presque des vecteurs invariants, vue comme représentation
de Q. Cette hypothèse joue un rôle important en pratique. Cependant, dans le
cas σ-compact, on montre finalement (§2.3.8), mais de façon très indirecte, que
cette hypothèse est en fait superflue, c’est-à-dire que les notions de résolutions et
prérésolutions coïncident.

Sous-groupes denses avec la propriété (T) dans les groupes de Lie
connexes. Soit G un groupe localement compact. L’existence, dans G, d’un sous-
groupe dense de type fini Γ qui, vu comme groupe discret, a la propriété (T), a
des applications remarquables. En particulier, quand G = SO(n) pour n ≥ 5, cela
a permis à Margulis et Sullivan [Mar80, Sul81] de démontrer que, sur les parties
Lebesgue-mesurables de la sphère Sn−1, la seule moyenne G-invariante est la mesure
de Lebesgue.

Dans le chapitre 3, je classifie les groupes de Lie connexes ayant un sous-groupe
de type fini dense avec la propriété (T). Cela étend le cas, dû à Margulis, d’un groupe
de Lie connexe compact.

Théorème. (Voir Theorem 3.3) Soit G un groupe de Lie connexe. Alors G a un
sous-groupe de type fini dense avec la propriété (T) si et seulement si il vérifie les
conditions suivantes :

– G a la propriété (T),
– le cercle R/Z n’est pas un quotient de G,
– le groupe SO3 n’est pas un quotient de G.

La condition que G ait la propriété (T) peut aussi, à partir d’un résultat de Wang
[Wan82], se caractériser en termes de quotients, voir Theorem 3.1.

Dans le fait que les conditions du théorème sont nécessaires, le seul point non
trivial est le fait que SO3 n’est pas un quotient de G. Ce résultat est dû à Zimmer
[Zim84]. La réciproque, consistant à montrer que les conditions du théorèmes sont
suffisantes, est prouvée en six étapes.

Dans la première étape, on suppose que G est un groupe algébrique réel défini
sur Q : on utilise alors un argument standard pour projeter de façon dense un réseau
sur G.

Dans la seconde étape, on se ramène au cas où G a une algèbre de Lie parfaite ;
puis on montre, dans la troisième étape, que cela implique que la sous-algèbre de
Lie obtenue en enlevant les facteurs simples compacts est encore parfaite.
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Dans la quatrième étape, on prouve un lemme montrant qu’une algèbre de Lie
sur R avec quelques propriétés convenables est quotient d’une autre vérifiant les
mêmes propriétés et qui est en plus définie sur Q. Le principal ingrédient est un
résultat de Witte [Wit05] disant que les représentations réelles des groupes de Lie
semi-simples ont toujours des formes sur Q.

On utilise cela ainsi que la première étape dans la cinquième étape pour prouver
le théorème dans le cas où G est algébrique réel.

Dans la sixième étape, on prouve le cas général ; on doit en fait travailler avec
une extension d’un groupe algébrique réel par un centre discret infini.

Groupes de Kazhdan avec un groupe d’automorphismes extérieurs in-
fini. Dans l’Astérisque de de la Harpe et Valette en 1989 [HaVa89], il y a une série
de questions alors ouvertes, dont celle-ci, due à Frédéric Paulin :

(6) Existe-t-il un groupe ayant la propriété (T) et ayant un groupe d’automor-
phismes extérieurs infini ?

Une réponse positive à cette question est donnée dans le chapitre 4.

Théorème. (Voir Proposition 4.1.) Le groupe (linéaire, de présentation finie)
SL3(Z) ⋉ (Z3 ⊕ Z3) a la propriété (T) et a un groupe d’automorphismes extérieurs
infini.

Il se trouve que la question (6) a été résolue indépendamment et presque si-
multanément par Y. Ollivier et D. Wise [OlWi05], par une manière beaucoup plus
élaborée. Si leurs exemples sont beaucoup moins élémentaires (par exemple, ils ne
sont pas, a priori, de présentation finie ni résiduellement finis), leur méthode, consis-
tant en une “machine de Rips à noyau de Kazhdan”, a des conséquences pas du
tout triviales telles que : tout groupe avec la propriété (T) est quotient d’un groupe
hyperbolique sans torsion avec la propriété (T) (voir le paragraphe 7.3). Dans leur
papier, ils construisent un groupe de type fini, non hopfien, avec la propriété (T).
Ils demandent alors :

(7) Existe-t-il un groupe de présentation finie ayant la propriété (T) et non
hopfien ?

Cette question est résolue dans le chapitre 4.

Théorème. (Voir Theorem 4.3.) Il existe un groupe non hopfien de présentation
finie, quotient d’un groupe linéaire par un sous-groupe cyclique, qui a la propriété
(T).

Ce groupe est obtenu en modifiant la construction par Abels (1979) [Abe79], du
premier groupe résoluble de présentation finie non hopfien, ce qui répondait alors
à une vieille question de P. Hall. La preuve est basée sur des travaux postérieurs
d’Abels [Abe87], donnant un critère pour qu’un groupe p-arithmétique soit de pré-
sentation finie, et consistant essentiellement à calculer et étudier les premiers groupes
d’homologie du radical unipotent d’une algèbre de Lie convenable.

Annulation de la 1-cohomologie réduite. Un résultat de Shalom dit que,
pour un groupe de type fini, la propriété (T), i.e. l’annulation de la 1-cohomologie
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de toutes les représentations unitaires, est équivalente à l’annulation de la 1-
cohomologie réduite de toutes les représentations unitaires. Appelons cela la pro-
priété (FH). Le résultat de Shalom ne s’étend pas à des groupes dénombrables quel-
conques : en effet, un groupe qui est une limite directe de groupes avec la propriété
(T), par exemple un groupe localement fini, a la propriété (FH). Une question de F.
Martin et A. Valette est de savoir si la réciproque est vraie :

(8) Soit G un groupe dénombrable avec la propriété (FH). Est-ce que G est limite
directe de groupes avec la propriété (T) ?

F. Martin a prouvé que la réponse est oui dans le cas où G est hypercentral
(c’est-à-dire que tout quotient non trivial de G a un centre non trivial). Le cas
qui semblait alors naturel à étudier est celui des groupes localement nilpotents. Je
prouve le résultat suivant dans le chapitre 5.

Théorème. (Voir Theorem 5.1.) Un groupe localement nilpotent a la propriété (FH)
si et seulement si son abélianisé est un groupe de torsion.

Or il existe des exemples connus de groupes infinis localement nilpotents, sans
torsion et parfaits, ce qui répond ainsi négativement à (8).

La preuve du théorème est basée sur la “propriété (FH) relative”. La dernière
partie du chapitre 5 consiste à étendre le résultat au cas des groupes localement
compacts, qui pose quelques difficultés techniques supplémentaires.

Groupes non dénombrables avec la propriété (FH), et groupes forte-
ment bornés. On a la question suivante, posée dans [wor01] ainsi que dans une
version préliminaire de [BHV05] :

(5) Est-ce que l’équivalence entre la propriété (T) et la propriété (FH) (pro-
priété du point fixe pour des actions isométriques sur des Hilberts), connue dans le
cas σ-compact, s’étend à des groupes localement compacts quelconques ? (On sait
déjà que (T)⇒(FH), dû à Delorme (voir [BHV05]), est valable pour tous groupes
topologiques.)

On sait qu’un groupe discret avec la propriété (T) est forcément de type fini,
si bien que la question se réduit, dans le cas discret, à : existe-t-il un groupe non
dénombrable avec la propriété (FH) ?

C’était le point de départ pour le chapitre 6. La question (5) est ainsi résolue par
le résultat suivant.

Théorème. (Voir Proposition 6.1.) Soit G un groupe dénombrable. Alors G se
plonge dans un groupe de cardinalité ℵ1 ayant la propriété (FH). En particulier,
il existe des groupes discrets ayant la propriété (FH) mais pas la propriété (T).

J’obtiens d’autres exemples à partir de l’observation qu’une certaine propriété,
introduite récemment par G. Bergman [Ber05] et étudiée depuis par plusieurs au-
teurs, est équivalente à la propriété suivante : un groupe est fortement borné si toute
action sur un espace métrique est à orbites bornées. En particulier, cela implique la
propriété (FH) ; or Bergman a prouvé que le groupe des permutations d’un ensemble
infini a cette propriété, ce qui a été généralisé depuis à divers groupes d’automor-
phismes. Pour ma part, je montre le résultat suivant.

Théorème. (Voir Theorem 6.13 et Theorem 6.15.) Sont fortement bornés :
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– les groupes ω1-existentiellement clos, et
– le produit SX , S étant un groupe fini parfait et X un ensemble infini quel-

conque.

En particulier, SX donne un exemple de groupe infini moyennable (car localement
fini) ayant la propriété (FH).

Je rassemble par la suite des papiers plus courts et des notes isolées.
• Une note s’intéressant au groupe G(K) des K-points d’un groupe algébrique

linéaire G : sous certaines hypothèses, on donne des conditions nécessaires et suffi-
santes pour que G(K) ait la propriété de Haagerup (comme groupe discret), resp.
pour que G(K) possède un sous-groupe infini avec la propriété (T).

• Une note contenant la généralisation suivante de [GHW05, §5, Theorem 4],
à savoir que si A est un anneau commutatif réduit, alors SL2(A) a la propriété de
Haagerup. Comme application, les groupes résiduellement libres ont la propriété de
Haagerup.

• Une note contenant l’observation faite plus haut du fait qu’en combinant les
résultats d’Ollivier-Wise et ceux de Shalom, tout groupe ayant la propriété (T) est
quotient d’un groupe hyperbolique sans torsion avec la propriété (T), ce qui répond
à une question d’Ollivier et Wise.

• Une note faisant le lien entre un résultat de Vaserstein [Vas88] et un résultat de
Shalom [Sha99p], avec pour exemple de conséquence le résultat suivant, répondant
notamment à une question posée dans [BHV05] : le groupe (non localement compact)
des lacets dans SLn(R) a la propriété (T) si n ≥ 3.

• Une note contenant un lemme, inspiré par des travaux de Shalom [Sha99p],
permettant de prouver la propriété (T) relative par rapport à un sous-groupe normal
abélien. Il s’applique directement à (SLn(Z) ⋉ Zn,Zn), c’est-à-dire sans utiliser le
fait que SLn(Z) ⋉ Zn est un réseau dans SLn(R) ⋉ Rn.

• Une courte note qui est un lemme concernant les fonctions conditionnellement
de type négatif mesurables sur les groupes localement compacts : je montre qu’une
telle fonction, sous la condition qu’elle soit bornée sur tout compact, est presque
partout égale à une fonction conditionnellement de type négatif continue. C’est basé
sur un résultat analogue dans le cas des fonctions de type positif [dLGl65].

• Pour finir, une liste de question ouvertes, certaines originales, concernant la
propriété (T) et la propriété de Haagerup.
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Chapter 0

Preliminaries

0.1 Representations

Let H be a Hilbert space over C (resp. R). Denote by U(H) (resp. O(H)) the
group of unitary (resp. orthogonal) automorphisms of H. There are several natural
topologies on this group; we consider here the strong operator topology, defined as
the weakest topology making the function T 7→ T (v) (with values in H) continuous
for all v ∈ H.

Let G be a topological group. A unitary (resp. orthogonal) representation is a
continuous morphism G → U(H) (resp. G → O(H)). An equivalent datum is an
action by unitary (resp. orthogonal) automorphisms of G on H, given by a map
G×H → H which is supposed to be separately continuous.

Similarly, we can define groups of affine automorphisms AU(H) ≃ U(H) ⋉ H
(resp. AO(H) ≃ O(H) ⋉ H) by taking the group generated by unitary (resp.
orthogonal) automorphisms and translations. The strong affine operator topology
is similarly defined, and affine unitary (resp. affine orthogonal) representations of
topological groups can be analogously defined.

Remark 0.1. The kernel of a representation (of any kind as above) of a topological
group is closed, and hence always contains {1}. Therefore, it is harmless in general
to work, in this context, with Hausdorff topological groups.

Lemma 0.2 (Mazur-Ulam). If H is a real Hilbert space, then every isometry of
H is affine, i.e. belongs to AO(H).

Definition 0.3. A topological group G is a-T-menable if it is Hausdorff and there
exists a continuous isometric action α of G on a Hilbert space H which is metrically
proper, i.e. such that, for every v ∈ H (equivalently, for some v ∈ H) and every
r ∈ R+, the set {g ∈ G : ‖α(g)v − v‖ ≤ r} is compact.

Note that an a-T-menable group is necessarily locally compact and σ-compact:
indeed, Un = {g ∈ G : ‖α(g)v − v‖ ≤ n} is a compact neighbourhood of 1 in G,
and

⋃
n Un = G.
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Lemma 0.4. Let G be a group acting by isometries on a Hilbert space1. The fol-
lowing are equivalent.

(i) G fixes a point in H.

(ii) There is a bounded G-orbit in H.

(iii) All G-orbits in H are bounded.

Note that (i)⇒(ii)⇔(iii) holds for every isometric action on a nonempty metric
space. (ii)⇒(i) is a consequence of the “centre Lemma”: every nonempty bounded
subset X of a Hilbert space is contained in a unique ball of minimal radius. If X is
a G-orbit, then the ball, hence its centre, must be invariant under G.

Definition 0.5. Let G be a topological group, and H a subgroup. The pair (G,H)
has relative Property (FH) if, for every continuous isometric action of G on a Hilbert
space H, one of the following equivalent conditions is satisfied:

• H fixes a point in H.

• There is a bounded H-orbit in H.

• All H-orbits in H are bounded.

The following result is immediate from the definitions.

Lemma 0.6. Let G be an a-T-menable topological group, and H a subgroup. If
(G,H) has relative Property (FH), then H is relatively compact in G (i.e. has
compact closure).

Definition 0.7. Let π be an orthogonal or unitary representation of a topological
group G on a Hilbert space H. It is said to have almost invariant vectors2 if for
every compact3 subset K ⊂ G and every ε > 0, there exists a (K, ε)-invariant vector
in H, i.e. ξ ∈ H such that ‖v‖ = 1 and supg∈K ‖π(g)ξ − ξ‖ ≤ ε.

Note that the zero representation does not have almost invariant vectors.

Definition 0.8. Let π be an orthogonal or unitary representation of a Hausdorff
topological group G on a Hilbert space H. It is said to be C0 if for every ξ, η ∈ H,
〈π(g)ξ, η〉 → 0 when g → ∞; that is, for every ξ, η ∈ H and ε > 0, there exists a
compact subset K ⊂ G such that supg∈G−K |〈π(g)ξ, η〉| ≤ ε.

1We do not specify whether the Hilbert space is real or complex: if it is complex, it can also be
viewed as a real Hilbert space.

2Although it is sometimes used in a general setting, this definition is relevant especially in
the case when G is locally compact. Indeed, in some groups such as AO(H), there is a natural
notion of bounded subsets, which is weaker than that of relatively compact subsets, and leads to
an alternative definition of “having almost invariant vectors”.

3In this definition, we do not assume that compact subsets are Hausdorff. Note however that,
in a topological group G, a subset is compact if and only if its image in the Hausdorff group G/{1}
is compact.
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Note that if a Hausdorff topological group G has a nonzero C0-representation in
a Hilbert space H, then G is locally compact. Indeed, fix ξ ∈ H of norm 1. For some
compact subset K, supg∈G−K |〈π(g)ξ, ξ〉| ≤ 1/2. But if G is not locally compact,
1 must belong to the closure G−K, and, since 〈π(g)ξ, ξ〉 is continuous, we obtain
‖ξ‖2 ≤ 1/2, a contradiction.

Conversely, if G is locally compact, then it has at least one faithful C0-represen-
tation, namely the left regular representation λG on L2(G).

Note also that if G is compact, then every representation of G is C0. Conversely,
if the trivial one-dimensional representation of G is C0, then G is compact.

Definition 0.9. A topological group G has the Haagerup Property if it is Hausdorff
and there exists an orthogonal C0-representation of G with almost invariant vectors.

Note that a topological group with the Haagerup Property is locally compact.
The following characterization is due to Akemann and Walter [AkWa81].

Theorem 0.10. A topological group is a-T-menable if and only if it is σ-compact
and has the Haagerup Property.

In the case of non-σ-compact locally compact groups, the following result holds:
such a group G has the Haagerup Property if and only if all its open compactly gen-
erated (equivalently: all its open σ-compact) subgroups have the Haagerup Property
(see Proposition 0.25).

Let us turn to relative Property (T). We present it here in the standard context;
we give slightly more general (and natural) statements in Chapter 2.

Definition 0.11. Let G be a topological group and H a subgroup. The pair (G,H)
has relative Property (T) if, for every orthogonal representation of G with almost
invariant vectors, there exist H-invariant vectors.

If (G,G) has relative Property (T), we simply say that G has Property (T).

Observe that if H1 ⊂ H2 and if (G,H2) has relative Property (T), then (G,H1)
also has relative Property (T). If H is relatively compact, it follows from Lemma
0.4 that (G,H) has relative Property (T). If G has the Haagerup Property, then the
converse holds.

Theorem 0.12 (Delorme, Guichardet, Jolissaint). Let G be a topological group,
H a subgroup. If (G,H) has relative Property (T), then it has relative Property (FH).
If G is locally compact, σ-compact, then the converse is true.

The converse is not true in general, even when G = H is a discrete group (see
Chapter 6).

0.2 Functions on groups

Let X be any set. Denote by R(X) the real vector space with basis X, and R
(X)
0 its

hyperplane defined as the kernel of the linear form (ux)x∈X 7→∑
x∈X ux.

A (real-valued) kernel is a function Φ : X × X → R. It must be viewed as a
matrix with coefficients indexed by X. Such a kernel defines a bilinear form BΦ of
R(X), defined on the basis by B(ex, ey) = K(x, y).
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Definition 0.13. The kernel Φ is called positive definite4 if the corresponding bi-
linear form is symmetric and non-negative. That is, K(x, y) = K(y, x) for all x, y,
and, for all n, all x1, . . . , xn ∈ X, λ1, . . . , λn ∈ R,

∑n
i,j=1 λiλjK(xi, xj) ≥ 0.

Definition 0.14. The kernel Ψ is called conditionally negative definite if it vanishes
on the diagonal and if the corresponding bilinear form is symmetric, and non-positive
in restriction to R

(X)
0 . That is, K(x, x) = 0, K(x, y) = K(y, x) for all x, y, and, for all

n, all x1, . . . , xn ∈ X, λ1, . . . , λn ∈ R such that
∑n

i=1 λi = 0,
∑n

i,j=1 λiλjK(xi, xj) ≤
0.

There are similar definitions for complex-valued functions: a complex-valued
kernel is positive definite if the corresponding semi-linear form on C(X) is hermitian
and non-negative, and is conditionally negative definite if it is zero on the diagonal
and if the corresponding semi-linear form is hermitian, and non-positive in restriction
to C

(X)
0 . Observe that this coincides with the above definitions in the case of a

complex-valued kernel which actually takes real values.

A conditionally negative definite kernel on G takes non-negative values. In the
complex-valued case, it takes values of non-negative real part.

Definition 0.15. Let G be a group. A real or complex valued function f on G is
definite positive (resp. conditionally negative definite) if the kernel (g, h) 7→ f(g−1h)
is so.

If ϕ is a positive definite function on a group G, then ϕ(1) ∈ R+ and, for all
g ∈ G, |ϕ(g)| ≤ ϕ(1); it is called normalized if ϕ(1) = 1.

0.3 Correspondence

The two following lemmas are straightforward.

Lemma 0.16. If π is an orthogonal (resp. unitary) representation of a topological
group G on a real (resp. complex) Hilbert space H, then, for every ξ ∈ H, the
coefficient g 7→ 〈π(g)ξ, ξ〉 is a real-valued (resp. complex-valued) positive definite
function on G.

Lemma 0.17. If α is an affine isometric action of a topological group G on a real
Hilbert space H, then, for every v ∈ H, the coefficient g 7→ ‖α(g)v − v‖2 is a
real-valued continuous conditionally negative definite function on G.

In both cases, it can be shown that such functions arise this way:

Proposition 0.18 (GNS Construction). Let ϕ be a continuous, real-valued (resp.
complex-valued) positive definite function on a topological group G. Then there exists
an orthogonal (resp. unitary) representation π on a real (resp. complex) Hilbert
space H, and ξ ∈ H such that ϕ(g) = 〈π(g)ξ, ξ〉 for all g ∈ G. If ϕ is C0 (i.e. G is
Hausdorff and limg→∞ ϕ(g) = 0), then π can be chosen C0.

4Observe that this widely used terminology is awkward since the corresponding bilinear form is
not assumed to be definite (i.e. non-degenerate).
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The latter assertion is a consequence of [Dix69, Proposition 13.4.10].

Proposition 0.19 (affine GNS Construction). Let ψ be a continuous, real-
valued (resp. complex-valued) conditionally negative definite function on a topological
group G. Then there exists an affine isometric action α on a Hilbert space H, and
v ∈ H such that ψ(g) = ‖α(g)v − v‖2 for all g ∈ G. Moreover, we can choose H
with a complex structure making the linear part of the affine action unitary.

Both propositions hold in a more general and natural setting, in the context of
kernels on arbitrary sets. There is, in addition, a form of uniqueness which we do
not state here.

The following results follows from Proposition 0.19.

Proposition 0.20. If G is a topological group and H a subgroup, then the following
are equivalent:

• (G,H) has relative Property (FH).

• For every affine isometric action of G on a complex Hilbert space, H has a
fixed point.

• Every continuous conditionally negative definite function on G is bounded in
restriction to H.

Proposition 0.21. If G is a topological group, then the following are equivalent:

• G is a-T-menable.

• There exists an affine isometric action on a complex Hilbert space which is
proper.

• There exists a proper conditionally negative definite function on G.

In both cases, we see that working with affine isometric action on real or complex
Hilbert spaces does not change the definition of relative Property (FH) and a-T-
menability.

Proposition 0.22. Let G be a Hausdorff topological group. The following are equiv-
alent.

(i) G has the Haagerup Property.

(ii) There exists a unitary C0-representation of G with almost invariant vectors.

(iii) There exist a net (ϕi) of continuous, real-valued normalized C0 positive definite
functions on G which tends to 1 uniformly on compact subsets.

(iv) There exist a net (ϕi) of continuous, complex-valued normalized C0 positive
definite functions on G which tends to 1 uniformly on compact subsets.
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Proof : (iii)⇒(iv) is trivial. (iv)⇒(iii): use the fact that if ϕ is a complex-valued
positive definite function on G, then |ϕ|2 is a real-valued one.

(i)⇒(iii): let π be an orthogonal representation of G with almost invariant vec-
tors. For every ε > 0, K compact, pick a (K, ε)-invariant vector, and let ϕε,K be
the corresponding coefficient. Then ϕε,K → 1 when ε→ 0 and K becomes big.

(iii)⇒(i): let (ϕi) be a net of continuous, positive definite normalized C0 func-
tions on G, tending to 1 uniformly on compact subsets. By the GNS Construction
(Proposition 0.18), we can associate to ϕ a real Hilbert space Hi, a vector ξi such
that ϕi(g) = 〈π(g)ξi, ξi〉 for all g ∈ G, and we can ask πi to be C0. Note that
‖ξi‖ = 1 since ϕi is normalized. Then G acts on the direct Hilbertian sum

⊕
i∈I Hi

through
⊕

i∈I πi. This representation almost has invariant vectors, and is C0.
The equivalence between (ii) and (iv) is similar to that between (i) and (iii),

proving all equivalences. Note that (ii)⇒(i) is immediate, and its converse can also
be proved by a complexification argument. �

Proposition 0.22 shows that the Haagerup Property can be indifferently defined
for unitary or orthogonal representations.

The same holds for relative Property (T), using a complexification argument.
However, in full generality, only one implication is known.

Proposition 0.23. Let G be a topological group, and H a subgroup. Consider the
following properties.

(i) (G,H) has relative Property (T).

(ii) For every net (ϕi) of continuous, normalized positive definite functions on G
converging to 1 uniformly on compact subsets, the convergence is uniform on
H.

Then (ii)⇒(i), and the converse is true when G is locally compact, σ-compact.

Actually, the known proofs of (i)⇒(ii) pass through relative Property (FH), and
that is why G locally compact, σ-compact is needed.

In Chapter 2, we will use (ii) rather than (i) as definition of relative Property (T).

0.4 Stability Properties

Lemma 0.24. Let G be a locally compact group with the Haagerup Property, and
let H be a closed subgroup. Then H has the Haagerup Property.

This immediately follows from the definition. Note that the corresponding state-
ment for a-T-menable groups is also trivial.

Proposition 0.25. Let G be a locally compact group. Then G has the Haagerup
Property if and only if every open, compactly generated subgroup of G has the
Haagerup Property.
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Proof : The proof is the same as in [CCJJV01, Proposition 6.1.1], except that we do
not suppose σ-compactness. We use the characterization in terms of positive definite
functions. Let K be a compact subset of G, and let ε > 0. Then K is contained in an
open, compactly generated subgroup H of G. Since H has the Haagerup Property,
there exists a real-valued C0 positive definite function ϕ on H which is ≥ 1 − ε on
K. The function ϕ̃ on G which coincides with ϕ on H and is zero outside is positive
definite and C0 on G, and ≥ 1 − ε on K. This ends the proof. �

Proposition 0.26 ([CCJJV01, Proposition 6.1.5]). Let G be a locally compact
group, and let H be a closed subgroup which is co-Følner in G, i.e. there exists a
G-invariant mean on G/H. If H has the Haagerup Property, then so does G.

This applies when H has finite covolume. Another application is the case when
H is normal in G. This gives:

Corollary 0.27. Let 1 → N → G → Q → 1 be an extension of locally compact
groups. Suppose that N has the Haagerup Property and that Q is amenable. Then
G also has the Haagerup Property.
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Chapter 1

Kazhdan and Haagerup Properties in
algebraic groups over local fields

1.1 Lie algebras and minimal s-subalgebras

In the sequel, all Lie algebras are finite-dimensional over a field of characteristic
zero, denoted by K, or K when it is a local field. If g is a Lie algebra, denote by
rad(g) its radical and Z(g) its centre, Dg its derived subalgebra, and Der(g) the Lie
algebra of all derivations of g. If h1, h2 are Lie subalgebras of g, [h1, h2] denotes the
Lie subalgebra generated by the brackets [h1, h2], (h1, h2) ∈ h1 × h2.

Let g be a Lie algebra with radical rad(g) = r and semisimple Levi factor s (so
that g ≃ s ⋉ r). We focus here on aspects of g related to the action of s. This
suggests the following definitions.

If s is a Lie algebra, we define a Lie s-algebra to be a Lie algebra n endowed with
a morphism i : s → Der(n), defining a completely reducible linear action of s on n.
(This latter technical condition is empty if s is semisimple.)

A Lie s-algebra n naturally embeds in the semidirect product s ⋉ n, so that we
write i(s)(n) = [s, n] for s ∈ s, n ∈ n.

By the trivial irreducible module of s we mean a one-dimensional vector space
endowed with a trivial action of s. We say that a module (over a Lie algebra or
over a group) is full if it is completely reducible and does not contain the trivial
irreducible module.

Definition 1.1. Let s be a Lie algebra. We say that a Lie s-algebra n is minimal if
[s, n] 6= 0, and for every s-subalgebra n′ of n, either n′ = n or [s, n′] = 0.

Note that, clearly, a Lie s-algebra n satisfying [s, n] 6= 0 contains a minimal
s-subalgebra. We establish the following characterization of minimal s-algebras:

Theorem 1.2. Let s be a Lie algebra. A solvable Lie s-algebra n is minimal if and
only if it satisfies the following conditions 1), 2), 3), and 4):

1) n is 2-nilpotent (that is, [n, Dn] = 0).
2) [s, n] = n.
3) [s, Dn] = 0.
4) n/Dn is irreducible as a s-module.
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Definition 1.3. We call a solvable Lie s-algebra n almost minimal if it satisfies
conditions 1), 2), and 3) of Theorem 1.2.

This definition has the advantage to be invariant under field extensions. Note
that an almost minimal solvable Lie s-algebra n automatically satisfies the following
Condition 4’): n/Dn is a full s-module.

Proposition 1.4. Let n be a solvable Lie s-algebra.
1) The Lie s-subalgebra [s, n] is an ideal in n (and also in s ⋉ n), and [s, [s, n]] =

[s, n].
2) If, moreover, [s, Dn] = 0, then [s, n] is an almost minimal Lie algebra (see

Definition 1.3).

Proof : 1) Let v be the subspace generated by the brackets [s, n], (s, n) ∈ s × n.
Since the action of s is completely reducible (see the definition of Lie s-algebra), it is
immediate that [s, n] and [s, [s, n]] both coincide with the Lie subalgebra generated
by v. Then, using Jacobi identity,

[n, [s, n]] = [n, [s, [s, n]]] ⊆ [s, [n, [s, n]]] + [[s, n], [s, n]] ⊆ [s, [n, n]] + [s, n] ⊆ [s, n].

2) Let z be the linear subspace generated by the commutators [v, w], v, w ∈ v.
By Jacobi identity,

[v, z] = [[s, v], z] ⊆ [[s, z], v] + [s, [v, z]] ⊆ [[s, Dn], v] + [s, Dn] = 0.

Thus, the subspace n′ = v ⊕ z is a 2-nilpotent Lie s-subalgebra of n. The Lie
subalgebra [s, n′] contains v, hence also contains z, so [s, n′] is equal to n′. Thus
Conditions 1) and 2) of Definition 1.3 are satisfied, while Condition 3) follows im-
mediately from the hypothesis [s, Dn] = 0. �

Proof of Theorem 1.2. Suppose that the four conditions are satisfied. Condition 4
implies n 6= 0. Then Condition 2 implies [s, n] = n 6= 0. Let n′ ⊆ n be a s-subalgebra.
Then, by irreducibility (Condition 4), either Dn + n′ = Dn or Dn + n′ = n. In the
first case, n′ centralizes s. In the second case, n = [s, n] = [s, n′ +Dn] = [s, n′] ⊆ n′,
using Conditions 1 and 2, and the fact that n′ is a s-subalgebra.

Conversely, suppose that n is minimal. Since n is solvable, Dn is a proper s-
subalgebra, so that, by minimality, [s, Dn] = 0. By Proposition 1.4, [s, n] is a nonzero
almost minimal Lie s-subalgebra of n, hence satisfies 1), 2), 3). The minimality
implies that 4) is also satisfied. �

The classification of (almost) minimal solvable Lie s-algebras can be deduced
from the classification of irreducible s-modules. Let v be a full s-module (equiva-
lently, an abelian Lie s-algebra satisfying [s, v] = v). Recall that a bilinear form
ϕ on v is called s-invariant if it satisfies ϕ([s, v], w) + ϕ(v, [s, w]) = 0 for all s ∈ s,
v, w ∈ v. Let Bils(v) (resp. Alts(v)) denote the space of all s-invariant bilinear (resp.
alternating bilinear) forms on v. Denote by Alts(v)∗ the linear dual of Alts(v).
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Definition 1.5. We define the Lie s-algebra h(v) as follows: as a vector space,
h(v) = v ⊕ Alts(v)∗; it is endowed with the following bracket:

[(x, z), (x′, z′)] = (0, ex,x′) x, x′ ∈ v z, z′ ∈ Alts(v)∗

where ex,x′ ∈ Alts(v)∗ is defined by ex,x′(ϕ) = ϕ(x, x′).

This is a 2-nilpotent Lie s-algebra under the action [s, (x, z)] = ([s, x], 0), which
is almost minimal. Other almost minimal Lie s-algebras can be obtained by taking
the quotient by a linear subspace of the centre. The following theorem states that
this is the only way to construct almost minimal solvable Lie s-algebras.

Theorem 1.6. If n is an almost minimal solvable Lie s-algebra, then it is isomorphic
(as a s-algebra) to h(v)/Z, for some full s-module v and some subspace Z of Alts(v)∗.
It is minimal if and only if v is irreducible.

Moreover, the almost minimal s-algebras h(v)/Z and h(v)/Z ′ are isomorphic if
and only if Z ′ and Z are in the same orbit for the natural action of Auts(v) on the
Grassmannian of Alts(v)∗.

Remark 1.7. If s is semisimple, s ⋉ h(v) is the universal central extension of the
perfect Lie algebra s ⋉ v.

Proof of Theorem 1.6. Let n be an almost minimal solvable Lie s-algebra. Let
v be the subspace generated by the brackets [s, n], (s, n) ∈ s × n. Since n is almost
minimal, v is a complementary subspace of Dn, and is a full s-module. If u ∈ Dn∗,
consider the alternating bilinear form φu on v defined by φu(x, y) = u([x, y]). This
defines a mapping Dn∗ → Alts(v) which is immediately seen to be injective. By
duality, this defines a surjective linear map Alts(v)∗ → Dn, whose kernel we denote
by Z. It is immediate from the definition of h(v) that this map extends to a surjective
morphism of Lie s-algebras h(v) → n with kernel Z. This proves that n is isomorphic
to h(v)/Z.

The second assertion is immediate.
The third assertion follows from the proof of the first one, where we made no

choice. Namely, take an isomorphism ψ : h(v)/Z → h(v)/Z ′. It gives by restriction
an s-automorphism ϕ of v, which induces a unique automorphism ϕ̃ of h(v). Let p
and p′ denote the natural projections in the following diagram of Lie s-algebras:

h(v)
p−−−→ h(v)/Z

ϕ̃

y
yψ

h(v) −−−→
p′

h(v)/Z ′

This diagram is commutative: indeed, p′ ◦ ϕ̃ and ψ ◦ p coincide in restriction to v,
and v generates h(v) as a Lie algebra. This implies Z = Ker(ψ ◦ p) = Ker(p′ ◦ ϕ̃) =
ϕ̃−1(Z ′). �

Assume that s = sl2. This case is essential in view of Theorem 1.6, and there is
a simple description for it. Up to isomorphism, there exists exactly one irreducible
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s-module vn of dimension n for every n ≥ 1. Since vn is absolutely irreducible
for all n, by Schur’s Lemma, Bils(vn) is at most one dimensional for all n. In
fact, it is one-dimensional. Indeed, take the usual basis (H,X, Y ) of sl2 satisfying
[H,X] = 2X, [H,Y ] = −2Y , [X,Y ] = H, and take the basis (e0, . . . , en−1) of vn
so that H.ei = (n − 1 − 2i)ei, X.ei = (n − i)ei−1, and Y.ei = (i + 1)ei+1, with the
convention e−1 = en = 0. Then Bils(vn) is generated by the form ϕn defined by

ϕn(ei, en−1−i) = (−1)i
(

i
n− 1

)
; ϕ(ei, ej) = 0 if i+ j 6= n− 1.

For odd n, ϕn is symmetric so that Alts(vn) = 0; for even n, ϕn is symplectic and
generates Alts(vn). For even n, denote by hn+1 the one-dimensional central extension
h(vn), well-known as the (n+ 1)-dimensional Heisenberg Lie algebra.

Thus, when s = sl2(K), Theorem 1.6 reduces as:

Proposition 1.8. Up to isomorphism, the minimal solvable Lie sl2-algebras are vn
and h2n−1 (n ≥ 2).

Let g be a Lie algebra, r its radical and s a semisimple factor. Write s = sc⊕ snc
by separating K-anisotropic and K-isotropic factors1. The ideal sc ⋉ r does not
depend on the choice of s, and is sometimes called the amenable radical of g.

Definition 1.9. We call g M-decomposed if [snc, r] = 0. Equivalently, g is M-
decomposed if the amenable radical is a direct factor of g.

The interest in studying sl2-algebras lies in the following proposition.

Proposition 1.10. Let g be a Lie algebra, and keep notation as above. Suppose that
g is not M-decomposed. Then there exists a Lie subalgebra h of g which is isomorphic
to sl2 ⋉ vn or sl2 ⋉ h2n−1 for some n ≥ 2.

This result is essentially due to [CDSW05], where it is not explicitly stated, but
it is actually proved in the proof of Proposition 8.2 there (under the assumption
K = R, but their argument generalizes to any field of characteristic zero). This was
a starting point for the present chapter.

Proof of Proposition 1.10. Since snc is semisimple andK-isotropic, it is generated
by its subalgebras K-isomorphic to sl2. Since [snc, r] 6= 0, this implies that there
exists some subalgebra s′ of snc which is K-isomorphic to sl2 and such that [s′, r] 6=
0. Then the result is clear from Proposition 1.8. Notice that the proof gives the
following slight refinement: h can be chosen so that rad(h) ⊆ rad(g). �

When K = R, another important case of Theorem 1.6 is s = so3. Since the
complexification of so3 is isomorphic to sl2(C), the irreducible complex s-modules
make up a family (dC

n ) (n ≥ 1); dimC(dC

n ) = n, which are the symmetric powers of
the natural action of su2 = so3 on C2.

1c and nc respectively stand for “non-compact” and “compact”; this is related to the fact that
if S is a simple algebraic group defined over the local field K, then its Lie algebra is K-isotropic if
and only if S(K) is not compact.
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If n = 2m+1 is odd, then this is the complexification of a real so3-module dR

2m+1

(of dimension n). If n = 2m is even, dC

n is irreducible as a 4m-dimensional real
so3-module, we call it u4m.

These two families (dR

2n+1) and (u4n) make up all irreducible real so3-modules.

Proposition 1.11. The irreducible real so3-modules make up two families: a family
(dR

2n+1) of (2n+1)-dimensional modules (n ≥ 0), absolutely irreducible, and a family
(u4n) of 4n-dimensional modules (n ≥ 1), not absolutely irreducible, preserving a
quaternionic structure. �

Since (dR

2n+1) is absolutely irreducible, the space of invariant bilinear forms on
(dR

2n+1) is generated by a scalar product, so that Altso3
(dR

2n+1) = 0
On the other hand, Altso3

(u4n) is three-dimensional, and is spanned by the imag-
inary parts of an invariant quaternionic hermitian form.

In order to classify the minimal solvable so3-algebras, we must determine the
orbits of the natural action of Autso3

(u4n) on Altso3
(u4n). It is a standard fact

that Autso3
(u4n) is isomorphic to the group of nonzero quaternions, that Altso3

(u4n)
naturally identifies with the set of imaginary quaternions, and that the action of
Autso3

(u4n) on Altso3
(u4n) is given by conjugation of quaternions. This implies that

it acts transitively on each component of the Grassmannian.
For i = 0, 1, 2, 3, let Zi be a fixed (3− i)-dimensional linear subspace of Alts(v)∗.

Denote by hui4n the minimal Lie so3-algebra h(u4n)/Zi; of course, hu0
4n = u4n and

hu3
4n = h(u4n).

Proposition 1.12. Up to isomorphism, the minimal solvable Lie so3(R)-algebras
are dR

2n+1 (n ≥ 1) and hui4n (n ≥ 1, i = 0, 1, 2, 3). �

There is a statement analogous to Proposition 1.10.

Proposition 1.13. Let g be a Lie algebra over R. Suppose that [sc, r] 6= {0}. Then
g has a Lie subalgebra which is isomorphic to either so3 ⋉ dR

2n+1 or so3 ⋉ hui4n for
some i = 0, 1, 2, 3 and some n ≥ 1. �

Combining Propositions 1.10 and 1.13, we obtain the following result.

Proposition 1.14. Let g be a Lie algebra over R. Suppose that [s, r] 6= {0}. Then
g has a Lie subalgebra which is isomorphic one of the following:

• sl2 ⋉ vn for some n ≥ 2,

• sl2 ⋉ h2n−1 for some n ≥ 2,

• so3 ⋉ dR

2n+1 for some n ≥ 1, or

• so3 ⋉ hui4n for some i = 0, 1, 2, 3 and some n ≥ 1. �
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1.2 Corresponding results for algebraic groups and

connected Lie groups

1.2.1 Minimal algebraic subgroups

We now give the corresponding statements and results for algebraic groups.
Let S be a reductive K-group. A K-S-group means a linear K-group endowed

with a K-action of S by automorphisms.
Recall that the Lie algebra functor gives an equivalence of categories between

the category of unipotent K-groups and the category of nilpotent Lie K-algebras. If
S is semisimple and simply connected with Lie algebra s, it induces an equivalence
of categories between the category of unipotent K-S-groups and the category of
nilpotent Lie S-algebras over K. If S is not simply connected (in particular, if S
is not semisimple), this is no longer an essentially surjective functor, but it remains
fully faithful.

A minimal (resp. almost minimal) solvable S-group N is defined similarly as in
the case of Lie algebras; since it satisfies [S,N ] = N , it is automatically unipotent.
Moreover, N is a minimal (resp. almost minimal) solvable K-S-group if and only
if its Lie algebra n is a minimal (resp. almost minimal) solvable Lie s-algebra.
Proposition 1.4 and Theorem 1.2 also immediately carry over into the context of
algebraic groups.

If S is reductive and V is a K-S-module, we define the unipotent K-S-group
H(V ) as follows: as a variety, H(V ) = V ⊕AltS(V )∗; it is endowed with the following
group law:

(x, z)(x′, z′) = (x+ x′, z + z′ + ex,x′) x, x′ ∈ V z, z′ ∈ AltS(V )∗ (1.2.1)

where ex,x′ ∈ AltS(V )∗ is defined by ex,x′(ϕ) = ϕ(x, x′). This is a K-S-group under
the action s.(x, z) = (s.x, z). It is clear that its Lie algebra is isomorphic as a Lie
K-S-algebra to h(v), where V = v is viewed as a s-module. Here is the analog of
Theorem 1.6.

Theorem 1.15. If N is an almost minimal solvable K-S-group, then it is isomorphic
(as a K-S-group) to H(V )/Z, for some full K-S-module V and some K-subspace
Z of AltS(V )∗. It is minimal if and only if V is irreducible.

Moreover, the almost minimal K-S-groups H(V )/Z and H(V )/Z ′ are isomorphic
if and only if Z ′ and Z are in the same orbit for the natural action of AutS(V ) on
the Grassmannian of AltS(V )∗.

1.2.2 The example SL2

The simply connected K-group with Lie algebra sl2 is SL2. Denote by Vn and H2n−1

the SL2-groups corresponding to vn and h2n−1. These are the solvable minimal SL2-
groups over K. The only non-simply connected K-group with Lie algebra sl2 is the
adjoint group PGL2; thus the minimal solvable PGL2-groups over K are V2n−1 for
n ≥ 2.
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Remark 1.16. It is convenient, in algebraic groups, to deal with the unipotent radi-
cal rather than with the radical. It is straightforward to see that a reductive subgroup
S of a linear algebraic group centralizes the radical if and only if it centralizes the
unipotent radical. Indeed, suppose [S,Ru] = 1. We always have [S,R/Ru] = 1 since
R/Ru is central in G0/Ru and S is connected (G0 denoting the unit component of
G). Since S is reductive, this implies that S acts trivially on R.

Let G be a linear algebraic group over the field K of characteristic zero, R its
radical, S a Levi factor, decomposed as SncSc by separating K-isotropic and K-
anisotropic factors.

Proposition 1.17. Suppose that [Snc, R] 6= 1. Then G has a K-subgroup which is
K-isomorphic to either SL2 ⋉ Vn, PGL2 ⋉ V2n−1, or SL2 ⋉H2n−1 for some n ≥ 2.

Let us mention the translation into the context of connected Lie groups, which
is immediate from the Lie algebraic version.

Proposition 1.18. Let G be a real Lie group. Suppose that [Snc, R] 6= 1. Then
there exists a Lie subgroup H of G which is locally isomorphic to SL2(R) ⋉ Vn(R)
or SL2(R) ⋉H2n−1(R) for some n ≥ 2.

Remark 1.19. 1) An analogous result holds with complex Lie groups.
2) The Lie subgroup H is not necessarily closed; this is due to the fact that

S̃L2(R) and H2n−1(R) have noncompact centre. For instance, take an element z of
the centre of H that generates an infinite discrete subgroup, and take the image of
H in the quotient of H × R/Z by (z, α), where α is irrational.

3) It can easily be shown that, if the Lie group G is linear, then the subgroup
H is necessarily closed. In a few words, this is because the derived subgroup of the
radical is unipotent, hence simply connected, and the centre of the semisimple part
is finite.

1.2.3 The example SO3

We go on with the notation introduced before Proposition 1.11. In the context
of algebraic R-groups as in the context of connected Lie groups, the simply con-
nected group corresponding to so3(R) is SU(2). The only non-simply connected
corresponding group is SO3(R).

The irreducible SU(2)-modules corresponding to dR

2m+1 and u4n are denoted by
DR

2n+1 and U4n. Among those, only DR

2n+1 provide SO3(R)-modules.
Denote by HU i

4n the unipotent R-group corresponding to hui4n, i = 0, 1, 2, 3.

Remark 1.20. It can be shown that the maximal unipotent subgroups of Sp(n, 1)
are isomorphic to HU3

4n.

Proposition 1.21. Up to isomorphism, the minimal solvable Lie SO3(R)-algebras
are DR

2n+1 for n ≥ 1; the other minimal solvable Lie SU(2)-algebras are HU i
4n, for

n ≥ 1, i = 0, 1, 2, 3. �
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Proposition 1.22. Let G be a linear algebraic R-group. Suppose that [Sc, R] 6= 1.
Then G has a R-subgroup which is R-isomorphic to either SU(2)⋉DR

2n+1, SO3(R)⋉
DR

2n+1, or SU(2) ⋉HU i
4n for some i = 0, 1, 2, 3 and some n ≥ 1.

Let G be a real Lie group. Suppose that [Sc, R] 6= 1. Then G has a Lie subgroup
which is locally isomorphic to either SU(2) ⋉ DR

2n+1 or SU(2) ⋉ HU i
4n for some

i = 0, 1, 2, 3 and some n ≥ 1. �

1.3 The Haagerup Property

We provide corresponding statements for Proposition 1.10 in the realm of algebraic
groups and connected Lie groups. As a consequence, using Proposition 1.17, we get
the following theorem, which was the initial motivation for the results above.

Theorem 1.23. Let G be either a connected Lie group, or G = G(K), where G is
a linear algebraic group over the local field K of characteristic zero. Let g be its Lie
algebra. The following are equivalent.

(i) G has Haagerup’s property.

(ii) For every noncompact closed subgroup H of G, (G,H) does not have relative
Property (T).

(iii) The following conditions are satisfied:

– g is M-decomposed.

– All simple factors of g have K-rank ≤ 1.

– (in the case of Lie groups or when K = R) No simple factor of g is
isomorphic to sp(n, 1) (n ≥ 2) or f4(−20).

(iv) g contains no isomorphic copy of any one of the following Lie algebras

– sl2 ⋉ vn or sl2 ⋉ h2n−1 for some n ≥ 2,

– (in the case of Lie groups or when K = R) sp(2, 1).

Another proof of the equivalence between (i), (ii) and (iii) will be given in Chapter
2, Corollary 2.49. In the case of connected Lie groups, it was already proved, in a
different way, in [CCJJV01, Chap. 4].

Remark 1.24. The notion of M-decomposed (real) Lie algebras also appears in
other contexts: heat kernel on Lie groups [Var96], Rapid Decay Property [CPS05],
weak amenability [CDSW05].

Let us proceed to the proof of Theorem 1.23. We need some preliminary results.

Proposition 1.25. Let K be a local field of characteristic zero and n ≥ 1.
Then the pairs (SL2(K) ⋉ Vn(K), Vn(K)), (PGL2(K) ⋉ Vn(K), Vn(K)), (SL2(K) ⋉

Hn(K), Hn(K)), (S̃L2(R)⋉Vn(R), Vn(R)), and (S̃L2(R)⋉Hn(R), Hn(R)) have rel-
ative Property (T).
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Proof : This follows from Theorem 2.46 in Chapter 2. However, to make the
chapters independent, we include a sketch of proof.

The first (and the fourth) case is well-known; it follows, for instance, from
Furstenberg’s theory [Fur76] of invariant probabilities on projective spaces, which
implies that SL2(K) does not preserve any probability on Vn(K) (more precisely, on
its Pontryagin dual) other than the Dirac measure at zero. See, for instance, the
proof of [HaVa89, Chap. 2, Proposition 2]. The second case is an immediate conse-
quence of the first. For the third (resp. fifth) case, we invoke [CCJJV01, Proposition
4.1.4], with S = SL2(K), N = Hn(K), even if the hypotheses are slightly different
(unless K = R or C): the only modification is that, since here [N,S] is not neces-
sarily connected, we must show that its image in the unitary group Un is connected
so as to justify Lie’s Theorem. Otherwise, it would have a nontrivial finite quo-
tient. This is a contradiction, since [N,S] is generated by divisible elements; this is
clear, since, as the group of K-points of an unipotent group, it has a well-defined
logarithm. �

Corollary 1.26. Let G be either a connected Lie group, or G = G(K), where G

is a linear algebraic group over the local field K of characteristic zero. Suppose
that the Lie algebra g of G contains a subalgebra h isomorphic to either sl2 ⋉ vn or
sl2 ⋉ h2n−1 for some n ≥ 2. Then G has a noncompact closed subgroup with relative
Property (T). In particular, G does not have Haagerup’s property.

Proof : Let us begin by the case of algebraic groups. By [Bor91, Chap. II, Corollary
7.9], since h is perfect, it is the Lie algebra of a closed K-subgroup H of G. Since H
must be K-isomorphic to either SL2 ⋉ Vm, PGL2 ⋉ V2m−1, or SL2 ⋉H2m−1 for some
m ≥ 2, Proposition 1.25 implies that G(K) has a noncompact closed subgroup with
relative Property (T).

In the case of Lie groups, we obtain a Lie subgroup which is the image of an

immersion i of S̃L2(R) ⋉N , where N is either Vn(R) or H2n−1(R), for some n ≥ 2,
into G. By Proposition 1.25, (G, i(N)) has Property (T). We claim that i(N) is not
compact. Suppose the contrary. Then it is solvable and connected, hence it is a
torus. It is normal in the closure H of i(G). Since the automorphism group of a
torus is totally disconnected, the action by conjugation of H on i(N) is trivial; that
is, i(N) is central in H. This is a contradiction. �

Proof of Theorem 1.23. As already noticed in Chapter 0, (i)⇒(ii) is
immediate from the definition of relative Property (T). We are going to prove
(ii)⇒(iv)⇒(iii)⇒(i).

For the implication (iii)⇒(i), in the algebraic case, G is isomorphic, up to a
finite kernel, to Snc(K)×Mr(K), where Mr denotes the amenable radical of G. The
group Mr(K) is amenable, hence has Haagerup’s property. The group Snc(K) also
has Haagerup’s property: if K is Archimedean, it maps, with finite kernel, onto a
product of groups isomorphic to PSO0(n, 1) or PSU(n, 1) (n ≥ 2), and these groups
have Haagerup’s property, by a result of Faraut and Harzallah, see [BHV05, Chap.
2]. If K is non-Archimedean, then Snc(K) acts properly on a product of trees (one
for each simple factor) [BoTi], and this also implies that it has Haagerup’s property
[BHV05, Chap. 2].
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The same argument also works for connected Lie groups when the semisimple
part has finite centre; in particular, this is fulfilled for linear Lie groups and their
finite coverings. The case when the semisimple part has infinite centre is considerably
more involved, see [CCJJV01, Chap. 4].

(ii)⇒(iv) Suppose that (iv) is not satisfied. If g contains a copy of sl2⋉vn or sl2⋉
h2n−1 for some n ≥ 2, then, by Corollary 1.26, G does not satisfy (ii). If K = R, we
consider G as a Lie group with finitely many components. By a standard argument,
since Sp(2, 1) is simply connected with finite centre (of order 2), an embedding of
sp(2, 1) into g corresponds to a closed embedding of Sp(2, 1) or PSp(2, 1) into G.
Since Sp(2, 1) has Property (T) [BHV05, Chap. 3], this contradicts (ii).

(iv)⇒(iii) If g is not M-decomposed, then, by Proposition 1.10, it contains a copy
of sl2 ⋉ vn or sl2 ⋉ h2n−1 for some n ≥ 2.

If g has a simple factor s, then s embeds in g through a Levi factor. If s has
K-rank ≥ 2, then it contains a subalgebra isomorphic to either sl3 or sp4 [Mar91,
Chap I, (1.6.2)], and such a subalgebra contains a subalgebra isomorphic to sl2 ⋉ v2

(resp. sl2 ⋉ v3) [BHV05, 1.4 and 1.5].
Finally, if K = R and s is isomorphic to either sp(n, 1) for some n ≥ 2 or f4(−20),

then it contains a copy of sp(2, 1). �

Remark 1.27. Conversely, sp(n, 1) does not contain any subalgebra isomorphic to
sl2 ⋉ vn or sl2 ⋉ h2n−1 for any n ≥ 2; this can be shown using results of [CDSW05]
about weak amenability.

We now use Proposition 1.12 to prove (ii)⇒(i) in the following result (while the
reverse implication is essentially due to [GHW05, §5, Theorem 4]).

Theorem 1.28. Let G be a connected Lie group. Then the following are equivalent:
(i) G is locally isomorphic to SO3(R)a × SL2(R)b × SL2(C)c ×R, for a solvable Lie
group R and integers a, b, c.
(ii) G has Haagerup’s property (when endowed with the discrete topology).

Remark 1.29. Assertion (i) of Theorem 1.28 is equivalent to: (ii’) The complexi-
fication gC of g is M-decomposed, and its semisimple part is isomorphic to sl2(C)n

for some n.

For instance, SO3(R) ⋉ R3 has a countable subgroup which does not have
Haagerup’s property. An explicit example is given by SO3(Z[1/p]) ⋉ Z[1/p]3. It
can also be shown that this group has no infinite subgroup with relative Property
(T). This answers an open question in [CCJJV01, Section 7.1]. This group is not
finitely presented (this is a consequence of [Abe87, Theorem 2.6.4]); we give a similar
example in Remark 1.34 which is, in addition, finitely presented.

We need some preliminary observations in view of the proof of Theorem 1.28.
Let us exhibit some subgroups in the groups provided by Propositions 1.17 and 1.22.

Observation 1.30. Let G denote SL2 ⋉ Vn, PGL2 ⋉ V2n−1, or SL2 ⋉ H2n−1 for
some n ≥ 2, and R its radical. Then, for every field K of characteristic zero, G(K)
containsG(Z) as a subgroup. On the other hand, the pair (G(Z), R(Z)) has Property
(T), this is because G(Z) is a lattice in G(R).
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Observation 1.31. Now, let G denote SU(2)⋉DR

2n+1, SO3(R)⋉DR

2n+1, or SU(2)⋉
HU i

4n for some i = 0, 1, 2, 3. These groups are all defined over Q: this is obvious at
least for all but SU(2)⋉HU i

4n for i = 1, 2; for these two, this is because the subspace
Zi can be chosen rational in the definition of HU i

4n.
Let R be the radical of G and S a Levi factor defined over Q. Let F be a number

field of degree three over Q, not totally real. Let O be its ring of integers. Then
G(O) embeds diagonally as an irreducible lattice in G(R) × G(C). Its projection
Γ in G(R) does not have Haagerup’s property, since otherwise G(C) would also
have Haagerup’s property by Proposition 0.26, and this is excluded since it does
not satisfy [Snc, R] = 1, see Proposition 1.26 (the anisotropic Levi factor becomes
isotropic after complexification).

Proposition 1.32. Let G be a real Lie group, R its radical, S a semisimple factor.
Suppose that [S,R] 6= 1. Then G has a countable subgroup without Haagerup’s
property.

Proof : First case: [Snc, R] 6= 1. Then, by Proposition 1.18, G has a Lie subgroup

H isomorphic to a quotient of H̃ = S̃L2(R) ⋉R(R) by a discrete central subgroup,
where R = Vn or H2n−1, for some n ≥ 2. Denote by H̃(Z) the inverse image of
SL2(Z) ⋉R(Z) in H̃. By the observation above, (H̃(Z), R(Z)) has Property (T), so
that its image in H, which we denote by H(Z), satisfies (H(Z), RG(Z)) has Property
(T), where RG(Z) means the image of R(Z) in G. Observe that RG(Z) is infinite: if
R = Vn, this is Vn(Z); if R = H2n−1, this is a quotient of H2n−1(Z) by some central
subgroup. Accordingly, H(Z) does not have Haagerup’s property.

Second case: [Sc, R] 6= 1. By Proposition 1.22, G has a Lie subgroup H isomor-
phic to a central quotient of SU(2)(R) ⋉ R, where R = DR

2n+1 or HU i
4n, for some

n ≥ 1 and i = 0, 1, 2, 3.
First suppose that the radical of H is simply connected. Then, by Observation

1.31, H has a subgroup without the Haagerup property.
Now, let us deal with the case when H = H̃/Z, where Z is a discrete central

subgroup. Then H̃ has a subgroup Γ as above which does not have Haagerup’s
property. Let W denote the centre of H̃. The kernel of the projection of Γ to H
is given by Γ ∩ Z. We use the following trick: we apply an automorphism α of H̃
such that α(Γ) ∩ Z is finite. It follows that the image of α(Γ) in H does not have
Haagerup’s property.

This allows to suppose that Γ∩Z is finite, so that the image of Γ in H does not
have Haagerup’s property. Let us construct such an automorphism.

Observe that the representations of SU(2) can be extended to the direct product
R∗×SU(2) by making R∗ act by scalar multiplication. This action lifts to an action
of R∗ × SU(2) on HU i

4n, where the scalar a acts on the derived subgroup of HU i
4n

by multiplication by a2.
Now, working in the unit component of the centre W of H̃, which we treat as a

vector space, we can take a so that a2 · (Γ∩W ) avoids Z ∩W (a clearly exists, since
Γ and Z are countable). �

If G is a topological group, denote by Gd the group G endowed with the discrete
topology.
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Proof of Theorem 1.28. We remind that we must prove, for a connected Lie
group G, the equivalence between

(i) G is locally isomorphic to SO3(R)a×SL2(R)b×SL2(C)c×R, with R solvable
and integers a, b, c, and

(ii) Gd has Haagerup’s property.
The implication (i)⇒(ii) is, essentially, a deep and recent result of Guentner,

Higson, and Weinberger [GHW05, §5, Theorem 4], which implies that (PSL2(C))d
has Haagerup’s property. Let G be as in (i), and S its semisimple factor. Then G/S
is solvable, so that, by Proposition 0.26, we can reduce to the case when G = S.
Now, let Z be the centre of the semisimple group G, and embed Gd in (G/Z)d ×G,
where Gd means G endowed with the discrete topology. This is a discrete embedding.
Since G has Haagerup’s property, this reduces the problem to the case when G has
trivial centre. So, we are reduced to the cases of SO3(R), PSL2(R), and PSL2(C).
The two first groups are contained in the third, so that the result follows from the
Guentner-Higson-Weinberger Theorem.

Conversely, suppose that G does not satisfy (i).
If [S,R] 6= 1, then, by Proposition 1.32, Gd does not have Haagerup’s property.

Otherwise, observe that the simple factors allowed in (i) are exactly those of geo-
metric rank one (viewing SL2(C) as a complex Lie group). Hence, S has a factor
W which is not of geometric rank one. Then the result is provided by Lemma 1.33
below. �

Lemma 1.33. Let S be a simple Lie group which is not locally isomorphic to
SO3(R), SL2(R) or SL2(C). Then Sd does not have Haagerup’s property.

Proof : Let Z be the centre of S, so that S/Z ≃ G(R) for some R-algebraic group
G. By assumption, G(C) has factors of higher rank, hence does not have Haagerup’s
property. Let F be a number field of degree three over Q, not totally real. Let O
be its ring of integers. Then G(O) embeds diagonally as an irreducible lattice in
G(R) × G(C), and is isomorphic to its projection in G(R). Let Γ be the inverse
image in S×G(C) of G(O). Then Γ is a lattice in S×G(C). Hence, by [CCJJV01,
Proposition 6.1.5], Γ does not have Haagerup’s property. Note that the projection
Γ′ of Γ into S has finite kernel, contained in the centre of G(C). So Γ′ neither has
Haagerup’s property, and is a subgroup of S. �

Remark 1.34. Theorem 1.28 is no longer true if we replace the statement “Gd has
Haagerup’s property” by “Gd has no infinite subgroup with relative Property (T)”.
Indeed, let G = K ⋉ V , where K is locally isomorphic to SO3(R)n and V is a
vector space on which K acts nontrivially. Suppose that (Gd, H) has Property (T)
for some subgroup H. Then (Gd/V,H/(H ∩ V )) has Property (T). In view of the
Guentner-Higson-Weinberger Theorem (see the proof of Theorem 1.28), H/(H ∩V )
is finite. On the other hand, since G has Haagerup’s property, H ∩ V must be
relatively compact, and this implies that H ∩ V = 1. Thus, H is finite.

Motivated by this example, it is easy to exhibit finitely generated groups without
the Haagerup Property and do not have infinite subgroups with relative Property
(T). For instance, let n ≥ 3, and q be the quadratic form

√
2x2

0+x2
1+x2

2+ · · ·+x2
n−1.

Let G(R) = SO(q)(R) ⋉ Rn and write, for any commutative Q(
√

2)-algebra R,
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H(R) = SO(q)(R). Then Γ = G(Z[
√

2]) is such an example. The fact that Γ has no
infinite subgroup Λ with relative Property (T) can be seen without making use of the
Guentner-Higson-Weinberger Theorem: first observe that H(Z[

√
2]) is a cocompact

lattice in SO(n − 1, 1), hence has Haagerup’s property. So the projection of Λ in
H(Z[

√
2]) is finite. So, passing to a finite index subgroup if necessary, we can suppose

that Λ is contained in the subgroup Z[
√

2]n of Γ = SO(q)(Z[
√

2])⋉Z[
√

2]n. But then
the closure L of Λ in the subgroup Rn of the amenable group G(R) = SO(q)(R)⋉Rn

is not compact, and (G(R), L) has Property (T). This is a contradiction.
On the other hand, Γ does not have Haagerup’s property, since it is a lattice

in G(R) ⋉ Gσ(R) (use Proposition 0.26), where σ is the nontrivial automorphism
of Q(

√
2), and Gσ(R) ≃ SO(n− 1, 1) ⋉ Rn does not have Haagerup’s property, by

Corollary 1.26. Note that Γ, as a cocompact lattice in a connected Lie group, is
finitely presented.

We derive some other results with the help of Theorem 1.6.

Proposition 1.35. There exists a continuous family (gt) of pairwise non-isomorphic
real (or complex) Lie algebras satisfying the following properties:

(i) gt is perfect, and
(ii) the simply connected Lie group corresponding to gt has Property (T).

Note that Proposition 1.35 with only (i) may be of independent interest; we do
not know if it had already been observed. On the other hand, it is well-known
that there exist continuously many pairwise non-isomorphic complex n-dimensional
nilpotent Lie algebras if n ≥ 7.

Proposition 1.36. There exists a continuous family (Gt) of pairwise non-
isomorphic connected Lie groups with Property (T), and with isomorphic Lie al-
gebras.

Proof of Proposition 1.35. We must construct a continuous family of connected
Lie groups with Property (T) and with perfect and pairwise non-isomorphic Lie
algebras.

Consider s = sp2n(R) (n ≥ 2). Let vi, i = 1, 2, 3, 4 be four nontrivial absolutely
irreducible, s-modules which are pairwise non-isomorphic and all preserve a sym-
plectic form2. Then v =

⊕4
i=1 vi is a full s-module and Auts(v) =

∏4
i=1 Auts(vi) ≃

(R∗)4. In particular, Alts(v)∗ ≃ R4 and Auts(v) acts diagonally on it. The action
on the 2-Grassmannian, which is 4-dimensional, is trivial on the scalars, so that
its orbits are at most 3-dimensional. So there exists a continuous family (Pt) of 2-
planes in Alts(v)∗ which are in pairwise distinct orbits for the action of Auts(v). By
Theorem 1.15, the Lie s-algebras h(v)/Pt are pairwise non-isomorphic, and so the
Lie algebras gt = s ⋉ h(v)/Pt are pairwise non-isomorphic. The Lie algebras gt are
perfect, and the corresponding Lie groups Gt have Property (T): this immediately
follows from Wang’s classification [Wan82, Theorem 1.9]. �

2There exist infinitely many such modules, which can be obtained by taking large irreducible
components of the odd tensor powers of the standard 2n-dimensional s-module.
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Remark 1.37. These examples have 2-nilpotent radical. This is, in a certain sense,
optimal, since there exist only countably many isomorphism classes of Lie algebras
over R with abelian radical, and only a finite number for each dimension.

Proof of Proposition 1.36. We must construct a continuous family (Ht) of locally
isomorphic, pairwise non-isomorphic connected Lie groups with Property (T). The
proof is actually similar to that of Proposition 1.35. Use the same construction, but,
instead of taking the quotient Gt by Pt, take the quotient Ht by a lattice Γt of Pt. If
we take the quotient of Ht by its biggest compact normal subgroup Pt/Γt, we obtain
Gt. By the proof of Proposition 1.35, the groups Gt are pairwise non-isomorphic.
Accordingly, the groups Ht are pairwise non-isomorphic. �
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Chapter 2

Relative Kazhdan Property

Throughout this chapter, by morphism between topological groups we mean con-
tinuous group homomorphisms. If X is a Hausdorff topological space, Y ⊂ X is
relatively compact if its closure in X is compact.

2.1 Relative Property (T)

2.1.1 Property (T) relative to subsets

Definition 2.1. Let G be a locally compact group, and X any subset. We say
that (G,X) has relative Property (T) if, for every net (ϕi) of continuous normalized
positive definite functions which converges to 1 uniformly on compact subsets, the
convergence is uniform on X.

We say that (G,X) has relative Property (FH) if every continuous conditionally
definite negative function on G is bounded on X.

If ϕ is a positive definite function on G, then so is |ϕ|2. Thus, the definition
of relative Property (T) remains unchanged if we only consider real-valued positive
definite functions or even non-negative real-valued positive definite functions.

The definition of relative Property (FH) extends that given in Chapter 0 in the
case whenX is a subgroup. In the case of relative Property (T), the definitions do not
coincide; however we show below that they coincide for locally compact, σ-compact
groups. For general locally compact groups, we only know that the definition given
here implies that given in Chapter 0. In this chapter, we only deal with the definition
given here, which seems more tractable.

Question 2.2 ([AkWa81]). For a σ-compact locally compact group G, are the
following equivalent (the implication (1)⇒(2) being trivial):

(1) G is a-T-menable.
(2) For every X ⊂ G, (G,X) has relative Property (FH) if and only if X is

compact.

Remark 2.3. If G is locally compact but not σ-compact, (1) and (2) of Question
2.2 are not equivalent: (1) is always false, while a characterization of (2) is less clear.
For instance, if G is abelian, then (2) is fulfilled, but it is shown in Chapter 6 that
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if F is a non-nilpotent finite group, then FN, viewed as a discrete group, does not
satisfy (2); moreover, if F is perfect, then FN has Property (FH). On the other
hand, being locally finite, these groups are amenable, hence Haagerup.

It is maybe worth comparing Question 2.2 to the following result, essentially due
to [GHW05]:

Proposition 2.4. The locally compact, σ-compact group G is a-T-menable if and
only if there exists a family (ψn)n∈N of continuous conditionally negative def-
inite functions on G, such that, for every sequence (Mn) of positive numbers,
{g ∈ G, ∀n, ψn(g) ≤Mn} is compact.

Proof : The direct implication is trivial (take any proper function ψ, and ψn = ψ
for all n). Conversely, suppose the existence of a family (ψn) satisfying the condition.
Let (Kn) be an increasing sequence of compact subsets of G whose interiors cover
G. There exists a sequence (εn) such that εnψn ≤ 2−n on Kn. Set ψ =

∑
n εnψn;

since the series is convergent uniformly on compact subsets, ψ is well-defined and
continuous. Then, for every M <∞, the set {ψ ≤M} is contained in {g, ∀n, ψn ≤
M/εn}, which is, by assumption, compact. �

Definition 2.5 (Akemann, Walter [AkWa76]). A locally compact group has
the weak dual Riemann-Lebesgue Property if, for every ε, η > 0 and every compact
subset K of G, there exists a compact subset Ω of G such that, for every x ∈ G−Ω,
there exists a normalized, real-valued, positive definite1 function ϕ on G such that
ϕ(x) ≤ η and ‖1 − ϕ‖K∞ ≤ ε.

We use the following lemma several times in the sequel.

Lemma 2.6. Fix 0 < ε < 1. Let G be a locally compact group and X a subset. Then
(G,X) has relative Property (T) if and only if, for every net (ϕi) of normalized,
real-valued continuous positive definite functions which converges to 1 uniformly on
compact subsets, eventually |ϕi| > ε on X.

Proof : The forward implication is trivial. Suppose that (G,X) does not have rela-
tive Property (T). Then there exists a net (ϕi) of normalized, real-valued continuous
positive definite functions which converges to 1 uniformly on compact subsets, such
that α = supi infg∈X ϕi(g) < 1. Then, for some n ∈ N, αn < ε. Hence, (ϕni ) is a net
of normalized, continuous positive definite functions which converges to 1 uniformly
on compact subsets, but, for no i, |ϕni | > ε on X. �

Proposition 2.7. Let G be a locally compact group. Then G has the weak dual
Riemann-Lebesgue Property if and only if every subset X of G such that (G,X) has
relative Property (T) is relatively compact.

Proof : Suppose that G has the weak dual Riemann-Lebesgue Property. Let X be
a non-relatively compact subset of G.

1In [AkWa76], the assumption is Re(ϕ(x)) ≤ η, since they deal with complex-valued functions,
but, since, for every complex-valued function ϕ, if ϕ is positive definite, so is |ϕ|2, the definition
here is equivalent to theirs.
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For every i = (Ki, εi, ηi), with Ki a compact subset of G, and εi, ηi > 0, there
exists a compact subset Ωi of G, such that, for every x /∈ Ωi, there exists a normalized
positive definite function ϕ on G such that ϕ(x) ≤ ηi and ‖1 − ϕ‖Ki

∞ ≤ εi. Choose
xi ∈ X − Ωi, choose ϕi so that ϕi(xi) ≤ ηi and ‖1 − ϕi‖Ki

∞ ≤ εi. When i → ∞
(meaning that Ki becomes big and εi, ηi become small), ϕi tends to 1 uniformly on
compact subsets, but the convergence is not uniform on X since ϕi(xi) < ηi.

Conversely, suppose that G does not have the weak dual Riemann-Lebesgue
Property. There exist a compact K0 and ε0, η0 > 0 such that, if we write V0 = {ϕ
positive definite such that ‖1−ϕ‖K0

∞ ≤ ε0}, then X = {x ∈ G, ∀ϕ ∈ V0, ϕ(x) ≥ η0}
is not relatively compact. But V0 is a neighbourhood of 1 for the topology of uniform
convergence on compact subsets. Hence, using Lemma 2.6, (G,X) has relative
Property (T). �

The following result of [AkWa81] will also be a consequence of Proposition 2.7
and Theorem 2.16.

Theorem 2.8 (Akemann, Walter). Let G be a locally compact group. If G satis-
fies (2) of Question 2.2, then G has the weak dual Riemann-Lebesgue Property, and
the converse is true if G is σ-compact.

Question 2.9 ([AkWa81]). For locally compact groups, is the Haagerup Property
equivalent to the (a priori weaker) weak dual Riemann-Lebesgue Property?

Remark 2.10. It follows from Theorem 2.8 that Questions 2.2 and 2.9 are equivalent
for locally compact, σ-compact groups.

Remark 2.11. If (P) is either the Haagerup Property or the weak dual Riemann-
Lebesgue Property, then Property (P) is inherited by closed subgroups, and a locally
compact group has Property (P) if and only if all its open, compactly generated
subgroup have Property (P). For the Haagerup Property, this is proved in [CCJJV01,
Proposition 6.1.1]. For the weak dual Riemann-Lebesgue Property, this follows from
Proposition 2.7 and Theorem 2.30.

In particular, Question 2.9 reduces to the compactly generated case.

Definition 2.12. We say that G satisfies the TH alternative if it is either Haagerup,
or has a subset X with noncompact closure, such that (G,X) has relative Property
(T).

Question 2.9 becomes: does every locally compact group satisfy the TH alterna-
tive?

Remark 2.13. Here is an obstruction to the Haagerup Property for a locally com-
pact, compactly generated group G, which does not formally imply the existence
of a non-relatively compact subset with relative Property (T). Let w belong to the
Stone-Cech boundary βGrG of G. Let us say that (G,w) has relative Property (T)
if, for every conditionally negative definite function ψ on G, its canonical extension
ψ̃ : βG→ R+ ∪ {∞} satisfies ψ̃(w) <∞.

It is clear that relative Property (T) for (G,w) prevents G from being Haagerup.
On the other hand, there is no reason why this should imply the existence of a
non-relatively compact subset with relative Property (T).
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2.1.2 Various equivalences

Definition 2.14. Let G be a locally compact group and X ⊂ G. Given a unitary
representation π of G and ε ≥ 0, a (X, ε)-invariant vector for π is a nonzero vector
in the representation such that ‖π(g)ξ − ξ‖ ≤ ε‖ξ‖ for every g ∈ X.

Definition 2.15. Let G be a locally compact group, X,W subsets, ε, η > 0. We
say that (W, η) is a ε-Kazhdan pair for (G,X) if, for unitary representation π of
G which has a (W, η)-invariant vector, then π has a (X, ε)-invariant vector. Given
G,X,W, ε, if such η > 0 exists, we say that W is a ε-Kazhdan subset for (G,X).

The following result generalizes a result due to Jolissaint [Jol05] when X is a
subgroup. The notation 1 ≺ π means that the unitary representation π almost has
invariant vectors.

Theorem 2.16. Let G be a locally compact group, and X ⊂ G. Consider the
following properties.

(1) (G,X) has relative Property (T).

(2) For every ε > 0, there exists a compact ε-Kazhdan subset for (G,X).

(2’) For some ε <
√

2, there exists a compact ε-Kazhdan subset for (G,X).

(3) For every ε > 0 and every unitary representation π of G such that 1 ≺ π, π
has a (X, ε)-invariant vector.

(3’) For some ε <
√

2 and every unitary representation π of G such that 1 ≺ π, π
has a (X, ε)-invariant vector.

(4) (G,X) has relative Property (FH).

Then the following implications hold:

(1) +3 (2)

��

+3 (3)

��

(2′) +3 (3′) +3 (4).

Moreover, if G is σ-compact, then (4)⇒(1), so that they are all equivalent.

Proof : (1)⇒(2) Suppose the contrary. There exists ε > 0 such that, for every
(η,K), η > 0 and K ⊂ G compact, there exists a unitary representation πη,K of
G which has a (K, η)-invariant unit vector ξη,K , but has no (X, ε)-invariant vector.
Denote by ϕη,K the corresponding coefficient. Then, when η → 0 and K becomes
big, ϕη,K converges to 1, uniformly on compact subsets. By relative Property (T),
the convergence is uniform on X. It follows that, for some K and some η, πη,K has
a ε-invariant vector, a contradiction.

(2)⇒(2’), (2)⇒(3), (2’)⇒(3’), and (3)⇒(3’) are immediate.
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(3’)⇒(4) Let ψ be a conditionally negative definite function on G, and, for t > 0,
let (πt,Ht) be the cyclic representation of G associated with the function of positive
type e−tψ. Set ρt = πt ⊗ πt. Since πt → 1G when t→ 0, so does ρt.

Suppose that ψ is not bounded on X: ψ(xn) → ∞ for some sequence (xn) in X.
Then we claim that for every t > 0 and every ξ ∈ Ht⊗Ht, we have 〈ρt(xn)ξ, ξ〉 → 0
when n→ ∞. Equivalently, for every ξ ∈ Ht⊗Ht of norm one, ‖ρt(xn)ξ−ξ‖ →

√
2.

This is actually established in the proof of [Jol05, Lemma 2.1] (where the assumption
that X = H is a subgroup is not used for this statement).

By Lebesgue’s dominated convergence Theorem, it follows that if ρ denotes the
representation

⊕
t>0 ρt, then 〈ρ(xn)ξ, ξ〉 → 0 for every ξ. In particular, for every

ε <
√

2, ρ has no (X, ε)-invariant vector. Since 1 ≺ ρ, this contradicts (3’).
(4)⇒(1) The proof is a direct adaptation of that of the analogous implication

in [AkWa81, Theorem 3]. We suppose that G is σ-compact and that (G,X) has
relative Property (FH). Let (ϕi) be a net of nonnegative real-valued positive definite
normalized functions on G which converges to 1 uniformly on compact subsets.
Suppose by contradiction that the convergence is not uniform on X. Then there
exists ε > 0 such that we can extract a sequence ϕn, and pick a sequence (xn) of
elements of X, such that 1 − ϕn(xn) ≥ ε for all n.

Let (Kn) be an increasing sequence of compact subsets of G whose interiors
cover G. By an immediate induction, we can extract (kn) so that supg∈Kn

(1 −
ϕkn

(g)) ≤ 4−n. Now set ψ(g) =
∑

n 2n(1 − ϕkn
(g)). Since the series converges

uniformly on compact sets, ψ is well-defined, and continuous. Then, by [BHV05,
Proposition C.2.3], ψ is a conditionally negative definite function on G. Moreover,
ψ(xkn

) ≥ 2n(1−ϕkn
(xkn

)) ≥ 2nε, so that ψ is not bounded on X, a contradiction. �

Remark 2.17. There is a direct proof of (1)⇒(4). Suppose that (G,X) has relative
Property (T). Let ψ be conditionally negative definite function onG. By Schönberg’s
Theorem, e−tψ is positive definite for all t > 0, and tends to 1 when t→ 0, uniformly
on compact subsets. By relative Property (T), the convergence is uniform on X.
This easily implies that ψ is bounded on X.

Remark 2.18. When X = H is a subgroup, we retrieve a result of [Jol05]. Note
that, in this case, by a well-known application of the “Lemma of the centre” [BHV05,
Lemma 2.2.7], Condition (2’) of Theorem 2.16 can be chosen with ε = 0, i.e. be-
comes: for every unitary representation of G such that 1 ≺ π, there exists a nonzero
vector fixed by H.

Remark 2.19. When G is not σ-compact, whether the implication (3’)⇒(1) holds
is not known, except when X is a normal subgroup [Jol05]. On the other hand, even
if X = G, (4)⇒(3’) does not hold for general locally compact groups, even discrete
(see Chapter 6).

2.1.3 Relative Property (T) can be read on irreducible rep-
resentations.

The following lemma, due to Choquet (unpublished), is proved in [Dix69, B.14 p.
355].
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Lemma 2.20. Let K be a compact, convex subset of a locally convex space E. Let
x be an extremal point of K. Let W be the set of all open half-spaces of E which
contain x. Then {W ∩K, W ∈ W} is a neighbourhood basis of x in K.

Denote P(G) (resp. P1(G)) (resp. P≤1(G)) the set of all (complex-valued)
positive definite function ϕ on G (resp. such that ϕ(1) = 1) (resp. such that
ϕ(1) ≤ 1).

Recall that ϕ ∈ P(G) is pure if it satisfies one of the two equivalent conditions:
(i) ϕ is associated to an irreducible representation; (ii) ϕ belongs to an extremal axis
of the convex cone P(G).

Theorem 2.21. Let G be a locally compact group and X a subset. The following
are equivalent:

(i) (G,X) has relative Property (T).
(ii) For every net of continuous, normalized pure positive definite functions on

G which converges to 1, the convergence is uniform on X.

Proof : (i)⇒(ii) is trivial; suppose that G satisfies (ii).
In the space L∞(G) = L1(G)∗, endowed with the weak* topology, let W be the

set of all open half-spaces of L∞(G) which contain the constant function 1. Finally
set K = P≤1(G).

We first recall Raikov’s Theorem [Dix69, Théorème 13.5.2]: on P1(G), the weak*
topology coincides with the topology of uniform convergence on compact subsets.

Let L be the set of all continuous linear forms u on L∞(G) such that u(1) = 1
and u|K ≤ 1. Since K is convex and compact for the weak*-topology, by Lemma
2.20, {{u > 1 − ε} ∩ K, u ∈ L, ε > 0} is a basis of open neighbourhoods of 1 in
P≤1(G).

Hence, by (ii), and using Raikov’s Theorem, for every 1 > ε > 0, there exists
u ∈ L and η > 0 such that, for every pure ϕ ∈ P1(G), u(ϕ) > 1−η implies ϕ ≥ 1−ε
on X.

Let ϕ =
∑
λiϕi be a convex combination of continuous, normalized positive

definite functions ϕi associated to irreducible representations. Suppose that u(ϕ) >
1 − ηε.

Decompose ϕ as
∑
λjϕj +

∑
λkϕk, where u(ϕj) > 1 − η and u(ϕk) ≤ 1 − η.

Then

1−ηε < u(ϕ) =
∑

λju(ϕj)+
∑

λku(ϕk) ≤
∑

λj+
∑

λk(1−η) = 1−η
∑

λk,

so that
∑
λk ≤ ε. Hence, on X, we have

ϕ =
∑

λjϕj +
∑

λkϕk ≥
∑

λj(1 − ε) −
∑

λk ≥
∑

λj − 2ε ≥ 1 − 3ε.

Set Ku,εη = {ϕ ∈ K, u(ϕ) > 1 − εη}, and Kcp = {ϕ ∈ K, ϕ is a convex
combination of continuous, normalized pure positive definite functions on G }. By
[BHV05, Theorem C.5.5], Kcp is weak* dense in P1(G). SinceKu,εη is open inK, this
implies that Kcp∩Ku,εη is weak*-dense in P1(G)∩Ku,εη. By Raikov’s Theorem, it is
also dense for the topology of uniform convergence on compact subsets. Hence, since
for all ϕ ∈ Kcp∩Ku,εη, ϕ ≥ 1−3ε on X, the same holds for all ϕ ∈ P1(G)∩Ku,εη. �
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Theorem 2.22. Let G be a locally compact, σ-compact group. The following are
equivalent.

(1) (G,X) has relative Property (T).
(2) For every ε > 0, there exists a neighbourhood V of 1G in Ĝ such that every

π ∈ V has a (X, ε)-invariant vector.
(2’) For some ε <

√
2, there exists a neighbourhood V of 1G in Ĝ such that every

π ∈ V has a (X, ε)-invariant vector.

Proof : (2)⇒(2’) is trivial.
(2’)⇒(1). By a result of Kakutani and Kodaira [Com84, Theorem 3.7], there

exists a compact normal subgroup K of G such that G/K is second countable. So
we can suppose that G is second countable. Let 1 ≺ π. Arguing as in [DeKi68, proof
of Lemme 1], π contains a nonzero subrepresentation which is entirely supported by
V . We conclude by Lemma 2.24 below that π has a ε′-invariant vector, where
ε < ε′ <

√
2. This proves that (3’) of Theorem 2.16 is satisfied.

(1)⇒(2). Let πi be a net of irreducible unitary representations which converges
to the trivial representation, and fix ε > 0. By [BHV05, Proposition F.2.4], there
exists a net of normalized positive definite functions (ϕi), such that ϕi is associated
to πi for all i, and such that ϕi tends to 1 uniformly on compact subsets. By relative
Property (T), the convergence is uniform on X, and it follows that eventually πi has
a (X, ε)-invariant vector. �

Remark 2.23. The special case when X is a subgroup is claimed without proof in
[HaVa89, Chap. 1, 18.].

Let G be a second countable, locally compact group, and X ⊂ G. Let (Z, µ)
be measured space 0 < µ(Z), with µ σ-finite. Let (Hz)z∈Z be a measurable field
of Hilbert spaces [Dix69, A 69], and denote by Γ the space of measurable vector
fields. Let (πz) be a field of unitary representations, meaning that z 7→ πz(g)x(z)
is measurable, for every x ∈ Γ, g ∈ G. Recall that, by definition, there exists a
sequence (xn) in Γ such that, for every z ∈ Z, the family (xn(z)) is total. Set
π =

∫ ⊕
πzdµ(z).

Lemma 2.24. Fix ε > 0. Suppose that, for every z, πz has a (X, ε)-invariant
vector. Then π has a (X, ε′)-invariant vector for every ε′ > ε.

Proof : Fix 0 < η < 1. First note that, upon replacing the family (xn) by the
family of all its rational combinations, we can suppose that, for every z ∈ Z and
every v ∈ Hz of norm one, there exists n such that ‖v − xn(z)‖ ≤ η. In particular,
if v is (X, ε)-invariant, then, for all x ∈ X, ‖πz(x)xn(z) − xn(z)‖ ≤ ε + 2η and
‖xn(z)‖ ≥ ‖1 − η‖, so that xn(z) is (X, (ε+ 2η)/(1 − η))-invariant.

Now define, for all n ≥ 0:

An = {z ∈ Z, 1 − η ≤ ‖xn(z)‖ ≤ 1 + η, xn(z) is (X, (ε+ 2η)/(1 − η))-invariant}.

We have
⋃
An = Z by the remark above. Using that X is separable, it is

immediate that An is measurable for every n. Accordingly, there exists n0 such that
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µ(An0
) > 0. Using that µ is σ-finite, there exists a measurable subset B ⊂ An0

such
that 0 < µ(B) <∞. Define ξ as the field

z 7→
{
xn0

(z), z ∈ B;
0, otherwise.

Then it is clearly measurable, and

‖ξ‖2 =

∫

B

‖xn0
(z)‖2dµ(z) ≥ (1 − η)2µ(B),

and, for every g ∈ X,

‖π(g)ξ− ξ‖2 =

∫

B

‖πz(g)xn0
(z)− xn0

(z)‖2dµ(z) ≤ ((ε+ 2η)2(1 + η)2/(1− η)2)µ(B).

It follows that ξ 6= 0 and is (X, (ε+2η)(1+ η)/(1− η)2)-invariant. Finally, for every
ε′ > ε, we can choose η sufficiently small so that (ε+ 2η)(1 + η)/(1 − η)2 ≤ ε′. �

2.1.4 Some stability results

We note for reference the following immediate but useful result:

Proposition 2.25. Let G be locally compact and X1, . . . , Xn be subsets. Denote by
X1 . . . Xn the pointwise product {x1 . . . xn, (x1, . . . , xn) ∈ X1 × · · · ×Xn}. Suppose
that, for every i, (G,Xi) has relative Property (T) (resp. (FH)).

Then (G,X1 . . . Xn) has relative Property (T) (resp. (FH)).

Proof : It suffices to prove the case when n = 2, since then the result follows by
induction. For the case of Property (FH), this follows from the inequality, for all
conditionally negative definite functions ψ: ψ(gh)1/2 ≤ ψ(g)1/2 + ψ(h)1/2. For the
case of Property (T), a similar inequality holds since, if ϕ is normalized positive
definite, then 1 − |ϕ|2 is conditionally negative definite. �

Example 2.26. 1) If G1, . . . , Gn are locally compact groups, and Xi ⊂ Gi, and if
(Gi, Xi) has relative Property (T) (resp. (FH)) for every i, then (

∏
Gi,
∏
Xi) also

has relative Property (T) (resp. (FH)).
2) Fix n ≥ 3, let A a topologically finitely generated locally compact commutative

ring, and set G = SLn(A). Denote by Vn,m the elements in G which are products
of ≤ m elementary matrices. Then it follows from [Sha99p, Corollary 3.5] that
(G, Vn,m) has relative Property (T) for all m. It is not known whether, for such
A, there exists m such that Vn,m = En(A), the subgroup generated by elementary
matrices; this seems to be an open question whenever A has Krull dimension ≥ 2,
e.g. A = Z[X], or A = Fp[X,Y ].

The following proposition is trivial.

Proposition 2.27. Let G be a locally compact group, H a closed subgroup, and
Y ⊂ X ⊂ H. If (H,X) has relative Property (T) (resp. (FH)), then so does
(G, Y ). �
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Proposition 2.28 (Stability by extensions). Let G be a locally compact group,
N a closed normal subgroup, and X ⊂ G. Denote by p : G→ G/N the projection.

If (G,N) and (G/N, p(X)) have relative Property (T) (resp. (FH)), then so does
(G,X).

Proof : The assertion about relative Property (FH) is immediate; that about rela-
tive Property (T) is straightforward, using [BHV05, Lemma B.1.1]: for every com-
pact subset K of G/N , there exists a compact subset K̃ of G such that p(K̃) = K. �

2.1.5 Relative Property (T) and compact generation

It is well-known that a locally compact group with Property (T) is compactly gen-
erated. We generalize this result. The following lemma is such a generalization, but
we are going to use it to prove something stronger.

Lemma 2.29. Let G be a locally compact group, and X ⊂ G such that (G,X) has
relative Property (T). Then X is contained in an open, compactly generated subgroup
of G.

Proof : For every open, compactly generated subgroup Ω of G, let λΩ be the quasi-
regular representation of G on ℓ2(G/Ω). Let δΩ ∈ ℓ2(G/Ω) be the Dirac function
on G/Ω. Let ϕΩ be the corresponding coefficient. Then ϕΩ tends to 1, uniformly
on compact subsets, when Ω becomes big. Hence, since the convergence is uniform
on X, there exist Ω such that |1 − ϕΩ| < 1 on X. This means that, for all g ∈ X,
0 < 〈πΩ(g)δΩ, δΩ〉 = 〈δgΩ, δΩ〉 ∈ {0, 1}, so that δΩ = δgΩ for all g ∈ X, that is, g ∈ Ω.
Hence, X ⊂ Ω. �

The following theorem shows that, in a certain sense, all the information about
relative Property (T) lies within compactly generated subgroups.

Theorem 2.30. Let G be a locally compact group, and X ⊂ G a subset. Then (G,X)
has relative Property (T) if and only if there exists an open, compactly generated
subgroup H such that X ⊂ H and (H,X) has relative Property (T).

Proof : By Lemma 2.29, there exists Ω ⊃ X an open, compactly generated sub-
group. Let (Ki) be an increasing net of open, relatively compact subsets, covering
G, and denote by Hi the subgroup generated by Ki. We can suppose that Ω ⊂ Hi

for all i.
Suppose by contradiction that, for every i, (Hi, X) does not have Property (T).

Then, using Lemma 2.6, for all i and all n, there exists a normalized, continuous
positive definite function ϕi,n on Hi, such that ϕi,n ≥ 1− 2−n on Ki and infX ϕi,n ≤
1/2. Since Hi is open in G, we can extend ϕi,n to all of G, by sending the complement
of Hi to 0. It is clear that the net (ϕi,n) tends to 1 uniformly on compact subsets of
G, but infX ϕi,n ≤ 1/2. This contradicts that (G,X) has Property (T). �

2.1.6 H-metric

First recall that a length function on a group G is a function L : G→ R+ satisfying
the subadditivity condition L(gh) ≤ L(g)+L(h) for all g, h, and such that L(1) = 0
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and L(g) = L(g−1) for all g ∈ G. A length function defines a (maybe non-separated)
left-invariant metric on G by d(g, h) = L(g−1h).

Observe that if L1, L2 are two length functions, then so is L = max(L1, L2).
Indeed, we can suppose L1(gh) ≥ L2(gh). Then L(gh) = L1(gh) ≤ L1(g) +L1(h) ≤
L(g) + L(h).

Also observe that a pointwise limit of length functions is a length function. If
follows that the upper bound of a family of length functions, provided that it is
everywhere finite, is a length function.

Now let G be a locally compact, compactly generated group, and K a relatively
compact, open generating subset.

Define ΨK as the upper bound of all (continuous, real-valued) conditionally neg-
ative definite functions ψ such that ψ ≤ 1 on K.

Recall that if ψ is a real-valued conditionally negative definite function, then ψ1/2

is a length function. It follows that Ψ
1/2
K is a length function. It is easily checked

that it defines a separated metric on G, whose closed balls are closed (for the initial
topology). We call it the H-metric.

It is easy to observe that if K and L are two open, relatively compact generating
subsets, then there exist constants A,A′ > 0 such that AΨK ≤ ΨL ≤ A′ΨK . Ac-
cordingly, the identity map defines a bi-Lipschitz map between these two metrics,
and the choice of K is not essential at all.

Proposition 2.31. Let G be a locally compact, compactly generated group, and X
a subset. Then (G,X) has relative Property (T) if and only if X is bounded for the
H-metric.

Proof : First recall that, since G is σ-compact, relative Property (T) and relative
Property (FH) are equivalent by Theorem 2.16.

If X is bounded for the H-metric, and ψ is a (continuous, real-valued) condi-
tionally negative definite function on X, then, for some constant α > 0, αψ ≤ 1 on
K. So ψ ≤ α−1ΨK which is bounded on X, and thus (G,X) has relative Property
(FH).

Conversely, suppose that X is not bounded for the H-metric. Then there exist
a sequence of (continuous, real-valued) conditionally negative definite functions ψn,
bounded by 1 on K, and a sequence xn of X such that ψn(xn) ≥ 4n. Set ψ =∑

2−nψn. Since the convergence is uniform on compact subsets, ψ is a well-defined
continuous conditionally negative definite function on G, and ψ(xn) ≥ 2n, so that ψ
is not bounded on X, and (G,X) does not have relative Property (FH). �

Corollary 2.32. Let G be a locally compact, compactly generated group.
1) G has Property (T) is and only if it is bounded for the H-metric.
2) G has the weak dual Riemann-Lebesgue Property if and only if it is proper for

the H-metric (that is, the balls for the H-metric are compact for the initial topology).

It is maybe interesting comparing the H-metric with the word metric (relative
to any compact generating set). A result in this direction was communicated to us
by V. Lafforgue: if G does not have Property (T), if LK denotes the word length
with respect to the compact generating set K, and HK = Ψ

1/2
K is the length in the

H-metric, then, for every 0 < C < 1/2, there exists a sequence (xn) in G such that,
for all n, LK(xn) ≤ n and HK(xn) ≥ C

√
n.
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2.2 Relative Property (T) in Lie groups and p-adic

algebraic groups

2.2.1 Preliminaries

Given a locally compact group G, we can naturally raise the problem of determining
for which subsets X the pair (G,X) has relative Property (T).

Here is a favourable case, where the problem is completely solved.

Lemma 2.33. Let G be a locally compact group, and N a normal subgroup such
that (G,N) has relative Property (T) and G/N is Haagerup. Let X be any subset
of G. Then (G,X) has relative Property (T) if and only if the image of X in G/N
is relatively compact.

Proof : The condition is clearly necessary, since relative Property (T) is inherited
by images. Conversely, if the image of X in G/N is relatively compact, there exists
a compact subset K of G such that X is contained in KN = {kn, (k, n) ∈ K ×N}.

Let ψ be a continuous, conditionally negative definite function on G. Then ψ is
bounded on N and on K, hence on KN , hence on X. This proves that (G,X) has
relative Property (FH). In view of Theorem 2.16, this is sufficient if G is σ-compact.
Actually, we can reduce to this case: indeed, by Theorem 2.30, there exists an open,
compactly generated subgroup H of G, which contains N and can be supposed to
contain K, such that (H,N) has relative Property (T). �

Recall the key result, due to Shalom [Sha99t, Theorem 5.5] (see also [BHV05,
Section 1.4]).

Proposition 2.34. Let G be a locally compact group and N a closed normal abelian
subgroup. Assume that the only mean on the Borel subsets of the Pontryagin dual
N̂ = Hom(N,R/Z), invariant under the action of G by conjugation, is the Dirac
measure at zero. Then the pair (G,N) has relative Property (T).

This result allows to prove relative Property (T) for certain normal abelian sub-
groups. Since we also deal with nilpotent subgroups, we use the following proposi-
tion, which generalizes [CCJJV01, Proposition 4.1.4].

Proposition 2.35. Let G be a locally compact, σ-compact group, N a closed sub-
group, and let Z be a closed, central subgroup of G contained in [N,N ]. Suppose
that every morphism of N into a compact Lie group has an abelian image.

Suppose that the pair (G/Z,N/Z) has Property (T). Then (G,N) has Property
(T).

Proof : It suffices to show that (G,Z) has relative Property (T). Indeed, since
the pairs (G,Z) and (G/Z,N/Z) have relative Property (T), it then follows by
Proposition 2.28 that (G,N) has relative Property (T).

We use an argument similar to the proof of [Wan82, Lemma 1.6]. To show that
(G,Z) has relative Property (T), we use the characterization by nets of irreducible
representations (see Theorem 2.22). Let πi be a net of irreducible representations of
G converging to the trivial representation: we must show that eventually πi factors
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through Z. Let πi be the contragredient representation of πi. Then πi⊗πi converges
to the trivial representation. By irreducibility, πi is scalar in restriction to Z, hence
πi⊗πi is trivial on Z, so factors through G/Z. Since (G/Z,N/Z) has Property (T),
the restriction to N of πi ⊗ πi eventually contains the trivial representation. By a
standard argument [BHV05, Appendix 1], this means that πi|N eventually contains
a finite-dimensional representation ρi.

Remark that ρi(N) is a compact Lie group; so it is, by assumption, abelian. This
means that [N,N ] acts trivially; hence Z does so as well: ρi is trivial on Z. Hence,
for large i, πi has nonzero Z-invariants vectors; by irreducibility, πi is trivial on Z.
Accordingly (G,Z) has Property (T). �

We shall use the following well-known result of Furstenberg [Fur76].

Theorem 2.36 (Furstenberg). Let K be a local field, V a finite dimensional K-
vector space. Let G ⊂ PGL(V ) be a Zariski connected (but not necessarily Zariski
closed) subgroup, whose closure is not compact. Suppose that G preserves a proba-
bility measure µ on the projective space P (V ). Then there exists a proper projective
G-invariant subspace W ( P (V ) such that µ(W ) = 1.

Remark 2.37. Observe that a subgroup of PGL(V ) preserves an invariant mean
on P (V ) if and only if it preserves a probability: indeed, a mean gives rise to a
normalized positive linear form on L∞(P (V )), and restricts to a normalized positive
linear form on C(P (V )), defining a probability.

We say that a topological group G is discompact2 if there is no nontrivial mor-
phism of G to a compact group.

Remark 2.38. If G is a discompact locally compact group, then it has trivial
abelianization. Indeed, it follows that its abelianization is also discompact, so has
trivial Pontryagin dual, so it trivial by Pontryagin duality.

Corollary 2.39. Let G be a discompact locally compact group. Let V be a finite-
dimensional vector space over K, and let G → GL(V ) be any continuous represen-
tation. Then G preserves a probability on P (V ) if and only if G has a nonzero fixed
point on V .

Proof : If G(K) fixes a point x ∈ V − {0}, then it fixes the Dirac measure at the
point Kx of P (V ). Conversely, suppose that G preserves a probability on P (V ). Let
W be a G-stable projective subspace, minimal among those such that µ(W ) 6= 0.
Then, by Theorem 2.36, the image of G in PGL(W ) is relatively compact, hence
trivial since G is discompact. Accordingly, G has a fixed point in P (V ), namely
every element of W . Thus G fixed a line Kx in V . The action of G on Kx defines
a morphism G → K∗; in view of Remark 2.38, G acts trivially on Kx, hence fixes
x. �

Example 2.40. (1) Let G be a simply connected, simple group over K, of positive
K-rank. Then G(K) is discompact. Indeed, G(K) is generated by elements whose

2This is often called “minimally almost periodic”, but we prefer the terminology “discompact”,
introduced in [Sha99t].
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conjugacy classes contain 1 in their closure: this follows from the following observa-
tions: G(K) is simple [Mar91, Chap I, Theorem 1.5.6 and Theorem 2.3.1(a)], and
there exists a subgroup of G isomorphic to either SL2(K) or PSL2(K) [Mar91, Chap
I, Proposition 1.6.3]. Accordingly, every morphism of G(K) into a compact group
has trivial image.

(2) Let G be a connected, noncompact, simple Lie group. Then G is discompact.
Indeed, such a group is generated by connected subgroups locally isomorphic to
SL2(R), hence is generated by elements whose conjugacy class contains 1.

The following proposition is essentially due to M. Burger [Bur91, Proposition 7]
(see also [Val94, Proposition 2.3]).

Proposition 2.41. Let V be a finite-dimensional space over a local field K. Let G
be any topological group, and ρ : G → GL(V ) a continuous representation. Then
(G ⋉ V, V ) has relative Property (T) if and only if G preserves no probability on
P (V ∗). In particular, if G is discompact, then (G⋉ V, V ) has relative Property (T)
if and only if G fixes no point in V ∗.

Proof : Suppose that (G⋉V, V ) does not have Property (T). We can suppose that
G is endowed with the discrete topology, so that G ⋉ V is locally compact. By
Proposition 2.34, G preserves a mean on V ∗ − {0} (recall that there is a GL(V )-
equivariant identification between the linear dual V ∗ and the Pontryagin dual V̂ ).
So G preserves a mean on P (V ∗). Since P (V ∗) is compact, this implies that G also
preserves a probability on P (V ∗) (see Remark 2.37).

Conversely, suppose, by contradiction that G preserves a probability on P (V ∗)
and (G⋉V, V ) has relative Property (T). By Theorem 2.36, the finite index subgroup
G0 of G (its unit component in the inverse image of the Zariski topology from
GL(V )) preserves a nonzero subspace W ⊂ V ∗, such that the image of the morphism
G0 → PGL(W ) has compact closure. Since W is a subspace of V ∗, W ∗ is a quotient
of V . By Corollary 4.1(2) in [Jol05], (G0 ⋉ V, V ) has relative Property (T), and so
has (G0 ⋉W ∗,W ∗). This implies that (ρ(G0) ⋉W ∗,W ∗) also has relative Property
(T). But ρ(G0)⋉W ∗ is amenable, so that W ∗ is compact, and this is a contradiction.

The second assertion follows from Corollary 2.39. �

Remark 2.42. It is worth noting that, in Proposition 2.41, and in view of Corollary
2.39, relative Property (T) for (G ⋉ V, V ) only depends on the closure (for the
ordinary topology) of the image of G in PGL(V ).

2.2.2 Relative Property (T) in algebraic groups over local
fields of characteristic zero

We denote by K a local field of characteristic zero. Here is the main lemma of this
subsection.

Lemma 2.43. Let G be a linear algebraic K-group, which decomposes as S ⋉ R,
where S is semisimple and K-isotropic, and R is unipotent.

Suppose that [S,R] = R. Then (G(K), R(K)) has relative Property (T).
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Proof : Upon replacing S by its universal cover, we can suppose that S is simply
connected. We then argue by induction on the dimension of R. If the dimension is
zero, there is nothing to prove; suppose R 6= 1. Let Z be the last nonzero term of
its descending central series.

First case: Z is central in G. The hypothesis [S,R] = R implies that R is
not abelian. Hence Z ⊂ [R,R], so that Z(K) ⊂ [R,R](K). By [BoTi, Lemma
13.2] [R,R](K) = [R(K), R(K)], so that Z(K) ⊂ [R(K), R(K)]. We must check
that the hypotheses of Proposition 2.35 are fulfilled. Let W be a compact Lie
group, and R(K) → W a morphism with dense image: we must show that W is
abelian. Since R(K) is solvable, the connected component W0 is abelian. Moreover,
R(K) is divisible, so W/W0 is also divisible; this implies W = W0. Accordingly,
by Proposition 2.35, since (G(K)/Z(K), R(K)/Z(K)) has relative Property (T) by
induction hypothesis, it follows that (G(K), R(K)) has relative Property (T).

Second case: Z is not central in G. Set N = [S, Z]. Then [S,N ] = N . By
Proposition 2.41 and in view of Example 2.40(1), (G(K), N(K)) has relative Prop-
erty (T). By the induction assumption, ((G/N)(K), (Ru/N)(K)), which coincides
with (G(K)/N(K), Ru(K)/N(K)), has relative Property (T). Hence (G(K), Ru(K))
has relative Property (T). �

Let G be a linear algebraic group over K. We denote by Ru its unipotent radical,
and L a reductive Levi factor (so that G0 = L⋉Ru). We decompose L as an almost
product LmLnm, where Lm (resp. Lnm) includes the centre of L, and the simple
factors of rank zero (resp. includes the simple factors of positive rank)3.

Let R be the radical of G, S a Levi factor, and decompose it as ScSnc, where Sc
(resp. Snc is the sum of all factors of rank 0 (resp. of positive rank)).

If g is a Lie algebra and h1, h2 are two subspaces, we denote by [h1, h2] (resp.
[h1, h2]v) the Lie algebra (resp. the subspace) generated by the [h1, h2], (h1, h2) ∈
h1 × h2.

Lemma 2.44. For every Levi factors L, S of respectively Ru and R, [Lnm, Ru] =
[Snc, R], and this is a K-characteristic subgroup of G.

Proof : We can work within the Lie algebra. We first justify that [lnm, ru] is an
ideal: indeed,

[l, [lnm, ru]] ⊂ [[l, lnm], ru] + [lnm, [l, ru]] ⊂ [lnm, ru]

since [l, lnm] ⊂ lnm and [l, ru] ⊂ ru. On the other hand,

[ru, [lnm, ru]] = [ru, [lnm, [lnm, ru]]]

⊂ [lnm, [ru, [lnm, ru]]] + [[lnm, ru], [lnm, ru]] ⊂ [lnm, ru].

It follows that [Lnm, Ru] is a normal subgroup of G. By [BoSe64, (5.1)], the K-
conjugacy class of L does not depend of the choice of L. So the same thing holds for
Lnm (which is K-characteristic in L). Accordingly, [Lnm, Ru] is a K-characteristic
subgroup of G.

3(n)m stands for (non-)amenable.
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Now, since Snc is a reductive K-subgroup of G, again using [BoSe64, (5.1)],
upon K-conjugating, we can suppose that Snc ⊂ L, so that finally Snc = Lnm, and
R = Lr ⋉ Ru, where Lr is the unit component of centre of L. Since [Lnc, Lr] = 1,
we obtain [Snc, R] = [Lnc, R] = [Lnc, Ru]. �

Let Snh be the sum of all simple factors H of Snc such that H(K) is not Haagerup
(equivalently: has Property (T)): these are factors of rank ≥ 2, and also, when
K = R, factors locally isomorphic to Sp(n, 1) or F4(−20).

Definition 2.45. Define RT as the K-subgroup Snh[Snc, R] of G.

Theorem 2.46. RT is a K-characteristic subgroup of G, G(K)/RT (K) is Haagerup,
and (G(K), RT (K)) has relative Property (T).

Proof : It follows from Lemma 2.44 that [Snc, R] is unipotent. Consider the K-
subgroup W = Snc[Snc, R] of G. Applying Lemma 2.43 to W , we obtain that
(G(K), [Snc, R](K)) has relative Property (T). Since (G(K), Snh(K)) also has relative
Property (T) and [Snc, R](K) is a normal subgroup, we obtain that (G(K), RT (K))
has relative Property (T) by Proposition 2.25.

To show that RT is a K-characteristic subgroup, we can work modulo the sub-
group [Snc, R] which is K-characteristic by Lemma 2.44. But, in G/[Snc, R], Snc is
a direct factor and can be characterized as the biggest normal subgroup which is
connected, semisimple, and isotropic; and Snh is K-characteristic in Snc. It follows
that RT is K-characteristic.

Finally, H = G/RT is almost the direct product of a semisimple group Hs such
thatHs(K) is Haagerup, and its amenable radicalHm, such thatHm(K) is amenable,
hence Haagerup. So H(K) is Haagerup, and contains G(K)/RT (K) as a closed
subgroup. �

So we are in position to apply Lemma 2.33.

Corollary 2.47. Let X be a subset of G(K). Then (G(K), X) has relative Property
(T) if and only if the image of X is G(K)/RT (K) is relatively compact. �

We retrieve a result of Wang (his statement is slightly different but equivalent
to this one).

Corollary 2.48 (Wang). G(K) has Property (T) if and only if Snh[Snc, Ru](K) is
cocompact in G(K). �

Corollary 2.49. G(K) is Haagerup if and only if Snh = [Snc, R] = 1. �

This was proved differently in Chapter 1, Theorem 1.23.

2.2.3 Relative Property (T) in Lie groups

Let G be a Lie group (connected, even if it is straightforward to generalize to a Lie
group with finitely many components), R its radical, S a Levi factor (not necessarily
closed), decomposed as ScSnc by separating compact and noncompact factors. Let
Snh be the sum of all simple factors of Snc which have Property (T).

Set RT = Snh[Snc, R].
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Theorem 2.50. RT is a characteristic subgroup of G, G/RT is Haagerup, and
(G,RT ) has relative Property (T).

Proof : The first statement can be proved in the same lines as in the algebraic case.
It is immediate that G/RT is locally isomorphic to a direct product M × S

where M is amenable and S is semisimple with all simple factors locally isomorphic
to SO(n, 1) or SU(n, 1). By [CCJJV01, Chap. 4], G/RT is Haagerup.

Finally, let us show that (G,RT ) has relative Property (T). First, note that
we can reduce to the case when G is simply connected. Indeed, let p : G̃ → G
be the universal covering. Then p(H̃) = H, for H = R,Snc, Snh, where H̃ is the
analytic subgroup of G̃ which lies over H. If the simply connected case is done, then
(G̃, S̃nh[S̃nc, R̃]) has relative Property (T). It follows that (G, p(S̃nh[S̃nc, R̃])) also has
relative Property (T), and the closure of p(S̃nh[S̃nc, R̃]) is equal to RT .

Now suppose that G is simply connected. Then the subgroup Snc[Snc, R] is closed
and isomorphic to Snc ⋉ [Snc, R]. Arguing as in the proof of Lemma 2.43 (using
Example 2.40(2) instead of (1)), (Snc ⋉ [Snc, R], [Snc, R]) has relative Property (T).
Hence (G, [Snc, R]) also has relative Property (T), and, as in the proof of Theorem
2.46, it implies that (G,Snh[Snc, R]) has relative Property (T). �

So we are again in position to apply Lemma 2.33.

Corollary 2.51. Let X be a subset of G. Then (G,X) has relative Property (T) if
and only if the image of X in G/RT is relatively compact.

We also retrieve a result of Wang in the case of connected Lie groups.

Corollary 2.52 (Wang). The connected Lie group G has Property (T) if and only
if Snh[Snc, Ru] is cocompact in G. �

Corollary 2.53 ([CCJJV01], chap. 4). The connected Lie group G is Haagerup
if and only if4 Snh = [Snc, R] = 1.

Proof of Corollary 2.53. The hypothesis implies that Snh and W = [Snc, R] are
both relatively compact. So Snh = 1. Now, since [Snc, [Snc, R]] = [Snc, R], we have
[Snc,W ] = W . But, since W is a compact, connected, and solvable Lie group, it
is a torus; since Snc is connected, its action on W is necessarily trivial, so that
W ⊂ [Snc,W ] = 1. �

Remark 2.54. If G is a connected Lie group without the Haagerup Property, the
existence of a noncompact closed subgroup with relative Property (T) was proved
in [CCJJV01], and later established by another method (Theorem 1.23), where the
result was generalized to linear algebraic groups over local fields of characteristic
zero. However, in both cases, the subgroup constructed is not necessarily normal,
while RT is.

4Note that we used, in the proof of Theorem 2.50, one implication from [CCJJV01, Chap. 4],
namely, Snh = [Snc, R] = 1 implies G Haagerup. This result is easy when Snc has finite centre,
but, otherwise, is much more involved. Accordingly, only the reverse implication can be considered
as a corollary of the present work.
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Remark 2.55. In this remark, given a locally compact group G, we say that a
closed, normal subgroup N is a T-radical if G/N is Haagerup and (G,N) has relative
Property (T).

It is natural to ask about the uniqueness of T-radicals when they exist. Observe
that if N,N ′ are T-radicals, then the image of N in G/N ′ is relatively compact, and
vice versa. In particular, if G is discrete, then all T-radicals are commensurable.

This is no longer the case if G is not discrete, for instance, set G = SL(2,Z)⋉R2.
Then the subgroups aZ2, for a 6= 0, are all T-radicals, although two of them may
have trivial intersection. We thus see that G does not necessarily have a minimal
T-radical.

Let G be a finitely generated solvable group with infinite locally finite centre.
Then, every finite subgroup of the centre is a T-radical, but G has no infinite T-
radical, so has no maximal T-radical. An example of such a group G is the group

of matrices of the form




1 a b
0 un c
0 0 1


, for a, b, c ∈ Fp[u, u

−1], n ∈ Z, and p a fixed

prime.
However, if G is a connected Lie group, it can be shown that G has a minimal

and a maximal T-radical. The minimal one is RT , as defined above: indeed, if H is
a quotient of G with the Haagerup Property, then Snh and [Snc, R] are necessarily
contained in the kernel. The maximal one is found by taking the preimage of the
maximal normal compact subgroup of G/RT ; it can immediately be generalized to
any connected locally compact group.

Remark 2.56. Following Shalom [Sha99t], if G is a topological group and H is
a subgroup, we say that (G,H) has strong relative Property (T) if there exists a
Kazhdan pair (K, ε) for the pair (G,H) with K finite (and ε > 0). More precisely,
this means that every unitary representation with a (K, ε)-invariant vector has a H-
invariant vector. In this context, it is natural to equip Ĝ with the topology inherited
from Ĝd, the unitary dual of Gd, where Gd denotes G with the discrete topology.
As for the case of relative Property (T), it can be checked that (G,H) has strong
relative Property (T) if and only if, for every net πi in Ĝ which converges to 1 in Ĝd,
eventually πi has a H-invariant vector. Then it is straightforward from the proof
that Proposition 2.35 remains true for strong relative Property (T). On the other
hand, Proposition 2.34 is actually true with strong Property (T) [Sha99t, Theorem
5.5]. It then follows from the proofs that, if G is a connected Lie group, then (G,RT )
has strong relative Property (T), and similarly for algebraic groups over local fields
of characteristic zero.

2.3 Framework for irreducible lattices: resolutions

In this section, we make a systematic study of ideas relying on work of Lubotzky
and Zimmer [LuZi89], and later apparent in [Mar91, Chap. III, 6.] and [BeLo97].

Given a locally compact group G, when can we say that we have a good quan-
tification of Kazhdan’s Property (T)? Lemma 2.33 provides a satisfactory answer
whenever G has a normal subgroup N such that G/N is Haagerup and (G,N) has

38



relative Property (T). We have seen in Section 2.2 that this is satisfied in a large
class of groups. However, this is not inherited by lattices. A typical example is
the case of an irreducible lattice Γ in a product of noncompact simple Lie groups
G×H, where G has Property (T) and H is Haagerup. In such an example, although
Γ∩G = {1}, G can be thought as a “ghost” normal sugroup of Γ, and is the “kernel”
of the projection Γ → H. Relative Property (T) for the pair (G × H,G) can be
restated by saying that the projection G×H → H is a “resolution”. By a theorem
essentially due Margulis, this notion is inherited by lattices, so that, in this case,
the projection Γ → H is a resolution.

Before giving rigorous definitions, we need some elementary preliminaries.

2.3.1 Q-points

We recall that an action by isometries α of a topological group G on a metric space
X is continuous if the function g 7→ α(g)x is continuous for every x ∈ X. All the
functions and actions here are supposed continuous.

Let f : G → Q be a morphism between topological groups, with dense image.
Recall that, for any Hausdorff topological space X, a function u : G → X factors
through Q if and only if, for every net (gi) in G such that f(gi) converges in Q, u(gi)
converges in X; note that the factorization Q→ X is unique.

Definition 2.57. Let f : G → Q be a morphism between topological groups, with
dense image. Let α be an action of G by isometries on a metric space X. We call
x ∈ X a Q-point if the orbital map g 7→ α(g)x factors through Q.

Proposition 2.58. Suppose that X is a complete metric space. The set XQ of Q-
points in X is closed, G-invariant, and the action αQ of G on XQ factors through
Q. In particular, Ker(f) ⊂ Ker(αQ).

Proof : The two latter statements are immediate; let us show that XQ is closed. Let
(yn) be a sequence in XQ, converging to a point y ∈ X. Write α(g)yn = wn(f(g)),
where wn is a continuous function: Q → X. If m,n ∈ N, d(wm(f(g)), wn(f(g))) =
d(α(g)ym, α(g)yn) = d(ym, yn). It follows that supq∈f(G) d(wm(q), wn(q)) → 0 when
m,n→ ∞. On the other hand, since f(G) is dense in Q, supq∈f(G) d(wm(q), wn(q)) =
supq∈Q d(wm(q), wn(q)). Accordingly, (wn) is a Cauchy sequence for the topology of
uniform convergence on Q. Since X is complete, this implies that (wn) converges to
a continuous function w : Q → X. Clearly, for all g ∈ G, α(g)y = w(f(g)), so that
y ∈ XQ. The last statement is immediate. �

Proposition 2.59. Suppose that X is complete. Let x ∈ X. Equivalences:
1) x ∈ XQ.
2) The mapping g 7→ d(x, α(g)x) factors through Q.
3) For every net (gi) in G such that f(gi) → 1, d(x, α(gi)x) → 0.

Proof : 1)⇒2)⇒3) is immediate.
Suppose 3). Let (gi) be a net in G such that f(gi) converges in Q. Then

(f(g−1
i gj)) converges to 1 when i, j → ∞, so that

d(α(gi)x, α(gj)x) = d(y, α(g−1
i gj)x) → 0,
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i.e. (α(gi)x) is Cauchy. Hence, it converges since X is complete. This means that
g 7→ α(g)x factors through Q, i.e. x ∈ XQ. �

Proposition 2.60. 1) Suppose that X is a complete CAT(0) space. Then XQ is a
closed, totally geodesic subspace.

2) If X = H is the Hilbert space of a unitary representation π of G, then H Q

is a closed subspace, defining a subrepresentation πQ of π (we refer to elements in
H Q as Q-vectors rather that Q-points). For every ξ ∈ H , ξ ∈ H Q if and only if
the corresponding coefficient g 7→ 〈ξ, π(g)ξ〉 factors through Q.

3) If X = H is an affine Hilbert space, then H Q is a closed affine subspace
(possibly empty). For every v ∈ H , v ∈ H Q if and only if the corresponding
conditionally negative definite function g 7→ ‖v − g · v‖2 factors through Q.

Proof : 1) The first statement is immediate since, for all λ ∈ R, the function
(c, c′) 7→ (1−λ)c+λc′ is continuous (actually 1-Lipschitz) on its domain of definition.

2) If H is the Hilbert space of a unitary representation, then H Q is immediately
seen to be a linear subspace, and is closed by Proposition 2.58. Note that this also
can be derived as a particular case of 1). The nontrivial part of the last statement
in 2) follows from Proposition 2.59.

3) is similar. �

Lemma 2.61. Let G→ Q be a morphism with dense image, and (πi) is a family of
unitary representations of G. Then (

⊕
πi)

Q =
⊕

πQi .

Proof : The inclusion
⊕

πQi ⊂ (
⊕

πi)
Q is trivial. Let pi denote the natural pro-

jections, set π =
⊕

πi, and write µξ(g) = π(g)ξ. Then, if ξ is a Q-vector, i.e. if µξ
factors through Q, then pi ◦ µξ also factors through Q. But pi ◦ µξ = µpi(ξ), so that
pi(ξ) is a Q-vector. �

2.3.2 Resolutions

Convention 2.62. If G → Q is a morphism with dense image, and π is a repre-
sentation of G factoring through a representation π̃ of Q, we write 1Q ≺ π rather
than 1Q ≺ π̃ or 1 ≺ π̃ to say that π̃ almost has invariant vectors (note that 1Q ≺ π
implies 1G ≺ π, but the converse is not true in general). Similarly, if (πi) is a net
of representations of G factoring through representations π̃i of Q, when we write
πi → 1Q, we mean for the Fell topology on representations of Q.

Definition 2.63 (Resolutions). Let G be a locally compact group, and f : G→ Q
a morphism to another locally compact group Q, such that f(G) is dense in Q.

We say that f is a resolution (of G) if, for every unitary representation π of G
which almost has invariant vectors, then 1Q ≺ πQ, meaning that πQ, viewed as a
representation of Q, almost has invariant vectors (in particular, πQ 6= 0).

We call f a Haagerup resolution if Q is Haagerup.

The definition of resolution generalizes the notion of relative Property (T) of a
normal subgroup, since G → G/N is a resolution if and only if (G,N) has relative
Property (T).
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Remark 2.64. It is natural to ask if, in Definition 2.63, the condition 1Q ≺ πQ can
be weakened into πQ 6= 0. In §2.3.8, we show, in a very indirect way, that, under
the assumption that G and Q are σ-compact, this is indeed the case. However, it is
much more convenient to work with this a priori stronger definition given here.

Proposition 2.65. Let f : G → Q be a morphism between locally compact groups,
with dense image. Equivalences:

(1) f is a resolution.
(2) For every net (πi) of unitary representations of G which converges to 1G,

πQi → 1Q.

Proof : (2)⇒(1) is trivial. Suppose (1). Let πi → 1G. Then, for every subnet (πj),
1G ≺ ⊕

j πj. By (1), 1Q ≺ (
⊕

j πj)
Q, which equals

⊕
j π

Q
j by Lemma 2.61. Hence

πQi → 1Q. �

Corollary 2.66. Let G→ Q be a resolution. Then for every net (πi) of irreducible
representations which converges to 1G, eventually πi factors through a representation
π̃i of Q, and π̃i → 1Q. �

The converse of Corollary 2.66 is more involved, and is proved (Theorem 2.96)
under the mild hypothesis that G is σ-compact.

Thus, a resolution allows to convey properties about the neighbourhood of 1Q
in Q̂ into properties about the neighbourhood of 1G in Ĝ. For instance, this is
illustrated by Property (τ) (see Section 2.3.5).

The following proposition generalizes the fact that relative Property (T) is inher-
ited by extensions (Proposition 2.28), and is one of our main motivations for having
introduced resolutions.

Proposition 2.67. Let f : G → Q be a resolution, and X ⊂ G. Then (G,X) has
relative Property (T) if and only if (Q, f(X)) does.

Proof : The condition is trivially sufficient. Suppose that (Q, f(X)) has relative
Property (T). Fix ε > 0, and let π be a unitary representation of G such that
1G ≺ π. Since G → Q is a resolution, 1Q ≺ πQ. Hence, by Property (T), πQ has a
(f(X), ε)-invariant vector; this is a (X, ε)-invariant vector for π. �

Recall that a morphism between locally compact spaces is proper if the inverse
image of any compact subset is compact. It is easy to check that a morphism G→ H
between locally compact groups is proper if and only if its kernel K is compact, its
image Q is closed in H, and the induced map G/K → Q is an isomorphism of
topological groups.

Corollary 2.68. Let f : G→ Q be a Haagerup resolution. Then for every X ⊂ G,
(G,X) has relative Property (T) if and only if f(X) is compact.

Accordingly, either f is a proper morphism, so that G is also Haagerup, or there
exists a noncompact closed subset X ⊂ G such that (G,X) has relative Property
(T). In particular, G satisfies the TH alternative. �
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The following theorem generalizes (case when Q = {1}) compact generation of
locally compact groups with Property (T) [Kaz67]; in this more specific direction,
it generalizes Proposition 2.8 of [LuZi89].

Theorem 2.69. Let f : G → Q be a resolution. Then G is compactly generated if
and only if Q is.

We need the following lemma, which is also used later.

Lemma 2.70. Let f : G → Q be a morphism with dense image between topological
groups, and let Ω be an open neighbourhood of 1 of Q. Then, for all n, f−1(Ωn) ⊂
f−1(Ω)n+1.

Proof : Let x belong to f−1(Ωn). Write f(x) = u1 . . . un with ui ∈ Ω. Let
(ε1, . . . , εn) ∈ Ωn. Set vi = uiεi and v0 = u1 . . . un(v1 . . . vn)

−1, so that f(x) =
v0v1 . . . vn. If all εi are chosen sufficiently close to 1, then v0 ∈ Ω and uiεi ∈ Ω for all
i; by density of f(G), we can also impose that uiεi ∈ f(G) for all i. We fix ε1, . . . , εn
so that all these conditions are satisfied. Since v0 = f(x)(v1 . . . vn)

−1, v0 also belongs
to f(G). For all i, write vi = f(xi), so that x = kx0x1 . . . xn with k ∈ Ker(f). Set
y0 = kx0. Then x = y0x1 . . . xn ∈ f−1(Ω)n+1. �

Proof of Theorem 2.69. If G is compactly generated, so is Q (only supposing that
the morphism has dense image). Indeed, if K is a compact generating set of G, then
f(K) generates a dense subgroup of Q. It follows that, if K ′ is a compact subset of
Q containing f(K) in its interior, then K ′ generates Q.

Conversely, suppose that Q is compactly generated, and let Ω be an open, rela-
tively compact generating set. For every open, compactly generated subgroup H of
G, let ϕH be its characteristic function. Then, when H becomes big, ϕH converges
to 1, uniformly on compact subsets of G. Since (G, f−1(Ω)) has relative Property
(T) by Proposition 2.67, it follows that f−1(Ω) is contained in a compactly generated
subgroup H of G. By Lemma 2.70, f−1(Ωn) ⊂ f−1(Ω)n+1 ⊂ H. Since Q =

⋃
Ωn, it

follows that G = H. �

2.3.3 Lattices and resolutions

The following theorem generalizes the fact that Property (T) is inherited by lattices.

Theorem 2.71. Let G be a locally compact group, N a closed, normal subgroup.
Suppose that (G,N) has relative Property (T) (equivalently, the projection f : G →
G/N is a resolution).

Let H be a closed subgroup of finite covolume in G, and write Q = f(H). Then
f : H → Q is a resolution.

Theorem 2.71 is a slight strengthening of [Mar91, Chap. III, (6.3) Theorem]. To
prove it, we need the following lemma, all of whose arguments are borrowed from
[BeLo97].

Lemma 2.72. Let G,N,H,Q be as in Theorem 2.71.
For every representation π of H which factors through Q, if 1H ≺ π, then 1Q ≺ π.
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Proof : By [Jol05, Corollary 4.1(2)], (f−1(Q), N) has relative Property (T); hence,
upon replacing G by f−1(Q), we can suppose that Q = G/N .

Denote by π̃ the factorization of π through Q, and by π̂ the (intermediate)
factorization of ρ through G, so that π = π̂|H .

By continuity of induction and since H has finite covolume, 1G ≺ IndGHπ. On
the other hand, IndGHπ = IndGH π̂|H = π̂ ⊗ L2(G/H) = π̂ ⊕ (π̂ ⊗ L2

0(G/H)).
We claim that 1G ⊀ π̂ ⊗ L2

0(G/H). It follows that 1G ≺ π̂. Since every compact
subset of G/N is the image of a compact subset of G [BHV05, Lemma B.1.1], it
follows that 1G/N ≺ π̃.

It remains to prove the claim. Since π̂|N is a trivial representation, π̂|N ⊗
L2

0(G/H)|N is a multiple of L2
0(G/H)|N . But, by [BeLo97, Lemma 2], L2

0(G/H) does
not contain any nonzero N -invariant vector. Accordingly, neither does π̂⊗L2

0(G/H).
Hence, by relative Property (T), 1G ⊀ π̂ ⊗ L2

0(G/H). �

Proof of Theorem 2.71. Let π be a unitary representation of H, and suppose that
1H ≺ π. Using [Mar91, Chap. III, (6.3) Theorem] twice5, πQ 6= 0, and its orthogonal
in π does not almost contain invariant vectors. It follows that 1H ≺ πQ. By Lemma
2.72, 1Q ≺ πQ. �

Remark 2.73. The conclusion of Lemma 2.72 is false if we drop the assumption
that (G,N) has relative Property (T), as the following example shows.

Set G = Z×R/Z, N = Z×{0}, and H the cyclic subgroup generated by (1, α),
where α ∈ (R − Q)/Z.

The projection p : H → R/Z has dense image. Hence, the Pontryagin dual

morphism: p̂ : Z ≃ R̂/Z → H∗ ≃ R/Z also has dense image. Take a sequence
(χn) of pairwise distinct nontrivial characters of R/Z such that p̂(χn) tends to 0.
Then the direct sum π =

⊕
χn does not weakly contain the trivial representation

(otherwise, since R/Z has Property (T), it would contain the trivial representation),
but π ◦ p|H weakly contains the trivial representation 1H .

We can now combine the results of Section 2.2 with Theorem 2.71.
Let G be a finite direct product of Lie groups and algebraic groups over lo-

cal fields of characteristic zero: G = L ×∏n
i=1Hi(Ki). Write RT (G) = RT (L) ×∏n

i=1RT (Hi)(Ki), where RT is defined in Sections 2.2.2 and 2.2.3. Observe that, by
Theorems 2.50 and 2.46, (G,RT ) has relative Property (T) and G/RT is Haagerup.
Denote by f : G→ G/RT (G) the quotient morphism.

Corollary 2.74. Let G be a finite product of Lie groups and (rational points of)
algebraic groups over local fields of characteristic zero. Let Γ be a closed subgroup
of finite covolume in G. Then there exists a Haagerup resolution for Γ, given by
f : Γ → f(Γ). �

5The assumption in [Mar91] is that N has Property (T), but it is clear from the proof that
relative Property (T) for (G,N) is sufficient.
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2.3.4 The factorization Theorem

Theorem 2.75. Let G be a locally compact group, f : G→ Q a resolution, u : G→
H a morphism to a locally compact group, with dense image, where H is Haagerup.
Then there exists a compact, normal subgroup K of H, and a factorization Q →
H/K making the following diagram commutative

G

u

��

f
// Q

��

H
p

// H/K.

Proof : H has a C0-representation π with almost invariant vectors. So π ◦u almost
has invariant vectors, so, upon passing to a subrepresentation, we can suppose that
π ◦ u factors through a representation π̃ of Q. We fix a normalized coefficient ϕ of
π̃ ◦ f .

Let (gi) be a net in G such that f(gi) → 1. Then ϕ(gi) → 1. This implies that
u(gi) is bounded in H, since ϕ is a C0 function. Let K be the set of all limits of
u(gi) for such nets (gi). Then K is a compact, normal subgroup of H (it is normal
thanks to the density of u(G) in H).

Let p be the projection: H → H/K. We claim that p ◦ u factors through Q.
Indeed, if (gi) is a net in G such that (f(gi)) is Cauchy in Q, then p◦u is also Cauchy
in H/K. This implies that p ◦ u factors through Q. �

2.3.5 Applications to Property (τ) and related properties

Recall that a representation of a group is said to be finite if its kernel has finite
index.

Definition 2.76. We recall that a topological group G has Property (τ) (resp.
(τFD)) if for every net (πi) of finite (resp. finite dimensional) irreducible unitary
representations of G which converges to 1G, eventually πi = 1G.

We say that a topological group G has Property (FHFD) if every isometric action
of G on a finite-dimensional Hilbert space has a fixed point. Equivalently, every
finite-dimensional unitary representation has vanishing 1-cohomology.

We say that a topological group G has Property (FHF ) if every finite unitary
representation has vanishing 1-cohomology.

The topological group G has Property (FAbR) (resp. (FAb)) if for every closed
subgroup of finite index H of G, Hom(H,R) = 0 (resp. Hom(H,Z) = 0).

It turns out that Properties (FHF ) and (FAbR) are equivalent. This is shown in
[LuZu05]6 using induction of unitary representations and Shapiro’s Lemma. Alter-
natively, this can be shown using induction of affine representations.

Note also that (FAbR) implies (FAb), and they are clearly equivalent for finitely
generated groups; while R or Q satisfy (FAb) but not (FAbR).

6The group there is assumed to be finitely generated but this has no importance.
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Property (τ) clearly implies (FAb) [LuZu05]; it is observed there that the first
Grigorchuk group does not have Property (τ), but has Property (FHFD) since all
its linear representations are finite. However, no finitely presented group is known
to satisfy (FAb) but not Property (τ).

We provide below an example of a finitely generated group which has Property
(τ) (hence (FHF )) but not (FHFD). We do not know if this is the first known
example.

We begin by a general result.

Proposition 2.77. Let G,Q be locally compact, and G → Q be a resolution. Let
(P) be one of the Properties: (T), (τ), (τFD), (FAb), (FAbR), (FHF ), (FHFD).
Then G has Property (P) if and only if Q does.

Proof : In all cases, Property (P) for G clearly implies Property (P) for Q.
Let us show the converse. For (T), (τ), and (τFD) this follows directly from

Proposition 2.65.
Suppose that G does not have Property (FAb). Let N ⊂ G be a closed normal

subgroup of finite index such that Hom(N,Z) 6= 0. Let M be the kernel of a
morphism of N onto Z, and set K =

⋂
g∈G/N gMg−1. Then K is the kernel of

the natural diagonal morphism N → ∏
g∈G/N N/gMg−1 ≃ ZG/N . It follows that

N/K is a nontrivial free abelian group of finite rank, and K is normal in G, so that
H = G/K is infinite, finitely generated, virtually abelian. Since H is Haagerup, by
Theorem 2.75, Q maps onto the quotient of H by a finite subgroup F . Since H/F is
also infinite, finitely generated, virtually abelian, Q does not have Property (FAb).

The case of Property (FAbR) can be proved similarly; since (FAbR) is equivalent
to (FHF ) which is treated below, we omit the details.

Suppose that G does not have Property (FHFD). Let G act isometrically on a
Euclidean space E with unbounded orbits, defining a morphism α : G → Isom(E).
Set H = α(G). Since Isom(E) is Haagerup, so is H. By Theorem 2.75, H has a
compact normal subgroup K such that Q has a morphism with dense image into
H/K. Observe that the set of K-fixed points provides an action of H/K on a non-
empty affine subspace of E, with unbounded orbits. So Q does not have Property
(FHFD).

The case of Property (FHF ) can be treated similarly, noting that α maps a
subgroup of finite index to translations, and this is preserved after restricting to the
action on an affine subspace. �

Remark 2.78. The case of Property (FHFD) in Proposition 2.77 contains as a par-
ticular case Theorem B in [BeLo97], without making use of the Vershik-Karpushev
Theorem, while the proof given in [BeLo97] does.

Proposition 2.77 justifies why we do not have restricted the definitions of Prop-
erty (τ), etc., to discrete groups (as is usually done), since in many cases, when we
have a resolution G → Q, Q is non-discrete. For instance, all these properties are
easy or trivial to characterize for connected Lie groups.

Proposition 2.79. Let G be a connected locally compact group. Then
1) G has Property (τ).
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2) G has Property (FHF ) if and only if Hom(G,R) = 0.
3) G has Property (τFD) if and only if Hom(G,R) = 0.
4) G has Property (FHFD) if and only if every amenable quotient of G is compact.

Proof : Since G has no proper closed finite index subgroup, 1) and 2) are immediate.
3) The condition is clearly necessary. Conversely, suppose that Hom(G,R) = 0.

Let W be the intersection of all kernels of finite-dimensional unitary representa-
tions of G. Clearly, it suffices to show that G/W has Property (τFD). By [Dix69,
Théorème 16.4.6], G/W ≃ Rn × K for some compact group K. The assumption
then implies n = 0, so that G/W is compact, so that G has Property (τFD).

4) Suppose that G does not have Property (FHFD). Let K be a compact nor-
mal subgroup of G such that G/K is a Lie group [MoZi55]. Then there exists an
unbounded isometric affine action of G on some Euclidean space. Upon restricting
to the orbit of a K-fixed point, we can suppose that K is contained in the kernel N
of this action. Necessarily, the Lie group G/N is not compact, and amenable since
it embeds in the amenable Lie group O(n) ⋉ Rn.

Conversely, suppose G has a noncompact amenable quotientH. SinceH does not
have Property (T), by a result of Shalom [Sha00] (see [BHV05, Section 3.2]), there
exists an irreducible unitary representation π of H with non-vanishing 1-reduced
cohomology. By [Mrt05, Theorem 3.1], π is finite-dimensional7. �

Proposition 2.80. Fix n ≥ 5, set Γ = SOn(Z[21/3]) ⋉Z[21/3]n. Then Γ is a finitely
presentable group, has Property (τFD) (hence Property (τ), hence Property (FHF )),
but not (FHFD).

Proof : Note that SOn(C) and SOn(C) ⋉ Cn have Property (T). Since Γ is an
irreducible lattice in the Lie group (SOn(R) ⋉ Rn) × (SOn(C) ⋉ Cn), it is finitely
presentable, and, moreover, by Theorem 2.71, Γ → SOn(R) ⋉ Rn is a resolution.

By Proposition 2.79, SOn(R)⋉Rn has Property (τFD). Thus Γ also has Property
(τFD) by Proposition 2.77. On the other hand, the embedding of Γ in SOn(R) ⋉
Rn provides an isometric action of Γ with unbounded orbits on the n-dimensional
Euclidean space. �

Remark 2.81. It is asked in [LuZi89] whether there exists a finitely generated
group with Property (τ) but not (τFD). Obvious non-finitely generated examples
are Q and R. It may be tempting to find a finitely generated group Γ with a
resolution Γ → R, but unfortunately no such Γ exists. Indeed, since Γ is discrete
and Hom(Γ,R) 6= 0, there exists a discrete, nontrivial, torsion-free abelian quotient
Λ of Γ. By Theorem 2.75, there exists a factorization: R → Λ, necessarily surjective.
This is a contradiction since R is connected.

2.3.6 Subgroups of simple Lie groups

Let G be a connected simple Lie group, with Lie algebra g. We are interested in
subgroups Γ ⊂ G, viewed as discrete groups.

7It is possible to prove 4) more directly, but we have used Shalom’s and Martin’s results to
make short.
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1) If g is isomorphic to sl2(R) ≃ so(2, 1) ≃ su(1, 1), sl2(C) ≃ so(3, 1), or so3(R),
then every Γ ⊂ G is Haagerup [GHW05, §5, Theorem 4].

2) If G has Property (T) and g ≃/ so3(R), then there exists Γ ⊂ G with Property
(T): if G is noncompact, take any lattice. If G is compact, this is due to Margulis
[Mar91, chap. III, Proposition 5.7]. We recall the simple argument: writing G =
H(R) with H absolutely simple, defined over Q, H(Z[21/3]) is an irreducible lattice
in G × H(C) [BoHC62]. By the assumption on G, H has C-rank ≥ 2, so that
H(C) has Property (T). It follows that the projection of H(Z[21/3]) on G is a dense
subgroup with Property (T).

3) If g ≃ so(n, 1) with n ≥ 5 or g ≃ su(n, 1) with n ≥ 3, then then there exists
Γ ⊂ G with Property (T): it suffices to observe that G contains a subgroup locally
isomorphic to SO(n) (n ≥ 5) or SU(n) (n ≥ 3), and such a subgroup contains an
infinite subgroup with Property (T) by 2).

4) There are only two remaining cases: g ≃ so(4, 1) and g ≃ su(2, 1). We are
going to show that the behaviour there is different from that in preceding examples.

The only result already known is that if g ≃ so(4, 1) or g ≃ su(2, 1), then no
infinite Γ ⊂ G can have Property (T); this follows from 1) since such Γ would be
contained in a maximal compact subgroup. This result is generalized in the following
theorem.

Theorem 2.82. Let G be a connected Lie group, locally isomorphic to either
SO(4, 1) or SU(2, 1).

Let Γ ⊂ G, and view Γ as a discrete group.
1) If Λ ⊂ Γ is a normal subgroup such that (Γ,Λ) has relative Property (T), then

Λ is a finite subgroup of G.
2) If Γ is not dense, and if Λ ⊂ Γ is a subgroup such that (Γ,Λ) has relative

Property (T), then Λ is a finite subgroup of G.
3) If Γ is dense, and X ⊂ Γ is a normal subset (i.e. invariant under conjugation)

such that (Γ, X) has relative Property (T), then X is a finite subset of the centre of
G.

Suppose that G is locally isomorphic to SU(2, 1). Then we have stronger state-
ments:

4) If Γ is not dense, then Γ is Haagerup.
5) If X ⊂ Γ is a normal subset and (Γ, X) has relative Property (T), then X is

a finite subset of G.

Proof : Fix a subset X ⊂ Γ such that (Γ, X) has relative Property (T). We make
a series of observations.

a) First note that G is Haagerup, a fact due to [FaHa74] (and [CCJJV01, Chap.
4] in the case of S̃U(2, 1)). By relative Property (T), X must compact. Denote by
h the Lie algebra of Γ.

b) Suppose, in this paragraph b), that Γ is dense in G, i.e. h = g; and suppose
that X is a normal subset. Then X is a compact, normal subset in G. Let Z be
the centre of G, and fix h ∈ X. Then the conjugacy class of h in G/Z is relatively
compact. Let M be the symmetric space associated to G/Z, and fix y ∈ M . Then
the function g 7→ d(ghg−1y, y) is bounded, so that h has bounded displacement
length. Since M is CAT(−1) and geodesically complete, this implies that h acts as
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the identity, i.e. h ∈ Z. Accordingly, X ⊂ Z, so that X is discrete. Since it is
relatively compact, it is finite. This proves 3).

c) Suppose that Γ is Zariski dense modulo Z, but not dense. Then Γ is discrete.
Indeed, Γ is contained in the stabilizer W of h for the adjoint action. Since W is
Zariski closed modulo Z, this implies that h is an ideal in g, so that, since h 6= g

and g is simple, h = {0}, i.e. Γ is discrete. Since G is Haagerup, this implies that Γ
is Haagerup.

d) Now suppose that Z = 1 and Γ is not Zariski dense. Let N be the Zariski
closure of Γ. Let Ru be the unipotent radical of N , and L = CS a Levi factor,
with abelian part C, and semisimple part S. The possibilities for simple factors in
S are rather restricted. The complexification GC is isomorphic to either PSO5(C)
or PSL3(C). In both cases, by a dimension argument, the only possible simple sub-
groups of GC are, up to isogeny, SL2(C), and maybe SL3(C) in PSO5(C); however,
sl3(C) does not embed in so5(C) as we see, for instance, by looking at their root
systems. So the only possible factors in S are, up to isogeny, SL2(C), SL2(R), and
SO3(R). By [GHW05, §5, Theorem 4], the image of Γ in N/Ru is Haagerup, so that
the image of X in H/Ru is finite.

e) We keep the assumptions of d), and suppose moreover that X = Λ is a
subgroup. Since Λ is relatively compact, and Ru is unipotent, Λ ∩ Ru = {1}. Since
we proved in d) that the image of Λ in N/Ru is finite, this implies that Λ is finite.

Now let us drop the assumption Z = 1. Then the image of Λ modulo Z is finite,
so that, by the case Z = 1, Λ is virtually contained in Z. This implies that Λ is
discrete, hence finite since it is also relatively compact.

In view of c), d), and e), 2) is now proved; observe that 1) is an immediate
consequence of 2) and 3).

f) Now suppose that g ≃ su(2, 1), and let us prove 4). Observe that 5) is an
immediate consequence of 3) and 4).

We first suppose that Z = 1, and that Γ is not Zariski dense. So we continue
with the notation of d). Write S = ScSnc by separating compact and noncompact
simple factors.

Suppose that Sc 6= 1. This is a compact subgroup, so, upon conjugating, we can
suppose that it is contained in the maximal subgroup PS(U(2) × U(1)). The Lie
algebra of Sc is identified with su(2).

Claim 2.83. The only proper subalgebra of su(2, 1) properly containing su(2) is
s(u(2) × u(1)).

Proof of the claim: Let k be such a subalgebra. If k ⊂ s(u(2) × u(1)), then k =
s(u(2) × u(1)) by a dimension argument.

Otherwise, we claim that the action of k on C3 is irreducible. Let us consider
the decomposition C3 = C2 ⊕ C. Let A be the C-subalgebra of M3(C) generated
by k. Since the action of su(2) on C2 is irreducible, A contains M2(C) × M1(C).
In particular, the only possible stable subspaces are C2 and C. Now observe that
since they are orthogonal to each other, if one is stable by k, then so is the other.
So, if k does not act irreducibly, it preserves these subspaces; this means that k ⊂
s(u(2) × u(1)). �
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By the claim, N is virtually isomorphic to a connected Lie group locally iso-
morphic to either SO3(R) or SO3(R) × R. So, by [GHW05, §5, Theorem 4], Γ is
Haagerup.

Otherwise, Sc = 1. Since G is Haagerup, by [CCJJV01, Chap. 4] (or Corollary
2.53), [Snc, Ru] = {1} so that Snc is, up to a finite kernel, a direct factor of N . Since
we have proved in d) that the only possible simple factor appearing in Snc are locally
isomorphic to SL2(R) or SL2(C),8 in view of [GHW05, §5, Theorem 4], this implies
that Γ has a subgroup of finite index which is Haagerup, so that Γ is Haagerup.

Finally let us drop the hypothesis Z = 1. Let N be the preimage in G of the
Zariski closure of Γ in G/Z. There are two possible cases:

• N has finitely many connected components. Then, by Theorem 1.28 (which
relies on similar arguments), every subgroup of N is Haagerup for the discrete topol-
ogy.

• N has infinitely many connected components. Then N is almost the direct
product of Z and N/Z, so that, by the case Z = 1, every subgroup of N is Haagerup
for the discrete topology. �

The following proposition shows that the statements in Theorem 2.82 are, in a
certain sense, optimal: in 1), the assumption that Λ be a normal subgroup cannot
be dropped, etc.

Proposition 2.84. Let G be a connected Lie group, locally isomorphic to either
SO(4, 1) or SU(2, 1).

1) G has finitely presented subgroups Γ ⊃ Λ, such that Λ is infinite and (Γ,Λ)
has relative Property (T).

2) If G is locally isomorphic to SO(4, 1), then G has a finitely presented subgroup
Γ and an infinite normal subset X ⊂ Γ such that (Γ, X) has relative Property (T).

Proof : 1) First suppose that G = SU(2, 1), and write G = H(R), where H(R) is
defined, for every commutative ring R as the set of matrices (A,B) (rather denoted
A+ iB) which satisfy the relation ( tA− i tB)J(A+ iB) = J , where9 J is the diagonal
matrix diag(1, 1,−1). Let K be defined as the upper-left 2 × 2 block in H, so that
K(R) ≃ SU(2). Observe that H(C) ≃ SL3(C) and K(C) ≃ SL2(C).

Then Γ = H(Z[21/3]) embeds as a lattice in H(R) × H(C). By Theorem 2.71,
the projection p of Γ into H(R) ≃ SU(2, 1) is a resolution. Set Λ = K(Z[21/3]).
Then Λ is a lattice in K(R) ×K(C), so embeds as a cocompact lattice in K(C) ≃
SL2(C). On the other hand, since p(Λ) is relatively compact (it is dense in SU(2)), by
Proposition 2.67, (Γ,Λ) has relative Property (T). Note that, as lattices in connected
Lie groups, they are finitely presentable.

Let us now suppose that G is locally isomorphic to SU(2, 1), and let Z be its
centre. Let Γ,Λ be as above, and let Γ0,Λ0 be their projection in G/Z × SL3(C).
Finally, let Γ1,Λ1 be their preimage in G×SL3(C). If Z is finite, then it is immediate
that (Γ1,Λ1) has relative Property (T), and that they are finitely presented. So we

suppose that G = ˜SU(2, 1). Let q be the projection G×SL3(C) → SU(2, 1)×SL2(C),
and observe that Γ1 = q−1(Γ) and Λ1 = q−1(Λ).

8Actually, it is easily checked that sl2(C) does not embed in su(2, 1).
9This relation must be understood as a relation where i is a formal variable satisfying i2 = −1.

In other words, this means tAJA + tBJB = J and tAJB − tBJA = 0.

49



Since K(R) ×K(C) ≃ SU(2) × SL2(C) is simply connected, W = q−1(K(R) ×
K(C)) is isomorphic to K(R)×K(C)×Z, and contains Λ1 as a lattice. So we can
define Λ2 as the projection of Λ1 into the unit component W0, which is isomorphic to
Λ, hence finitely presentable. Since the projection of Λ2 on G = K(R) is relatively
compact, by Proposition 2.67, (Γ1,Λ2) has relative Property (T).

A similar example can be constructed in SO(4, 1), projecting an irreducible lattice
from SO(4, 1) × SO5(C). Since SO(4, 1) has finite fundamental group, we do not
have to care with some of the complications of the previous example.

2) Observe that SO(4, 1) has a subgroup isomorphic to SO3(R) ⋉ R3. Indeed, if

we write SO(4, 1) as {A, tAJA = J}, where J =




0 0 1
0 I3 0
1 0 0


, then it contains the

following subgroup which is isomorphic to SO3(R) ⋉ R3:

P =








1 − tvA − tvv/2
0 A v
0 0 1


 , A ∈ SO(3), v ∈ R3



 .

Now consider the subgroup Γ = SO3(Z[21/3]) ⋉ Z[21/3]3. Then Γ embeds as a
lattice in (SO3(C) ⋉ C3) × (SO3(R) ⋉ R3). By Theorem 2.50, ((SO3(C) ⋉ C3) ×
(SO3(R) ⋉ R3),C3) has relative Property (T). Therefore, by Theorem 2.71, the
inclusion morphism Γ → SO3(Z[21/3]) ⋉ R3 is a resolution. Let B be the Euclidean
unit ball in R3. Then, by Proposition 2.67, (Γ,Z[21/3]3 ∩ B) has relative Property
(T). Finally observe that X = Z[21/3]3 ∩B is a normal subset in Γ.

Now observe that Γ is contained in P , hence is contained in the unit component
SO0(4, 1). The only other connected Lie group with Lie algebra so(4, 1) is its univer-
sal covering (of degree 2); taking the preimage of Γ and X, we obtain the required
pair with relative Property (T). �

Remark 2.85. Examples similar to Γ = SO3(Z[21/3]) ⋉ Z[21/3]3 (see the proof of
Proposition 2.84) were already introduced in Chapter 1 (Remark 1.34), where it was
observed that they provide the first known examples of groups without the Haagerup
Property, but have no infinite subgroup with relative Property (T). We have made
here more concrete the negation of the Haagerup Property by exhibiting an infinite
subset with relative Property (T).

2.3.7 Affine resolutions

Although they are probably known to the specialists, we found no reference for the
following lemmas.

Lemma 2.86. Let M be a CAT(0) metric space. Let X be a nonempty bounded
subset, and let B′(c, r) be the closed ball of minimal radius containing X [BrHa99,
Chap. II, Corollary 2.8(1)]. Suppose that X is contained in another ball B′(c′, r′).
Then

d(c, c′)2 ≤ r′2 − r2.
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Proof : Suppose the contrary, so that d2 = ‖c− c′‖2 > r′2 − r2 ≥ 0. For t ∈ [0, 1],
set pt = (1 − t)c+ tc′, which is a well-defined point on the geodesic segment [cc′].

By [Bro89, (**) p.153], for every z ∈M and every t ∈ [0, 1],

d(z, pt)
2 ≤ (1 − t)d(z, c)2 + td(z, c′)2 − t(1 − t)d2. (2.3.1)

It follows that if z ∈ B′(c, r)∩B′(c′, r′), then d(z, pt)2 ≤ (1− t)r2 + tr′2 − t(1− t)d2;
denote by u(t) this expression. By an immediate calculation, u(t) is minimal for
t = t0 = (d2 +r2−r′2)/(2d2), which belongs to ]0, 1] by assumption. Since u(0) = r2,
it follows that u(t0) < r2. Since this is true for all z ∈ B′(c, r)∩B′(c′, r′), this implies
that X is contained in a closed ball of radius u(t0)1/2 < r, contradiction. �

Lemma 2.87. Let M be a complete CAT(0) space. Let K be a nonempty closed
convex bounded subset, and B′(c, r) the ball of minimal radius containing K. Then
c ∈ K.

Proof : Suppose that c /∈ K, and let p be its projection on K [BrHa99, Chap. II,
Proposition 2.4]. Fix x ∈ K. Then for every p′ ∈ [px], d(p, c) ≤ d(p′, c). Hence,
by (2.3.1), for all t ∈ [0, 1], d(p, c)2 ≤ (1 − t)d(p, c)2 + td(x, c)2 − t(1 − t)d(p, x)2.
Taking the limit, after dividing by t, when t→ 0, gives d(x, p)2 ≤ d(x, c)2 − d(p, c)2,
so that d(x, p)2 ≤ r2 − d(p, c)2. In other words, K ⊂ B′(p, (r2 − d(p, c)2)1/2). This
contradicts the minimality of r. �

Lemma 2.88. Let M be a complete CAT(0) space. Let (Fn) be a decreasing sequence
of nonempty closed convex bounded subsets. Then

⋂
Fn 6= ∅.

Proof : Let B′(cn, rn) be the ball of minimal radius containing Fn. Observe that
cn ∈ Fn by Lemma 2.87. Moreover, (rn) is non-increasing, hence converges.

On the other hand, if m ≤ n, then Fn ⊂ Fm. Applying Lemma 2.86, we get
d(cn, cm)2 ≤ r2

n − r2
m. Therefore, (cn) is Cauchy, hence has a limit c, which belongs

to
⋂
Fn. �

Theorem 2.89. Let f : G → Q be a morphism with dense image between locally
compact groups. Let G act by isometries on a complete CAT(0) space M .

Suppose that there exists a neighbourhood Ω of 1 in Q, such that, for some w ∈M ,
f−1(Ω)w is bounded. Then MQ is nonempty.

Proof : Let (Ωn) be a sequence of compact symmetric neighbourhoods of 1 in Q,
contained in Ω, such that Ωn+1 · Ωn+1 ⊂ Ωn for all n. Set Vn = f−1(Ωn).

By the assumption on Ω, Vn ·w is bounded for all n. Let B′(cn, rn) be the minimal
ball containing Vn ·w. Note that the sequence (cn) is bounded since d(cn, w) ≤ rn ≤
r0 for all n.

Then, for all g ∈ Vn+1, g−1Vn+1 · w ⊂ Vn · w ⊂ B′(cn, rn), so that Vn+1 · w ⊂
B′(gcn, rn). By Lemma 2.86, we have

d(cn+1, gcn) ≤
√

(rn − rn+1)(rn + rn+1) ≤
√

2r0(rn − rn+1).

Specializing this inequality to g = 1, we obtain

d(cn+1, cn) ≤
√

2r0(rn − rn+1),
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and combining the two previous inequalities, we get, for all g ∈ Vn+1,

d(cn, gcn) ≤ d(cn+1, cn) + d(cn+1, gcn) ≤ 2
√

2r0(rn − rn+1).

Set u(n) = sup{2
√

2r0(rm − rm+1), m ≥ n}. Since (rn) is non-increasing and
nonnegative, rn − rn+1 → 0, so that u(n) → 0.

Note that, for all g, the function x 7→ d(x, gx) is continuous and convex on
M [BrHa99, Chap. II, Proposition 6.2]. It follows that Fn = {v ∈ H , ∀g ∈
Vn+1, d(v, gv) ≤ u(n)} is closed and convex. Set Kn = Fn ∩ B′(w, r0). Then (Kn)
is a decreasing sequence of closed, convex, bounded subsets of M , nonempty since
cn ∈ Kn. By Lemma 2.88,

⋂
Kn is nonempty; pick a point y in the intersection. We

claim that y ∈ XQ: to see this, let us appeal to Proposition 2.59. Let gi be a net in
G such that f(gi) → 1.

Set ni = sup{n, gi ∈ Ωn+1} ∈ N ∪ {∞}. Then ni → ∞ since all Ωn are neigh-
bourhoods of 1 in Q, and d(y, giy) ≤ u(ni) for all i (where we set u(∞) = 0). It
follows that d(y, giy) → 0. By Proposition 2.59, y ∈ XQ. �

Definition 2.90. Let f : G→ Q be a morphism with dense image between locally
compact groups. We call it an affine resolution if, for every isometric action of G
on an affine Hilbert space, there exists an affine G-invariant subspace such that the
action of G on this subspace factors through Q.

Theorem 2.91. Let G,Q be locally compact groups, f : G→ Q be a morphism with
dense image. The following implications (1)⇒(2)⇒(3)⇔(4) hold. Moreover, if G
is σ-compact, then (4)⇒(1), so that they are all equivalent.

(1) G→ Q is a resolution.
(2) (G,X) has relative Property (T) for all subsets X ⊂ G such that f(X) is

compact.
(3) (G,X) has relative Property (FH) for all subsets X ⊂ G such that f(X) is

compact.
(4) G→ Q is an affine resolution.

Proof : (3) is an immediate consequence of (4). The converse actually follows
immediately from Theorem 2.89.

The implication (1)⇒(2) has been proved in Proposition 2.67, and (2)⇒(3) fol-
lows from Theorem 2.16.

Hence, suppose that G (hence Q) is σ-compact, and that G → Q is an affine
resolution.

Claim 2.92. For every unitary representation π of G such that 1G ≺ π, πQ 6= 0.

Proof : Let π be a unitary representation of G on a Hilbert space H , such that
1G ≺ π. We must show that πQ 6= 0. If 1 ≤ π, this is trivially satisfied. So we
can suppose that 1 
 π. By a result of Guichardet which uses σ-compactness, (see
[BHV05, Theorem 2.13.2]), B1(G, π) is not closed in Z1(G, π), so that, in particular,
H1(G, π) 6= 0. Let b ∈ Z1(G, π)−B1(G, π), and let α be the associated affine action.
Since f is an affine resolution, αQ is a nonempty closed affine subspace V of H .
Then V is not reduced to a point {v}: otherwise, v would be a fixed point for the

52



action of G, contradicting b /∈ B1(G, π). Hence the linear part of αQ is a nonzero
subrepresentation of π, so that πQ is nonzero. �

Let π be a unitary representation of G on a Hilbert space H , such that 1G ≺ π.
We must show that 1Q ≺ πQ. Again, since the case when 1 ≤ π is trivial, we
suppose that 1 
 π. Let ρ be the orthogonal of πQ. By the claim, 1G ⊀ ρ. It
follows that 1G ≺ πQ, so that we can suppose that π = πQ, i.e. π factors through a
representation π̃ of Q.

Claim 2.93. The natural continuous morphism f̂ : Z1(Q, π̃) → Z1(G, π) is bijective.

Proof : It is clearly injective. Let b ∈ Z1(G, π). Since f is an affine resolution, one
can write b(g) = b′(g) + π(g)v − v (∀g ∈ G), where b′ ∈ Z1(G, π) factors through Q
and v ∈ H . Since π also factors through Q, this implies that so does b, meaning
that b belongs to Im(f̂). �

Since G and Q are σ-compact, Z1(G, π) and Z1(Q, π̃) are Fréchet spaces. Since
f̂ : Z1(Q, π̃) → Z1(G, π) is bijective, by the open mapping Theorem, it is an iso-
morphism. Note that it maps B1(Q, π̃) bijectively onto B1(G, π), and that B1(G, π)
is not closed in Z1(G, π), as we used in the proof of the first claim. It follows
that B1(Q, π̃) is not closed in Z1(Q, π̃). Using the converse in Guichardet’s result
[BHV05, Theorem 2.13.2], 1Q ≺ π̃. �

As a corollary of Theorems 2.89 and 2.91, we get:

Corollary 2.94. Let G,Q be locally compact groups, and let f : G → Q be a
resolution. Let G act on a complete CAT(0) space M , and suppose that there exists
a G-equivariant proper embedding i of M in a Hilbert space. Then MQ 6= ∅.

Proof : Let Ω be a compact neighbourhood of 1 in Q, and set V = f−1(Ω). Fix
x ∈M , and set ψ(g) = ‖i(gx)‖2. Then ψ is conditionally negative definite on G. By
Proposition 2.67, ψ is bounded on V . This implies that the hypothesis of Theorem
2.89 is fulfilled. �

There are many metric spaces for which there automatically exists such an equiv-
ariant embedding; namely, those metric spacesM which have a Isom(M)-equivariant
embedding in a Hilbert space. Thus the hypotheses of Corollary are satisfied, for
instance when

• M is a Hilbert space,
• M is a tree, or a complete R-tree [HaVa89, Chap. 6, Proposition 11].
•M is a real or complex hyperbolic space (maybe infinite-dimensional) [FaHa74],
• M is a finite-dimensional CAT(0) cube complex.
For instance:

Corollary 2.95. Let G,Q be locally compact groups, and let f : G → Q be a
resolution. Then G has Property (FA) if and only if Q does.

Proof : If G has Property (FA), so does Q. Let us show the converse. By a result
of Alperin and Watatani (see [HaVa89, Chap. 6]), every tree equivariantly embeds
in a Hilbert space (more precisely, the distance is a conditionally negative definite
kernel). It follows that, for every action of G on a tree, there exists a nonempty
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G-invariant subtree on which the action factors through Q. The result immediately
follows. �

Theorem 2.91 allows us to prove the converse of Corollary 2.66.

Theorem 2.96. Let f : G → Q be a morphism between locally compact groups,
with dense image, and suppose G σ-compact. Then f is a resolution if and only if,
for every net (πi) of irreducible representation of G converging to 1G, eventually πi
factors through a representation π̃i of Q, and π̃i → 1Q.

Proof : The condition is clearly necessary. Suppose that it is satisfied. Let us show
that (2) of Theorem 2.91 is satisfied, and let us use Theorem 2.22. Fix ε > 0, let X ⊂
G be such that f(X) is compact, and let (πi) be a net of irreducible representation
of G converging to 1G. Then eventually πi factors through a representation π̃i of
Q, and π̃i → 1Q. Since f(X) is compact, this implies that, eventually, π̃i has a
(f(X), ε)-invariant vector, so that πi has a (X, ε)-invariant vector. �

2.3.8 Preresolutions

Definition 2.97. Let f : G → Q be a morphism between locally compact, with
dense image.

We say that f is a preresolution if, for every unitary representation π of G,
1G ≺ π implies πQ 6= 0.

We say that f satisfies Condition (K) if, for every unitary representation π of Q,
if 1G ≺ π ◦ f , then 1Q ≺ π.

Note that Condition (K) is satisfied whenever G→ Q is the quotient by a normal
subgroup. On the other hand, if Z → R/Z is any dense embedding, it is easy to
check that it does not satisfy Condition (K) (see Remark 2.73).

By definition, f is a resolution if and only if it is a preresolution and satisfies
Condition (K). It is natural to ask whether Condition (K) is actually redundant in
this definition.

With the help of Theorem 2.91, we show that the answer is positive when G is
σ-compact (see Corollary 2.104). We first need some preliminary results.

Proposition 2.98. If f : G → Q is a morphism between locally compact groups,
with dense image. Equivalences:

(i) G→ Q is a preresolution.
(ii) There exists a “Kazhdan pair” (K, ε), K compact in G, and ε > 0, such that

every representation of G with a (K, ε)-invariant vector has a nonzero subrepresen-
tation which factors through Q.

(iii) For every set R of unitary representations of G which do not contain a
nonzero subrepresentation which factors through Q, 1G is isolated in R∪ {1G}.

Proof : (iii)⇒(ii). If (ii) is not satisfied, choose, for every (K, ε), K compact, ε > 0,
a representation πK,ε which does not contain a nonzero subrepresentation factoring
through Q. Then 1G is not isolated in 1G ∪ {πK,ε, varying (K, ε)}; this contradicts
(iii).

(ii)⇒(i) is trivial.
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(i)⇒(iii). If (iii) is not satisfied, let πi → 1G, where πi does not contain a nonzero
subrepresentation factoring through Q. Then 1G ≺ ⊕

πi, so that
⊕

πi contains a
subrepresentation ρ which factors through Q. By Lemma 2.61, so does πi for some
i. This is a contradiction. �

If f : G → Q is a morphism between topological groups, we say that X ⊂ G is
Q-compact (resp. Q-relatively compact) if f(X) (resp. f(X)) is compact.

Lemma 2.99. Let π be a unitary representation of G. Let ξ, ξ′ be any vectors, and
ϕ, ϕ′ the corresponding positive definite functions. Then

‖ϕ− ϕ′‖∞ ≤ ‖ξ − ξ′‖(‖ξ‖ + ‖ξ′‖), and

‖π(g)ξ − ξ‖2 = 2(‖ξ‖2 − Re(ϕ(g))).

Proof : For all g ∈ G,

ϕ(g) − ϕ′(g) = 〈π(g)ξ, ξ〉 − 〈π(g)ξ′, ξ′〉

= 〈π(g)ξ, ξ − ξ′〉 + 〈π(g)(ξ − ξ′), ξ′〉,
hence |ϕ(g) − ϕ′(g)| ≤ ‖ξ − ξ′‖(‖ξ‖ + ‖ξ′‖) by the Cauchy-Schwarz inequality.

The second assertion is obtained by an immediate calculation. �

Proposition 2.100. Let (K, ε) a Kazhdan pair for a preresolution G→ Q, with K
compact and ε > 0. Let (π,H ) be a unitary representation of G, and let P be the
orthogonal projection onto H Q. Take δ ∈ [0, 1]. Then, for every (K, δε)-invariant
vector ξ ∈ H , we have

‖ξ − Pξ‖ ≤ δ‖ξ‖, and

‖ξ − 1

‖Pξ‖Pξ‖ ≤ 2δ‖ξ‖ (provided δ < 1 and ξ 6= 0).

For every positive definite function ϕ on G, if Re(ϕ) ≥ 1 − δ2ε2/2 on K, then
there exists a positive definite function ϕ′ on G, factoring through Q, such that
ϕ(1) = ϕ′(1), and |ϕ− ϕ′| ≤ 4δϕ(1) on G.

Proof : Write ξ = ξ1 + ξ2, with ξ1 = Pξ. For every g ∈ K, ‖ξ − π(g)ξ‖ ≤ δε‖ξ‖.
Since the representation (H Q)⊥ has no subrepresentation which factors through Q,
there exists g ∈ K such that ε‖ξ2‖ ≤ ‖ξ2 − π(g)ξ2‖. Hence

ε2‖ξ2‖2 ≤ ‖ξ2−π(g)ξ2‖2 = ‖ξ−π(g)ξ‖2−‖ξ1−π(g)ξ1‖2 ≤ ‖ξ−π(g)ξ‖2 ≤ δ2ε2‖ξ‖2.

Since ξ2 = ξ−Pξ, this gives ‖ξ−Pξ‖ ≤ δ‖ξ‖. The second inequality follows easily,
and the statement on positive definite functions follows by Lemma 2.99 and a GNS
construction. �

As a corollary, we get:

Corollary 2.101. Let G → Q be a preresolution. For every net (ϕi) of positive
definite normalized functions converging to 1 uniformly on compact subsets, there
exists another net (ϕ′

i) positive definite normalized functions on G, factoring through
Q, such that ‖ϕ− ϕ′

i‖∞ → 0. �
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Lemma 2.102. Let G be a locally compact group, and f : G→ Q a resolution. Let
ψ : G → R+ be a conditionally negative definite function on G. Then, there exists
a symmetric, open neighbourhood A of 1 in Q such that ψ is bounded on f−1(A).

Proof : By Schönberg’s Theorem, for every t > 0, e−tψ is definite positive; moreover,
it tends to 1, uniformly on compact subsets, when t → 0. By Corollary 2.101,
there exists, for every t > 0, a normalized positive definite function ϕt such that
‖e−tψ−ϕt‖∞ → 0. For some fixed t > 0, ‖e−tψ−ϕt‖ ≤ 1/4. Since ϕt factors through
a continuous function on Q, there exists a symmetric, open neighbourhood A of 1
in Q such that |1 − ϕt| ≤ 1/4 on f−1(A). Hence 1 − e−tψ ≤ 1/2 on f−1(A), so that
ψ ≤ log(2)/t on f−1(A). �

Theorem 2.103. Let G be a locally compact group, f : G → Q be a preresolution.
Then f satisfies Condition (3) of Theorem 2.91, namely, (G,B) has relative Property
(FH) for every Q-compact subset B of G.

Proof : Let ψ be a conditionally negative definite function on G. Let K be a
compact subset of Q, and let us show that ψ is bounded on f−1(K). Let A be as in
Lemma 2.102, so that ψ is bounded on B = f−1(A).

Let Ω be the subgroup of Q generated by A; it is open. Then K is contained in
the union of finitely many cosets q1Ω, . . . , qnΩ. Since Ω is open and f(G) dense, we
can choose qi ∈ f(G), say, qi = f(gi).

Set L =
⋃n
i=1 q

−1
i (K ∩ qiΩ), so that K ⊂ ⋃n

i=1 qiL.
Since L is a compact subset of Ω, L is contained in An for some n. So, by Lemma

2.70, f−1(L) is contained in Bn+1. Since ψ is bounded on B, it is also bounded on
Bn+1, hence on f−1(L).

It follows that ψ is bounded on
⋃n
i=1 qif

−1(L) = f−1(
⋃n
i=1 giL), which contains

f−1(K). �

Corollary 2.104. Let G,Q be locally compact, σ-compact groups, and f : G→ Q a
morphism with dense image. Then f is a resolution if and only if it is a preresolution.

Proof : This follows from Theorems 2.91 and 2.103. �
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Chapter 3

Dense subgroups with Property (T)
in Lie groups

In this chapter, we characterize connected Lie groups which have a dense finitely
generated subgroup Γ with Property (T) (when viewed as a discrete group). The
existence of such a dense subgroup is a strengthening of Property (T); this has
been used by Margulis and Sullivan [Mar80, Sul81] to solve the Ruziewicz Problem
in dimension n ≥ 4, namely that the Lebesgue measure is the only mean on the
measurable subsets of Sn, invariant under SOn+1.

We begin by recalling a result which characterizes connected Lie groups with
Property (T). This is due to S. P. Wang [Wan82], but we give a slightly different
formulation.

Theorem 3.1. Let G be a connected Lie group. Then G has Property (T) if and
only if

(i) Every amenable1 quotient of G is compact, and
(ii) No simple quotient of G is locally isomorphic to SO(n, 1) or SU(n, 1) for

some n ≥ 2.

In Theorem 3.1, Condition (i) is shown in Chapter 2 (Proposition 2.79) to be
equivalent to: every isometric action of G on a Euclidean space has a fixed point.
Condition (ii) can be interpreted as: every isometric action on a real or complex
finite-dimensional hyperbolic space has a fixed point. Thus Theorem 3.1 has the
following geometric reformulation.

Theorem 3.2. Let G be a connected Lie group. Then G has Property (T) if and only
if every isometric action of G on a Euclidean, real hyperbolic or complex hyperbolic
space has a fixed point.

Here is the main result of the chapter.

Theorem 3.3. Let G be a connected Lie group. Then G has a dense, finitely gen-
erated subgroup with Property (T) if and only if G has Property (T), and

(iii) R/Z is not a quotient of G (that is, [G,G] = G).
(iv) SO3(R) is not a quotient of G.

1Recall that a connected Lie group is amenable if and only if its radical is cocompact.
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Remark 3.4. It is easy to check that, for a connected Lie group with Property (T),
((iii) and (iv)) is equivalent to: Hom(G,PSL2(C)) = {1}, which means, geometri-
cally, that every isometric action on the three-dimensional real hyperbolic space is
identically trivial.

The only nontrivial point as regards the necessary condition in Theorem 3.3 is
due to Zimmer [Zim84], who shows that SO3(R) has no infinite finitely generated
subgroup with Property (T). The sufficient condition, constructing a dense subgroup
with Property (T), was proved by Margulis [Mar91, chap. III, Proposition 5.7] for
G compact.

We state some related results after the proof.

Notation: the Lie algebra of a Lie group or an algebraic group is denoted by the
corresponding Gothic letter.
Proof of Theorem 3.1. If the connected Lie group G has Property (T), then Con-
ditions (i) and (ii) are satisfied, since non-compact amenable groups, and connected
Lie groups locally isomorphic to SO(n, 1) or SU(n, 1) for some n ≥ 2 do not have
Property (T) (see [HaVa89, §6.d]).

We deduce the converse from S. P. Wang’s classification [Wan82]: denote by R
the radical, and Snc the sum of all noncompact simple factors in a Levi factor. If
G does not have Property (T), then either (1) Snc does not have Property (T), or
(2) W = Snc[Snc, R] ∩R is not cocompact in R. In the case (1), (ii) is not satisfied.
On the other hand, it is easily seen that W is a normal subgroup of G. So, in case
(2), taking the quotient, we can suppose that W = 1. So G is locally isomorphic
to Snc × Rm, where Rm denotes the amenable radical RSc, and Snc ∩ R = 1. This
implies that G is actually the direct product of R and Snc. So either R or Snc does
not have Property (T), giving either the negation of (i) or (ii). �

Proof of Theorem 3.3. If G has a finitely generated dense subgroup Γ with
Property (T), then G has Property (T) (indeed, Property (T) is inherited by mor-
phism with dense image, as follows immediately from the definition); (iii) is also
clearly satisfied (because Γ has finite abelianization), and also (iv) by [Zim84] (see
also [HaVa89, Chap. 6, 26]). We must show that, conversely, these conditions are
sufficient.

First step: suppose that G = H(R)0, where H is a linear algebraic group
defined over Q (the subscript 0 means the connected component in the Hausdorff
topology). It is well-known that H(R)0 is an open subgroup of finite index in H(R)
[BoTi, Corollaire 14.5]. Consider the normal subgroup W = Snc[Snc, R] of H, where
Snc denotes the sum of all simple R-isotropic factors in a Levi factor S. Then W (R)
is cocompact in H(R) (since H(R) has Property (T)). The hypotheses (iii) and (iv)
then imply that H/W is, modulo its finite centre, a product of simple factors of
C-rank ≥ 2. This implies that S[S,R] = H, and that (H/R)(C) has Property (T).
By [Wan82], this implies that H(C) has Property (T).

Now fix a number field of degree 3 over Q, not totally real, and O its ring of
integers: for instance, O = Z[21/3]. Then, since H is perfect, by the Borel-Harish-
Chandra Theorem [BoHC62], H(O) embeds as an irreducible lattice in H(R) ×
H(C), which has Property (T). So its projection on G = H(R) is a dense subgroup
with Property (T). This proves the case of the first step.
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Let g be the Lie algebra of g. Set s = g/r, where r is the radical. Let snc be the
sum of all factors of positive R-rank of s, and let gnc be the preimage of snc in g:
this is an ideal of g.

Second step: we can reduce to the case when the Lie algebra gnc is perfect.
Set h =

⋂
n≥0D

ng, where D means the derived subalgebra. Then h is an ideal
in g, generating a normal Lie subgroup H (not necessarily closed) of G. Moreover,
G/H is solvable, hence trivial by the assumption (iii). This means that H is dense
in G. Accordingly, since any dense subgroup of H is dense in G, we can replace G
by H and thus suppose that g is perfect.

Third step: let us show that if g is perfect, and if (i) and (iii) are satisfied, then
gnc is also perfect (that is, [snc, r] = r).

Consider the adjoint action of G on the quotient g/D(gnc). This defines a mor-
phism f : G→ GL(g/D(gnc)), such that f(G) is amenable. Therefore, the Lie group
f(G) is also amenable, hence compact. This implies that g/D(gnc) is a compact Lie
algebra [Hel78, Chap. 2, §5], that is, the direct product of an abelian Lie algebra
and a semisimple compact Lie algebra. Since g is perfect, this implies that g/D(gnc)
is semisimple. Since gnc/D(gnc) is an abelian ideal in g/D(gnc), we conclude that
D(gnc) = gnc.

Fourth step. We begin by the following standard lemma.

Lemma 3.5. Let g be a Lie algebra, and n a nilpotent ideal. Let π denote the
projection: g → g/[n, n]. Let X ⊆ g satisfy: π(X) generates g/[n, n]. Then X
generates g.

Proof : Argue by induction on the length of the descending central series of n. If
n is abelian, the result is trivial. Otherwise, let z be the least nonzero term of the
descending central series of n. By induction hypothesis, X generates g modulo z. On
the other hand, z is contained in [n, n], that is, z is generated by some elements of the
form [n, n′], for some n, n′ ∈ n. Since z is central in n, these elements can be chosen
modulo z, so that they can be taken in the subalgebra generated by X. This implies
that z is contained in the subalgebra generated by X, so that X generates g. �

The fourth step consists in proving the following lemma.

Lemma 3.6. Let g = s⋉r be a Lie algebra over R, with s semisimple and r nilpotent.
Then there exists a Lie algebra h = s ⋉ n, defined over Q, with n nilpotent, and a
surjection p : h → g which is the identity on the Levi factor, and maps n onto r. If,
moreover, [snc, r] = r, we can impose [snc, n] = n.

Proof : Let v be a complementary s-subspace of [r, r] in r. By [Wit05], we can fix
a Q-form of s, together with a Q-form of v, so that the representation of s on v is
defined over Q. By Lemma 3.5, r is generated by v as a Lie algebra. Let m be such
that r is m-nilpotent, and let n be the free m-nilpotent Lie algebra generated by the
vector space v. The action of s on v, which is defined over Q, extends naturally to
an action on n, also defined over Q. On the other hand, by the universal property of
the embedding v → n, the identity map v → v extends to a Lie algebra morphism of
n onto r, which is actually a morphism of s-modules: indeed, let s ∈ s. Then s gives
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a derivation on n, whose image is a derivation of r which coincides, in restriction to
v, with ad(s). Since r is generated by v, this implies that they coincide on all of r.
Therefore, the surjection n → r extends to a surjection s ⋉ n → s ⋉ r.

If [s, r] = r, the condition [snc, n] = n is immediate, since then [snc, n] contains
v. �

In view of the second and third steps, the hypotheses are now: gnc is perfect,
and g has no simple factor s isomorphic to so(3), so(n, 1) or su(n, 1).

Fifth step: suppose that G = H(R)0, where H is a connected linear algebraic
group defined over R such that h = g is perfect. Choose p : ĥ → h as in Lemma
3.6, and let p ⊂ ĥ × h be its graph. Using [Bor91, Corollary 7.9] twice, ĥ is the
Lie algebra of a simply connected linear algebraic group Ĥ defined over Q, and p is
the Lie algebra of a R-closed subgroup P ⊂ Ĥ ×H. Since p ∩ h = {0}, by [Bor91,
Corollary 6.12], P ∩H is finite. Since p is onto, the projection of P (R) into H(R) is
Zariski dense; thus W = P ∩H is normal in H. Replacing H by H/W if necessary,
we assume that W = {1}. Since the projection p → ĥ is onto, the projection of P (R)
on Ĥ(R) contains an open subgroup for the Hausdorff topology, but this topology
is connected since we have chosen Ĥ simply connected. Hence P is the graph of a
morphism of Ĥ onto H, still denoted by P .

By the first step, Ĥ(R) has a finitely generated dense subgroup Γ̂ with Property
(T). It follows that P (Γ̂) ∩G is a dense subgroup with Property (T) in G.

Sixth step. We now conclude. We have reduced to the case when g is perfect;
in this setting, the hypotheses (recalled before Step 5) only depend on g. So we
can reduce to the case when G is simply connected: indeed, if G satisfies the above
hypotheses, and if we can prove that its universal cover has a dense subgroup with
Property (T), this one projects densely on G. Accordingly, we also suppose that G
is simply connected. Since g is perfect, there exists a linear algebraic R-group H
with Lie algebra g, so that there exists a discrete, central subgroup Z of G such that
G/Z is isomorphic to H(R)0. By the fifth step, H(R)0 = G/Z has a dense subgroup
Γ with Property (T).

Let Γ̃ be the preimage of Γ in G. Define Zn as the kernel of the natural morphism
Dn(Γ̃) → Dn(Γ), so that we have, for all n, an exact sequence:

1 → Zn → Dn(Γ̃) → Dn(Γ) → 1.

Then (Zn) is a decreasing sequence of subgroups of Z. Moreover, since Γ has Prop-
erty (T), for every n, Dn(Γ) has finite index in Γ. Accordingly, for each n such that
Dn(Γ̃)/Dn+1(Γ̃) is infinite, we have rk(Zn+1) < rk(Zn). This implies the existence
of n such that Dn(Γ̃) has finite abelianization. Therefore, by Serre’s Theorem on
central extensions [HaVa89, Théorème 12], Dn(Γ̃) has Property (T). We finally claim
that Dn(Γ̃) is dense in G: this follows from the fact that Γ̃ is dense in G and G is
topologically perfect. �

Theorem 3.3 can be compared to the following result.

Proposition 3.7. Let G be a connected Lie group. Then G has an infinite, finitely
generated subgroup with Property (T) if and only if G has at least a simple factor
which is not locally isomorphic to SO(3), SL2(R), SL2(C), SO(4, 1), SU(2, 1).
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Proof : Suppose that G has such a simple factor S; through a Levi factor, S
embeds in G as a (non-necessarily closed) subgroup of G. If S has Property (T),
then it has a dense (hence infinite) subgroup with Property (T) (this follows from
Theorem 3.3, since we have excluded SO(3)). Otherwise, S is locally isomorphic to
SU(n, 1) (n ≥ 3) or SO(n, 1) (n ≥ 5). Then S has a compact subgroup K locally
isomorphic to SU(n) (n ≥ 3) or SO(n) (n ≥ 5). By [Mar91, chap. III, Proposition
5.7] (or Theorem 3.3), K has a dense (hence infinite) finitely generated subgroup
with Property (T).

Conversely, if G contains an infinite subgroup Γ with Property (T), then, since
Γ is not virtually solvable, the projection of Γ modulo the radical is infinite, so that
we are reduced to the case when G is semisimple; we assume this now. Similarly,
the projection of Γ modulo the centre is infinite. So now we suppose that G is a
connected, centre-free semisimple Lie group, hence a direct product of simple factors.
The projection into at least one factor, say, S, must be infinite. It then suffices to
show that S cannot be locally isomorphic to one of the five groups quoted in the
proposition. Since each of these five groups has the Haagerup Property [HaVa89,
§6.d], i.e. acts properly on a Hilbert space, Γ must be contained in a maximal
compact subgroup. Thus Γ embeds in SO3(R), and this is in contradiction with
Zimmer’s result already used above [Zim84]. �

Remark 3.8. In contrast, it is proved in Chapter 2 (Proposition 2.84) that, in
SO0(4, 1) and SU(2, 1), there exists infinite subgroups Λ ⊂ Γ, such that (Γ,Λ) has
relative Property (T). Moreover, Λ cannot be chosen normal, and Γ is necessarily
dense.

In some “minimal” cases, an infinite subgroup with Property (T) is necessarily
dense or Zariski dense.

Proposition 3.9. Let G be a simple, connected Lie group, locally isomorphic to
SO(5), SU(3), Sp4(R), or SL3(R). Then every infinite, finitely generated subgroup
with Property (T) is either dense, or discrete and Zariski dense 2.

Proof : Projecting modulo the centre, we can suppose that G in center-free and
thus is algebraic. Let Γ be an infinite subgroup and H its Zariski closure; suppose
by contradiction H 6= G. Then H has a simple factor S which is not one of the
five groups quoted in Proposition 3.7. Observe that dim(S) < dim(G). If G is
either SU(3) or SL3(R), then this implies dim(S) < 8 and thus S is one of the five
groups quoted in Proposition 3.7. If G is either SO(5) or Sp4(R), then dim(G) = 10
and we must have dim(S) = 8, otherwise we contradict again Proposition 3.7. But
passing to the complexification, we get an embedding of the simple 8-dimensional
subalgebra SL3 into the simple 10-dimensional simple Lie algebra Sp4(≃ SO5), and
this does not exist (the root system A2 does not embed in the root system B2), a
contradiction.

Finally Γ is Zariski dense, so that the Lie algebra of its Hausdorff closure is
normalized by all of G, hence is either trivial or all of g, i.e. Γ is either discrete or
dense. �

2Note that G is not necessarily algebraic, however this statement makes sense if we define a
Zariski dense subset as a subset which is Zariski dense modulo the centre.
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Question 3.10. Does there exist an infinite, discrete subgroup of SL3(R), Sp4(R),
or Sp(2, 1) which has Property (T), but is not a lattice?

Remark 3.11. Following Shalom [Sha99t], a locally compact group has strong Prop-
erty (T) if it has a finite Kazhdan subset.

The following implications are immediate: G has a dense finitely generated sub-
group with Property (T) ⇒ G has strong Property (T) ⇒ G has Property (T).

Shalom proves that a connected Lie group G with Property (T) has strong Prop-
erty (T) if and only if R/Z is not a quotient of G, i.e. if G is topologically perfect.
The most remarkable result is that SO3(R) has strong Property (T); this is actually
a reformulation of a deep result of Drinfeld [Dri84].

We would like to generalize Lemma 3.6, and thus Theorem 3.3 to algebraic groups
over Qp, SO3(R) being replaced by anisotropic simple groups whose complexification
is a product of rank one factors. This would be possible if the following question
has a positive answer:

Question 3.12. Let G be a simply connected, semisimple group over Qp. Let V be
a rational representation of G. Does V have a Q-form?

Two hints towards a positive answer to this question are:

• The answer is positive when Qp is replaced by R [Wit05].

• Every simply connected semisimple group over Qp has a Q-form. This is a
straightforward consequence of [BoHa78, Theorem B].

Remark 3.13. Question 3.12 is equivalent to the following one: if g is a perfect Lie
algebra over Qp with abelian radical, does g have a Q-form? Note that the answer
is negative if we replace “with abelian radical” by “with 2-nilpotent radical”. Indeed,
there are 2ℵ0 non-isomorphic such Lie algebras; this can be proved in a similar way
as Proposition 1.35.

Remark 3.14. If Qp is replaced by an arbitrary fieldK ⊃ Q, the answer to Question
3.12 is negative in general; actually a semisimple simply connected K-group need
not have a Q-form. For instance, if K = Q(

√
2), and q is the quadratic form√

2x2
1 + x2

2 + x2
3, then SO(q) has no Q-form.
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Chapter 4

Finitely presentable, non-Hopfian
groups with Kazhdan’s Property (T)
and infinite outer automorphism
group

4.1 Introduction

It was asked by Paulin in [HaVa89, p.134] (1989) whether there exists a finitely
generated group with Kazhdan’s Property (T) and with infinite outer automorphism
group. This question remained unanswered until 2004; in particular, it is Question
18 in [wor01].

This question was motivated by the two following special cases. The first is
the case of lattices in semisimple groups over local fields, which have long been
considered as prototypical examples of groups with Property (T). If Γ is such a
lattice, Mostow’s rigidity Theorem and the fact that semisimple groups have finite
outer automorphism group imply that Out(Γ) is finite. Secondly, a new source of
groups with Property (T) appeared when Zuk [Zuk96] proved that certain models of
random groups have Property (T). But they are also hyperbolic, and Paulin proved
[Pau91] that a hyperbolic group with Property (T) has finite outer automorphism
group.

However, it turns out that various arithmetic lattices in appropriate non-semi-
simple groups provide examples. For instance, consider the additive group Mmn(Z)
of m×n matrices over Z, endowed with the action of GLn(Z) by left multiplication.

Proposition 4.1. For every n ≥ 3, m ≥ 1, SLn(Z)⋉Mmn(Z) is a finitely presented
linear group, has Property (T), is non-coHopfian1, and its outer automorphism group
contains a copy of PGLm(Z), hence is infinite if m ≥ 2.

Ollivier and Wise [OlWi05] have independently found examples of a very different
nature. They embed any countable group G in Out(Γ), where Γ has Property (T), is

1A group is coHopfian (resp. Hopfian) if it is isomorphic to no proper subgroup (resp. quotient)
of itself.
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a subgroup of a torsion-free hyperbolic group, satisfying a certain “graphical” small
cancellation condition (see also [BeSz05]). In contrast to our examples, theirs are
not, a priori, finitely presented; on the other hand, our examples are certainly not
subgroups of hyperbolic groups since they all contain a copy of Z2.

They also construct in [OlWi05] a non-coHopfian group with Property (T) which
embeds in a hyperbolic group. Proposition 4.1 actually answers two questions in
their paper: namely, whether there exists a finitely presented group with Property
(T) and without the coHopfian Property (resp. with infinite outer automorphism
group).

Remark 4.2. Another example of a non-coHopfian group with Property (T) is
PGLn(Fp[X]) (n ≥ 3). This group is finitely presentable if n ≥ 4 [ReSo76]. In
contrast with the previous examples, the Frobenius morphism Fr induces an iso-
morphism onto a subgroup of infinite index, and the intersection

⋂
k≥0 Im(Frk) is

reduced to {1}.

Ollivier and Wise also constructed in [OlWi05] the first examples of non-Hopfian
groups with Property (T). They asked whether a finitely presented example exists.
Although linear finitely generated groups are residually finite, hence Hopfian, we use
them to answer positively their question.

Theorem 4.3. There exists a p-arithmetic lattice Γ, and a central subgroup Z ⊂ Γ,
such that Γ and Γ/Z are finitely presented, have Property (T), and Γ/Z is non-
Hopfian.

The group Γ has a simple description as a matrix group from which Property (T)
and the non-Hopfian property for Γ/Z are easily checked (Proposition 4.12). Section
4.3 is devoted to prove finite presentability of Γ. We use here a general criterion for
finite presentability of p-arithmetic groups, due to Abels [Abe87]. It involves the
computation of the first and second cohomology group of a suitable Lie algebra.

4.2 Proofs of all results except finite presentability

of Γ

We need some facts about Property (T). The first is obvious:

Lemma 4.4. Property (T) is inherited by quotients. �

Lemma 4.5 (see [HaVa89], Chap. 3, Théorème 4). Let G be a locally compact
group, and Γ a lattice in G. Then G has Property (T) if and only if Γ has Property
(T). �

The next lemma is an immediate consequence of S. P. Wang’s classification
[Wan82, Theorem 2.10].

Lemma 4.6. Let K be a local field of characteristic 0, G an algebraic group defined
over K, and g its Lie algebra. Suppose that g is perfect, and, for every simple
quotient s of g, either s has K-rank ≥ 2, or K = R, and s is isomorphic to either
sp(n, 1) (n ≥ 2) or f4(−20). Then G(K) has Property (T). �
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Proof of Proposition 4.1. The group SLn(Z)⋉Mmn(Z) is linear in dimension n+m.
As a semidirect product of two finitely presented groups, it is finitely presented. For
every k ≥ 2, it is isomorphic to its proper subgroup SLn(Z) ⋉ kMmn(Z) of finite
index kmn.

The group GLm(Z) acts on Mmn(Z) by right multiplication. Since this action
commutes with the left multiplication of SLn(Z), GLm(Z) acts on the semidirect
product SLn(Z)⋉Mmn(Z) by automorphisms, and, by an immediate verification, this
gives an embedding of GLm(Z) if n is odd or PGLm(Z) if n is even into Out(SLn(Z)⋉
Mmn(Z)) (it can be shown that this is an isomorphism if n is odd; if n is even, the
image has index two). In particular, if m ≥ 2, then SLn(Z) ⋉ Mmn(Z) has infinite
outer automorphism group.

On the other hand, in view of Lemma 4.5, it has Property (T) (actually for all
m ≥ 0): indeed, SLn(Z) ⋉ Mmn(Z) is a lattice in SLn(R) ⋉ Mmn(R), which has
Property (T) by Lemma 4.6 as n ≥ 3. �

We now turn to the proof of Theorem 4.3. The following lemma is immediate,
and already used in [Hal61] and [Abe79].

Lemma 4.7. Let Γ be a group, Z a central subgroup. Let α be an automorphism of Γ
such that α(Z) is a proper subgroup of Z. Then α induces a surjective, non-injective
endomorphism of Γ/Z, whose kernel is α−1(Z)/Z. �

Definition 4.8. Fix n1, n2, n3, n4 ∈ N∗ with n2, n3 ≥ 3. We set Γ = G(Z[1/p]),
where p is any prime, and G is the algebraic group defined as matrices by blocks of
size n1, n2, n3, n4:




In1
(∗)12 (∗)13 (∗)14

0 (∗∗)22 (∗)23 (∗)24

0 0 (∗∗)33 (∗)34

0 0 0 In4


 ,

where (∗) denote any matrices and (∗∗)ii denote matrices in SLni
, i = 2, 3.

The centre of G consists of matrices of the form




In1
0 0 (∗)14

0 In2
0 0

0 0 In3
0

0 0 0 In4


. Define

Z as the centre of G(Z).

Remark 4.9. This group is related to an analogous example of Abels: in [Abe79]
he considers the same group, but with blocks 1 × 1, and GL1 instead of SL1 in the
diagonal. Taking the points over Z[1/p], and taking the quotient by a cyclic subgroup
if the centre, this provided the first example of a finitely presentable non-Hopfian
solvable group.

Remark 4.10. If we do not care about finite presentability, we can take n3 = 0 (i.e.
3 blocks suffice).

We begin by easy observations.

Lemma 4.11. If K is any local field, then G(K) has Property (T).
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Proof : This follows from Lemma 4.6 if K has characteristic zero; actually [Wan82]
also covers the case when K has positive characteristic. �

Identify GLn1
to the upper left diagonal block. It acts by conjugation on G as

follows:



u 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


 ·




I A12 A13 A14

0 B2 A23 A24

0 0 B3 A34

0 0 0 I


 =




I uA12 uA13 uA14

0 B2 A23 A24

0 0 B3 A34

0 0 0 I


 .

This gives an action of GLn1
on G, and also on its centre, and this latter ac-

tion is faithful. In particular, for every commutative ring R, GLn1
(R) embeds in

Out(G(R)).
From now on, we suppose that R = Z[1/p], and u = pIn1

. The automorphism of
Γ = G(Z[1/p]) induced by u maps Z to its proper subgroup Zp. In view of Lemma
4.7, this implies that Γ/Z is non-Hopfian.

Proposition 4.12. The groups Γ and Γ/Z are finitely generated, have Property (T),
and Γ/Z is non-Hopfian.

Proof : We have just proved that Γ/Z is non-Hopfian. By the Borel-Harish-Chandra
Theorem [BoHC62], Γ is a lattice in G(R)×G(Qp). Thus, Property (T) follows from
Lemmas 4.11 and 4.5. Finite generation is a consequence of Property (T) [HaVa89,
Lemme 10]. Property (T) for Γ/Z follows from Lemma 4.4. �

Remark 4.13. This group has a surjective endomorphism with nontrivial finite
kernel. We have no analogous example with infinite kernel. Such examples might
be constructed if we could prove that some groups over rings of dimension ≥ 2
such as SLn(Z[X]) or SLn(Fp[X,Y ]) have Property (T), but this is an open problem
[Sha99p]. The non-Hopfian Kazhdan group of Ollivier and Wise [OlWi05] is torsion-
free, so the kernel is infinite in their case.

Remark 4.14. It is easy to check that GLn1
(Z) × GLn4

(Z) embeds in Out(Γ) and
Out(Γ/Z). In particular, if max(n1, n4) ≥ 2, then these outer automorphism groups
are infinite.

We finish this section by observing that Z is a finitely generated subgroup of the
centre of Γ, so that finite presentability of Γ/Z immediately follows from that of Γ.

4.3 Finite presentability of Γ

We recall that a Hausdorff topological group H is compactly presented if there exists
a compact generating subset C of H such that the abstract group H is the quotient
of the group freely generated by C by relations of bounded length. See [Abe87, §1.1]
for more about compact presentability.

Kneser [Kne64] has proved that for every linear algebraic Qp-group, the S-
arithmetic lattice G(Z[1/p]) is finitely presented if and only if G(Qp) is compactly
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presented. A characterization of linear algebraic Qp-groups G such that G(Qp) is
compactly presented is given in [Abe87].

Let U be the unipotent radical in G, and let S denote a Levi factor defined
over Qp, so that G = S ⋉ U . Let u be the Lie algebra of U , and D be a maximal
Qp-split torus in S. We recall that the first homology group of u is defined as the
abelianization

H1(u) = u/[u, u],

and the second homology group of u is defined as Ker(d2)/Im(d3), where the maps

u ∧ u ∧ u
d3→ u ∧ u

d2→ u

are defined by:

d2(x1∧x2) = −[x1, x2] and d3(x1∧x2∧x3) = x3∧[x1, x2]+x2∧[x3, x1]+x1∧[x2, x3].

More details about homology of Lie algebras can be found in [Abe87, Chap. V].
We can now state the result we use of Abels (see [Abe87, Theorem 6.4.3 and Remark
6.4.5]).

Theorem 4.15 (Abels). Let G be a connected linear algebraic group over Qp.
Suppose that the following assumptions are fulfilled:

(i) G is Qp-split.

(ii) G has no simple quotient of Qp-rank one.

(iii) 0 does not lie on the segment joining two dominant weights for the adjoint
representation of S on H1(u).

(iv) 0 is not a dominant weight for an irreducible subrepresentation of the adjoint
representation of S on H2(u).

Then G(Qp) is compactly presented.

We now return to our particular example of G, observe that it is clearly Qp-split,
and that its simple quotients are SLn2

and SLn3
which have rank greater than one.

Keep the previous notations D, U , u, so that D denotes the diagonal matrices in
G, and U denotes the matrices in G all of whose diagonal blocks are the identity.
Moreover, let S ≃ SLn2

× SLn3
denote the diagonal blocks in G; this is a Levi factor

of the unipotent radical U , and D is a maximal torus of S which is split over Qp.
We introduce some notation: the set of indices of the matrix is partitioned as

I = I1 ⊔ I2 ⊔ I3 ⊔ I4, with |Ij| = nj as in Definition 4.8. It follows that, for every
field K

u(K) =

{
T ∈ End(KI), ∀j, T (KIj) ⊂

⊕

i<j

KIi

}
.

Throughout, we use the following notation: a letter such as ik (or jk, etc.)
implicitly means ik ∈ Ik.

Define, in an obvious way, subgroups Uij, i < j, of U .
We begin by checking Condition (iii) of Theorem 4.15.
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Lemma 4.16. For any two weights of the action of D on H1(u), 0 is not on the
segment joining them.

Proof : Recall that H1(u) = uab. So it suffices to look at the action on the supple-
ment D-subspace u12 ⊕ u23 ⊕ u34 of [u, u]:

(A,B) · ei1j2 = a−1
j2
ei1j2 , (A,B) · ej2k3 = aj2b

−1
k3
ej2k3 , (A,B) · ek3ℓ4 = bk3ek3ℓ4 .

Since S = SLn2
× SLn3

, the weights live in M/P , where M is the free Z-module
of rank n2 + n3 with basis (u1, . . . , un2

, v1, . . . , vn3
), and P is the plane generated

by
∑

j2
uj2 and

∑
k3
vk3 . Thus, the weights are −uj2 , uj2 − vk3 , vk3 (1 ≤ j2 ≤ n2,

1 ≤ k3 ≤ n3).
Using that n2, n3 ≥ 3, it is clear that no nontrivial positive combination of two

weights (viewed as elements of Zn2+n3) lies in P . �

We must now check Condition (iv) of Theorem 4.15, and therefore computeH2(u)
as a D-module.

Lemma 4.17. Ker(d2) is generated by
• (1) u12∧u12, u23∧u23, u34∧u34, u13∧u23, u23∧u24, u12∧u13, u24∧u34, u12∧u34.
• (2) u14 ∧ u, u13 ∧ u13, u24 ∧ u24, u13 ∧ u24.
• (3) ei1j2 ∧ ek2ℓ3 (j2 6= k2), ei2j3 ∧ ek3ℓ4 (j3 6= k3).
• (4) ei1j2 ∧ ek2ℓ4 (j2 6= k2), ei1j3 ∧ ek3ℓ4 (j3 6= k3).
• (5) Elements of the form

∑
j2
αj2(ei1j2∧ej2k3) if

∑
j2
αj2 = 0, and

∑
j3
αj3(ei2j3∧

ej3k4) if
∑

j3
αj3 = 0.

• (6) Elements of the form
∑

j2
αj2(ei1j2∧ej2k4)+

∑
j3
βj3(ei1j3∧ej3k4) if

∑
j2
αj2 +∑

j3
βj3 = 0.

Proof : First observe that Ker(d2) contains uij ∧ ukl when [uij, ukl] = 0. This
corresponds to (1) and (2). The remaining cases are u12 ∧ u23, u23 ∧ u34, u12 ∧ u24,
u13 ∧ u34.

On the one hand, Ker(d2) also contains ei1j2∧ek2ℓ3 if j2 6= k2, etc.; this corresponds
to elements in (3), (4). On the other hand, d2(ei1j2∧ej2k3) = −ei1k3 , d2(ei2j3∧ej3k4) =
−ei2k4 , d2(ei1j2 ∧ ej2k4) = −ei1k4 , d2(ei1j3 ∧ ej3k4) = −ei1k4 . The lemma follows. �

Definition 4.18. Denote by b (resp. h) the subspace generated by elements in (2),
(4), and (6) (resp. in (1), (3), and (5)) of Lemma 4.17.

Proposition 4.19. Im(d3) = b, and Ker(d2) = b ⊕ h as D-module. In particular,
H2(u) is isomorphic to h as a D-module.

Proof : We first prove, in a series of facts, that Im(d3) ⊃ b.

Fact 4.20. u14 ∧ u is contained in Im(d3).

Proof : If z ∈ u14, then d3(x ∧ y ∧ z) = z ∧ [x, y]. This already shows that u14 ∧
(u13 ⊕ u24 ⊕ u14) is contained in Im(d3), since [u, u] = u13 ⊕ u24 ⊕ u14.

Now, if (x, y, z) ∈ u24×u12×u34, then d3(x∧y∧ z) = z∧ [x, y]. Since [u24, u12] =
u14, this implies that u14 ∧ u34 ⊂ Im(d3). Similarly, u14 ∧ u12 ⊂ Im(d3).

Finally we must prove that u14 ∧ u23 ⊂ Im(d3). This follows from the formula
ei1j4∧ek2ℓ3 = d3(ei1m2

∧ek2ℓ3∧em2j4), where m2 6= k2 (so that we use that |I2| ≥ 2). �
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Fact 4.21. u13 ∧ u13 and, similarly, u24 ∧ u24, are contained in Im(d3).

Proof : If (x, y, z) ∈ u12×u23×u13, then d3(x∧y∧z) = z∧[x, y]. Since [u12, u23] = u13,
this implies that u13 ∧ u13 ⊂ Im(d3). �

Fact 4.22. u13 ∧ u24 is contained in Im(d3).

Proof : d3(ei1k2 ∧ ek2ℓ3 ∧ ek2j4) = ek2j4 ∧ ei1ℓ3 + ei1j4 ∧ ek2ℓ3 . Since we already know
that ei1j4 ∧ ek2ℓ3 ∈ Im(d3), this implies ek2j4 ∧ ei1ℓ3 ∈ Im(d3). �

Fact 4.23. The elements in (4) are in Im(d3).

Proof : d3(ei1j2∧ej2k3∧eℓ3m4
) = −ei1k3∧eℓ3m4

if k3 6= ℓ3. The other case is similar. �

Fact 4.24. The elements in (6) are in Im(d3).

Proof : d3(ei1j2 ∧ ej2k3 ∧ ek3ℓ4) = −ei1k3 ∧ ek3ℓ4 + ei1j2 ∧ ej2ℓ4 . Such elements generate
all elements as in (6). �

Conversely, we must check Im(d3) ⊂ b. By straightforward verifications:
• d3(u14 ∧ u ∧ u) ⊂ u14 ∧ u.
• d3(u13 ∧ u23 ∧ u24) = 0
• d3(u12 ∧ u13 ∧ u24), d3(u13 ∧ u24 ∧ u34), d3(u12 ∧ u13 ∧ u34), d3(u12 ∧ u24 ∧ u34) are all
contained in u14 ∧ u.
• d3(u12 ∧ u13 ∧ u23) ⊂ u13 ∧ u13, and similarly d3(u23 ∧ u24 ∧ u34) ⊂ u24 ∧ u24.
• d3(u12∧u23∧u24) and similarly d3(u13∧u23∧u34) are contained in u14∧u23+u13∧u24.
• The only remaining case is that of u12 ∧ u23 ∧ u34: d3(ei1j2 ∧ ej′

2
k3 ∧ ek′

3
ℓ4) =

δk3k′3ei1j2 ∧ ej′2ℓ4 − δj2j′2ei1k3 ∧ ek′3ℓ4 , which lies in (4) or in (6).
Finally Im(d3) = b.

It follows from Lemma 4.17 that Ker(d2) = h ⊕ b. Since b = Im(d3), this is a
D-submodule. Let us check that h is also a D-submodule; the computation will be
used in the sequel.

The action of S on u by conjugation is given by:




1 0 0 0
0 A 0 0
0 0 B 0
0 0 0 1


 ·




0 X12 X13 X14

0 0 X23 X24

0 0 0 X34

0 0 0 0


 =




0 X12A
−1 X13B

−1 X14

0 0 AX23B
−1 AX24

0 0 0 BX34

0 0 0 0




We must look at the action of D on the elements in (1), (3), and (5). We fix
(A,B) diagonal in S, A =

∑
j2
aj2ej2j2 , B =

∑
k3
bk3ek3k3 .

• (1):

(A,B) · ei1j2 ∧ ek1ℓ2 = ei1j2A
−1 ∧ ek1ℓ2A−1 = a−1

j2
a−1
ℓ2
ei1j2 ∧ ek1ℓ2 . (4.3.1)

The action on other elements in (1) has a similar form.
• (3) (j2 6= k2):

(A,B) · ei1j2 ∧ ek2ℓ3 = ei1j2A
−1 ∧ Aek2ℓ4B−1 = a−1

j2
ak2b

−1
ℓ3
ei1j2 ∧ ek2ℓ3 . (4.3.2)
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The action on the other elements in (3) has a similar form.
• (5) (

∑
j2
αj2 = 0)

(A,B) ·
∑

j2

αj2(ei1j2 ∧ ej2k3) =
∑

j2

αj2(ei1j2A
−1 ∧ Aej2k3B−1)

=
∑

j2

αj2a
−1
j2

(ei1j2 ∧ aj2b−1
k3
ej2k3) = b−1

k3

(
∑

j2

αj2(ei1j2 ∧ ej2k3)
)
. (4.3.3)

The other case in (5) has a similar form. �

Lemma 4.25. 0 is not a weight for the action of D on H2(u).

Proof : First recall that the weight space is M/P , as described in the proof of
Lemma 4.16. Hence, we describe weights as elements of M = Zn2+n3 rather than
M/P , and must check that no weight lies in P .
• (1). In (4.3.1), the weight is −uj2 − uℓ2 , hence does not belong to P since n2 ≥ 3.
The other verifications are similar.
• (3). In (4.3.2), the weight is −uj2 + uk2 − vℓ3 , hence does not belong to P . The
other verification for (3) is similar.
• (5). In (4.3.3), the weight is −vk3 , hence does dot belong to P . The other
verification is similar. �

Finally Lemmas 4.16 and 4.25 imply that the conditions of Theorem 4.15 are
satisfied, so that Γ is finitely presented.
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Chapter 5

Groups with vanishing reduced
1-cohomology

5.1 Introduction

Our object of study is the 1-cohomology of unitary representations of locally compact
groups. Let G be a locally compact group, π a unitary representation in a Hilbert
space H . The space Z1(G, π) is defined as the space of continuous functions b :
G→ H satisfying the 1-cocycle condition: for all g, h ∈ G, b(gh) = π(g)b(h)+ b(g).
The subspace of Z1(G, π) of 1-coboundaries, namely, 1-cocycles that can be written
as g 7→ ξ − π(g)ξ for some ξ ∈ H , is called B1(G, π). The first cohomology group
of π is defined as H1(G, π) = Z1(G, π)/B1(G, π).

Locally compact, σ-compact groups G such that H1(G, π) = 0 for every unitary
representation form a well-understood class since Delorme and Guichardet have
proved that it coincides with the class of locally compact groups with Kazhdan’s
Property (T) (see [HaVa89]).

However, the 1-cohomology spaceH1(G, π) has a bad behaviour in some respects,
as Guichardet as pointed out [Gui80]. Given a family (πi) of representations, it may
happen that H1(G, πi) = 0 for every i, but H1(G,

⊕
πi) 6= 0; this phenomenon arises

even when G = Z and πi is a well-chosen family of one-dimensional representations.
The space Z1(G, π) has a natural topology, that of uniform convergence on

compact subsets. The first reduced cohomology group is defined as H1(G, π) =
Z1(G, π)/B1(G, π). In contrast to the non-reduced case, Guichardet [Gui80, Chap.
III, 2.4] has proved that the reduced cohomology is well-behaved under orthogonal
decompositions, and, more generally, direct integral of unitary representations.

In this paper, we focus on the class of groups with vanishing reduced 1-
cohomology, i.e. groups G such that H1(G, π) = 0 for every unitary representa-
tion. The main result in this field is due to Shalom [Sha00]: the class of locally
compact, compactly generated groups G with vanishing reduced 1-cohomology coin-
cides with the class of locally compact groups with Kazhdan’s Property (T). On the
other hand, the investigation of non-compactly generated locally compact groups
with vanishing 1-cohomology has been launched by F. Martin [Mrt03]. He observes
that groups which are direct limits of groups with Property (T) have vanishing re-
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duced 1-cohomology. For a countable discrete hypercentral1 group G, he proves the
equivalence between the following properties:

(i) H1(G, π) = 0 for every representation of G.
(ii) Gab is locally finite.
(iii) H1(G, π) = 0 for every irreducible representation of G.
(iv) G is locally finite.
The main goal in this chapter is to extend the equivalence between (i) and (ii)

to all locally compact, locally nilpotent groups. A locally compact group is locally
nilpotent if every compact subset is contained in a nilpotent subgroup; discrete
hypercentral groups are locally nilpotent2.

Theorem 5.1. Let G be a locally compact locally nilpotent group. Equivalences:
(i) H1(G, π) = 0 for every unitary representation π of G.
(ii) Hom(G,R) = {0}.
There appears a new phenomenon: while a discrete hypercentral group G such

that Hom(G,R) = {0} is locally finite [Rob82], there exist nontrivial torsion-free
perfect locally nilpotent groups. Such groups are not direct limits of groups with
Property (T) and have vanishing reduced 1-cohomology by Theorem 5.1. This an-
swers negatively 5.1.7 of [Mrt03]. By the way, we exhibit a locally finite group not
satisfying (iii), namely, the group of permutations with finite support of a countable
set.

The proof of Theorem 5.1 uses, in a crucial way, some relative notions of vanishing
of 1-cohomology, introduced in the preliminaries below, which are variants of relative
Property (T). In Section 5.3, we prove Theorem 5.1 for discrete groups. The case of
non-discrete groups requires some further arguments which are independent of the
rest of the paper, and is carried out in Section 5.4.

5.2 Preliminaries

Let G be a locally compact group, and H a closed subgroup. Recall that (G,H)
has relative Property (FH) if, for every isometric action of G on an affine Hilbert
space, H has a fixed point. Equivalently, for every unitary representation π of
G, the natural morphism in 1-cohomology H1(G, π) → H1(H, π) is zero. (If G is
σ-compact, then it is equivalent to relative Property (T), see [Jol05].)

In analogy, we say that (G,H) has relative Property (FH) if, for every isometric
action α of G on an affine Hilbert space, H almost has fixed points, that is, for every
compact K ⊂ H and every ε > 0, there exists a (K, ε)-fixed point for the action,
i.e. a point v such that supg∈K ‖v − α(g)v‖ ≤ ε.

This means that, for every unitary representation π of G, the natural morphism
H1(G, π) → H1(H, π|H) is zero. If (G,G) has relative Property (FH), we say that
G has Property (FH).

1A topological group G is hypercentral if G = Nα(G) for sufficiently large α, where (Nα(G))
denotes the transfinite ascending central series.

2This is not true in the non-discrete case: indeed, any residually nilpotent group (such as
a congruence subgroup in SLn(Z)) embeds in a product of finite nilpotent groups, which is a
hypercentral compact group.
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Finally, we say that (G,H) has relative Property (FHI) (resp. (FHI)) if, for
every irreducible unitary representation π of G, the natural morphism H1(G, π) →
H1(H, π|H) (resp. H1(G, π) → H1(H, π|H)) is zero.

Proposition 5.2. Let G be a σ-compact, locally compact group and H a closed
subgroup. The following are equivalent:

(i) (G,H) has relative Property (FH).
(ii) (G,H) has relative Property (FHI).

Proof : (i) trivially implies (ii), so let us suppose (ii). By [Com84, Theorem 3.7],
there exists a compact normal subgroup K of G such that G/K is second countable.
Hence, upon replacing G by G/K, we can suppose that G is second countable.
Let π be any unitary representation of G, and disintegrate it as π =

∫ ⊕
πidi. Let

b ∈ Z1(G, π), and disintegrate it as b =
∫ ⊕

bidi, where bi ∈ Z1(G, πi). Then, by (ii),
bi|H ∈ B1(H, πi) for every i. By [Gui80, Chap. 3, §2], it follows that b ∈ B1(H, π).
Thus (G,H) has relative Property (FH). �

Corollary 5.3. Under the hypotheses of Proposition 5.2, relative Property (FHI)
implies relative Property (FH). �

The converse is false, even when H = G (see Remark 5.13 below).

5.3 Reduced 1-cohomology of locally nilpotent

groups

We use the following result of Guichardet [Gui72, Corollaire 5].

Proposition 5.4 (Guichardet). Let G be a nilpotent locally compact group, and
π a nontrivial irreducible representation. Then H1(G, π) = 0.

As an immediate consequence, we have:

Corollary 5.5. Let G be a nilpotent locally compact group. The pair (G,D(G)) has
relative Property (FHI).

Proof : Let π be an irreducible unitary representation of G. If π is nontrivial,
H1(G, π) = 0 by Proposition 5.4. If π = 1G, a 1-cocycle b ∈ Z1(G, π) is a morphism
into the abelian group C, hence vanishes on D(G). �

Remark 5.6. F. Martin [Mrt03, §5.3] generalizes Proposition 5.4, and thus Corol-
lary 5.5, to hypercentral locally compact groups.

Let G be a locally compact group and H a closed subgroup. The following three
lemmas are immediate.

Lemma 5.7. Let H ′ ⊃ H be another closed subgroup such that H ′/H is compact.
If (G,H) has relative Property (FHI), then so does (G,H ′).

73



Proof : Let α be an affine action of G on a Hilbert space with irreducible linear
part. Let v be a H-fixed point. Then H ′v is a compact orbit for H ′. By the centre
Lemma [HaVa89, 3.b], H ′ fixes a point. �

Lemma 5.8. Let G′ be another subgroup containing H. If the pair (G′, H) has
relative Property (FH), then so does (G,H). �

Lemma 5.9. (G,H) has relative Property (FH) if and only if for every compactly
generated, closed subgroup M of H, (G,M) has Property (FH). �

Let G be a discrete, locally nilpotent group. Denote by Ta(G) the inverse image
in G of the torsion subgroup of Gab.

Proposition 5.10. Let G be a discrete, locally nilpotent group. Then (G, Ta(G))
has relative Property (FH).

Proof : Let Γ be a finitely generated subgroup of Ta(G), with generators γi,
i = 1, . . . , n. For suitable positive integers ni, γni can be written as a product
of commutators. This involves finitely many elements of Γ, so that Γ ⊂ Ta(H) for
some finitely generated subgroup H ⊂ G. Therefore, in view of Lemmas 5.8 and
5.9, we can suppose that G is finitely generated.

By Corollary 5.5, (G,D(G)) has relative Property (FHI). Since D(G) has finite
index in Ta(G), by Lemma 5.7, the pair (G, Ta(G)) has relative Property (FHI). By
Corollary 5.3, (G, Ta(G)) also has Property (FH). �

Corollary 5.11. Let G be a locally nilpotent, discrete group. Equivalences:
(i) G has Property (FH)
(ii) Gab is torsion.
(iii) Hom(G,R) = {0}.

Proof : (ii)⇒(i) If Gab is torsion, then G = Ta(G), so that, by Proposition 5.10, G
has Property (FH).

(i)⇒(iii) If G has Property (FH), then 0 = H1(G, 1G) = H1(G, 1G) = Hom(G,C)
≃ Hom(G,R)2.

(iii)⇒(ii) This well-known result immediately follows from the injectivity of R

as a Z-module. �

Remark 5.12. F. Martin [Mrt03, Corollaire 5.4.8] has obtained Corollary 5.11 in the
case when G is a discrete countable hypercentral group. In this case the conditions
are also equivalent to: G is locally finite (compare the next remark).

Remark 5.13. Let G be a σ-compact, locally compact group. Consider the follow-
ing properties:

(1) Every compact subset of G is contained in an open subgroup with Prop-
erty (T).

(2) Every compact subset of G is contained in an open subgroup H such that
(G,H) has relative Property (T).

(3) G has Property (FH).
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First note that if G has the Haagerup Property, i.e. acts properly by isometries
on a Hilbert space, then (1) and (2) are clearly equivalent to saying that G =

⋃
Gn

for some increasing sequence of compact subgroups Gn. Recall [CCJJV01] that
amenable groups have the Haagerup Property, and in particular locally nilpotent
groups do.

In general, (1)⇒(2)⇒(3), and, by a result of Shalom [Sha00] (see also [BHV05,
Chap. 3]), these properties are all equivalent to Property (T) if G is compactly
generated. F. Martin [Mrt03, 5.1.7] and A. Valette (oral communication) have asked
whether (3)⇒(1) holds in full generality. We deduce from Corollary 5.11 that the
answer is negative. For example, let Γ be the group of infinite Q×Q matrices with
integer entries, which are upper triangular with 1 on the diagonal, and with finitely
many nonzero non-diagonal terms. Then Γ, usually referred as a “McLain group”, is
a perfect, locally nilpotent, torsion-free group [Rob82, 12.1.9]. By the remark above,
since Γ is locally nilpotent but not locally finite, it cannot satisfy (2); however it
satisfies (3) by Corollary 5.11.

As regards the implication (2)⇒(1), we have no counterexample. However, we
conjecture that there exists a countable group satisfying (2) but not (1). We think
that the methods which would lead to such a counterexample might be strictly more
interesting that the counterexample itself.

Remark 5.14. Corollary 5.11 gives no information about which locally nilpotent
groups have Property (FHI). We do not know any example of, say, a countable
locally nilpotent group G such that Hom(G,R) = 0 and G does not have Property
(FHI).

On the other hand, there exists a countable locally finite group without Property
(FHI). Indeed, let G be the group of permutations with finite support of N. Note
that sinceG is locally finite, G has Property (FH). Let π be its natural representation
on ℓ2(N). Then it is easily checked that π is irreducible. On the other hand, H1(G, π)
is “big”: indeed, to every function f : N → C is associated a formal coboundary
g 7→ f − π(g)f , which is a coboundary if and only if f ∈ C + ℓ2(N).

However, we do not know any group with Property (FHI) which does not satisfy
(1) of Remark 5.13.

Remark 5.15. Yehuda Shalom has pointed out to us that the class of amenable
groups with Property (FH) is stable under quasi-isometries (as defined, without
finite generation assumption, in [Sha04]). This follows from Theorems 2.1.7 and
3.2.1 of [Sha04]. The McLain group of Remark 5.13 shows that this class does not
coincide with the class of locally finite groups which is also (as an easy consequence
of the definition) stable under quasi-isometries.

Remark 5.16. In contrast with Property (FH), Properties (FH) and (FHI) are not
preserved under extensions. Indeed, let F be any nontrivial finite abelian group, and
let Γ be an infinite group with Property (T). Then Γ, as a group with Property (T),
and F (Γ), as a locally finite abelian group, have both Properties (FH) and (FHI). On
the other hand, by a result independently obtained by P.-A. Cherix, F. Martin, A.
Valette [CMV05] and Neuhauser [Neu05], the wreath product G = F ≀Γ = F (Γ) ⋊Γ,
which is finitely generated, does not have Kazhdan’s Property (T). By Shalom’s
result stated above, G does not have Properties (FH) and (FHI).
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5.4 The locally compact case

The proof of Theorem 5.1, achieved in Corollary 5.11 in the discrete case, is slightly
more involved in the locally compact case.

Let G be a locally compact group. We say that x ∈ G is elliptic if the subgroup
generated by x is relatively compact in G. We say that x is ab-elliptic if the image
of x in Gab is elliptic. We denote by Eab(G) the set of ab-elliptic elements in G.
Note that, clearly, [G,G] ⊂ Eab(G).

Lemma 5.17. For every locally compact group, Eab(G) is a closed, normal subgroup
of G. Moreover G/Eab(G) is isomorphic to a direct product Rn × Γ, where n ∈ N

and Γ is a discrete torsion-free abelian group.

Proof : We can suppose that G is abelian, so that the first assertion is clear.
The second assertion is an immediate and well-known consequence of the struc-

ture of locally compact abelian groups. For convenience, we recall the proof. Upon
taking the quotient by Eab(G), we can suppose that G is abelian without elliptic
elements. Under these hypotheses, G has an open subgroup V which is a Lie group,
hence isomorphic to Rn for some n. By injectivity of V as a Z-module, V is a direct
factor. Since G has no elliptic element, it follows that G/V is torsion-free. �

Lemma 5.18. Let G be a locally compact, compactly generated group, and (Ni)
be an increasing net of closed, normal subgroups. Suppose that, for all i, G/Ni is
abelian and has no nontrivial elliptic element. Then, for some N ⊂ G, for large i,
Ni = N .

Proof : By assumption, and using Lemma 5.17, for all i, G/Ni is isomorphic to
Rni × Zmi for suitable integers ni,mi, which decrease with i. It follows that there
exists (n,m) such that, for large i, (ni,mi) = (n,m). Now Rn × Zm is Hopfian, in
the sense that every continuous surjective endomorphism is an isomorphism. The
result follows. �

Lemma 5.19. Let G be a locally compact group. Let K ⊂ Eab(G) be a compact
subset. Then there exists a closed, compactly generated subgroup H of G such that
K ⊂ Eab(H).

Proof : Let Gi be a net of open, compactly generated subgroups containing K and
covering G. Set Mi = Eab(Gi), and M =

⋃
Mi.

Fix j ∈ I, and observe that (Gj ∩Mi)i≥j is a net of normal subgroups of Gj,
and, for all i ≥ j, Gj/(Gj ∩Mi) is abelian without nontrivial elliptic element, since
it embeds as an open subgroup in Gi/Mi. By Lemma 5.18, the net (Gj ∩Mi) is
eventually constant, hence equal to Gj ∩M .

Since this is true for all j, it follows that M is a closed, normal subgroup of G,
and Gj/(Gj∩M) is abelian without elliptic elements for all j. Hence G/M is abelian
without elliptic elements, so that the image of K in G/M is trivial, i.e. K ⊂ M .
Now fix j. Since K ⊂ Gj, K ⊂ M ∩ Gj, which is equal to Mi ∩ Gj for some i.
Accordingly, K ⊂ Eab(Gi). �

We can now generalize Proposition 5.10 to the locally compact case.
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Proposition 5.20. Let G be a locally nilpotent locally compact group. Then
(G,Eab(G)) has relative Property (FH).

Proof : Let Ω be a closed subgroup of Eab(G), generated by a compact subsetK. By
Lemma 5.19, there exists an open subgroup H containing K such that K ⊂ Eab(H),
so that Ω ⊂ Eab(H). Therefore, in view of Lemmas 5.8 and 5.9, we can suppose that
G is compactly generated. So we can go on as in the proof of Proposition 5.10. �

Corollary 5.21. Let G be a locally nilpotent locally compact group. Equivalences:
(i) G has Property (FH)
(ii) Gab is elliptic.
(iii) Hom(G,R) = {0}.

Proof : (ii)⇒(i)⇒(iii) are proved as in Corollary 5.11.
(iii)⇒(ii) We must show that G/Eab(G) is trivial. By Lemma 5.17, it is isomor-

phic to Rn × Γ for some torsion-free abelian group Γ. Now (iii) implies n = 0, and,
using the injectivity of R as a Z-module, (iii) also implies Γ = {1}. �
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Chapter 6

Uncountable groups with Property
(FH) and strongly bounded groups

6.1 Introduction

Let us say that a group is strongly bounded if every isometric action on a metric
space has bounded orbits.

We observe that the class of discrete, strongly bounded groups coincides with
a class of groups which has recently emerged since a preprint of Bergman [Ber05],
sometimes referred to as “groups with uncountable strong cofinality”, or “groups with
Bergman’s Property”. This class contains no countably infinite group, but contains
symmetric groups over infinite sets [Ber05], various automorphism groups of infinite
structures such as 2-transitive chains [DrHo05], full groups of certain equivalence
relations [Mil04], oligomorphic permutation groups with ample generics [KeRo05];
see [Ber05] for more references.

In Section 6.2, which is independent of the rest of the chapter, we prove that
every countable group embeds in a group with cardinality ℵ1 and Property (FH).

In Section 6.4, we prove that ω1-existentially closed groups are strongly bounded.
This strengthens a result of Sabbagh [Sab75], who proved that they have cofinality
6= ω.

In Section 6.5, we prove that if G is any finite perfect group, and I is any set,
then GI , endowed with the discrete topology, is strongly bounded. This strengthens
a result of Koppelberg and Tits [KoTi74], who proved that this group has Serre’s
Property (FA). This group has finite exponent and is locally finite, hence amenable.
In contrast, all previously known infinite strongly bounded groups contain a non-
abelian free group.

6.2 Groups with cardinality ℵ1 and Property (FH)

Proposition 6.1. Let G be a countable group. Then G embeds in a group of cardi-
nality ℵ1 with Property (FH).

It was asked in [wor01] whether the equivalence between Kazhdan’s Property
(T) and Property (FH), due to Delorme and Guichardet (see [BHV05, Chap. 2])
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holds for more general classes of groups than locally compact σ-compact groups; in
particular, whether it holds for general locally compact groups.

The answer is negative, even if we restrict to discrete groups: this follows from
the existence of uncountable strongly bounded groups, combined with the fact that
Kazhdan’s Property (T) implies finite generation [BHV05].

The proof of Proposition 6.1 rests on two ingredients.

Theorem 6.2 (Delzant). If G is any countable group, then G can be embedded in
a group with Property (T).

Sketch of proof: this is a corollary of the following result, first claimed by
Gromov [Gro87, Theorem 5.6.E], and subsequently independently proved by Delzant
[Del96] and Olshanskii [Ols95]: if H is any non-elementary word hyperbolic group,
then H is SQ-universal, that is, every countable group embeds in a quotient of
H. Thus, the result follows from the stability of Property (T) by quotients, and the
existence of non-elementary word hyperbolic groups with Property (T); for instance,
uniform lattices in Sp(n, 1), n ≥ 2 (see [HaVa89]). �

Let C be any class of metric spaces, let G be a group. Say that G has Property
(FC) if for every isometric action of G on a space X ∈ C, all orbits are bounded.
For instance, if C is the class of all Hilbert spaces, then we get Property (FH).

Proposition 6.3. Let G be a group in which every countable subset is contained in
a subgroup with Property (FC). Then G has Property (FC).

Proof : Let us take an affine isometric action of G on a metric space X in C, and let
us show that it has bounded orbits. Otherwise, there exists x ∈ X, and a sequence
(gn) in G such that d(gn x, x) → ∞. Let H be a subgroup of G with Property (FC)
containing all gn. Since Hx is not bounded, we have a contradiction. �

Proof of Proposition 6.1. We make a standard transfinite induction on ω1 (as
in [Sab75]), using Theorem 6.2. For every countable group Γ, choose a proper
embedding of Γ into a group F (Γ) with Property (T) (necessarily finitely generated).
Fix G0 = G, Gα+1 = F (Gα) for every α < ω1, and Gλ = lim−→β<λGλ for every limit
ordinal λ ≤ ω1. It follows from Proposition 6.3 that Gω1

has Property (FH). Since all
embeddingsGα → Gα+1 are proper, Gω1

is not countable, hence has cardinality ℵ1. �

6.3 Strongly bounded groups

We recall that a group G is strongly bounded if every isometric action of G on a
metric space has bounded orbits.

Remark 6.4. Let G be a strongly bounded group. Then every isometric action of
G on a nonempty complete CAT(0) space has a fixed point; in particular, G has
Property (FH) and Property (FA), which mean, respectively, that every isometric
action of G on a Hilbert space (resp. simplicial tree) has a fixed point. This follows
from the Bruhat-Tits fixed point lemma, which states that every action of a group on
a complete CAT(0) space which has a bounded orbit has a fixed point (see [BrHa99,
Chap. II, Corollary 2.8(1)]). This provides many additional examples of uncountable
groups with Property (FH).
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Definition 6.5. We say that a group G is Cayley bounded if, for every generating
subset U ⊂ G, there exists some n (depending on U) such that every element of G
is a product of n elements of U ∪ U−1 ∪ {1}. This means every Cayley graph of G
is bounded.

A group G is said to have cofinality ω if it can be expressed as the union of an
increasing sequence of proper subgroups; otherwise it is said to have cofinality 6= ω.

The combination of these two properties, sometimes referred as “uncountable
strong cofinality”1, has been introduced and is extensively studied in Bergman’s
preprint [Ber05]; see also [DrGö05, DrHo05]. Note that an uncountable group with
cofinality 6= ω is not necessarily Cayley bounded: the free product of two uncountable
groups of cofinality 6= ω, or the direct product of an uncountable group of cofinality
6= ω with Z, are obvious counterexamples.

The following result can be compared to [Ber05, Lemma 10]:

Proposition 6.6. A group G is strongly bounded if and only if it is Cayley bounded
and has cofinality 6= ω.

Proof : Suppose that G is not Cayley bounded. Let U be a generating subset such
that G the corresponding Cayley graph is not bounded. Since G acts transitively
on it, it has an unbounded orbit.

Suppose that G has cofinality ω. Then G acts on a tree with unbounded orbits
[Ser77, Chap I, §6.1].

Conversely, suppose that G has has cofinality 6= ω and is Cayley bounded. Let
G act isometrically on a metric space. Let x ∈ X, let Kn = {g ∈ G | d(x, gx) < n},
and let Hn be the subgroup generated by Kn. Then G =

⋃
Kn =

⋃
Hn. Since G

has cofinality 6= ω, Hn = G for some n, so that Kn generates G. Since G is Cayley
bounded, and since Kn is symmetric, G ⊂ (Kn)

m for some m. This easily implies
that G ⊂ Knm, so that the orbit of x is bounded. �

Remark 6.7. It follows that a countably infinite group Γ is not strongly bounded:
indeed, either Γ has a finite generating subset, so that the corresponding Cayley
graph is unbounded, or else Γ is not finitely generated, so is an increasing union of
a sequence of finitely generated subgroups, so has cofinality ω.

Definition 6.8. If G is a group, and X ⊂ G, define

G(X) = X ∪ {1} ∪ {x−1, x ∈ X} ∪ {xy | x, y ∈ X}.

The following proposition is immediate from Proposition 6.6 and is essentially
contained in Lemma 10 of [Ber05].

1In the literature, it is sometimes referred as “Bergman’s Property” or “Strong Bergman Prop-
erty”; Bergman’s Property also sometimes refers to Cayley boundedness without cofinality assump-
tion.
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Proposition 6.9. The group G is strongly bounded if and only if, for every increas-
ing sequence (Xn) of subsets such that

⋃
nXn = G and G(Xn) ⊂ Xn+1 for all n, one

has Xn = G for some n. �

Remark 6.10. The first Cayley bounded groups with uncountable cofinality were
constructed by Shelah [She80, Theorem 2.1]. They seem to be the only known to
have a uniform bound on the diameter of Cayley graphs. They are torsion-free.
These groups are highly non-explicit and their construction, which involves small
cancellation theory, rests on the Axiom of Choice.

The first explicit examples, namely, symmetric groups over infinite sets, are due
to Bergman [Ber05]. The first explicit torsion-free examples, namely, automorphism
groups of double transitive chains, are due to Droste and Holland [DrHo05].

Remark 6.11. It is easy to observe that groups with cofinality 6= ω also have a
geometric characterization; namely, a group G has cofinality 6= ω if and only if every
isometric action of G on an ultrametric metric space has bounded orbits.

Remark 6.12. In [BHV05, §2.6], it is proved that an infinite solvable group
never has Property (FH). In particular, an infinite solvable group is never strongly
bounded. This latter result is improved by Khelif [Khe05] who proves that an in-
finite solvable group is never Cayley bounded. On the other hand, it is not known
whether there exist uncountable solvable groups with cofinality 6= ω.

6.4 ω1-existentially closed groups

Recall that a group G is ω1-existentially closed if every countable set of equations
and inequations with coefficients in G which has a solution in a group containing
G, has a solution in G. Sabbagh [Sab75] proved that every ω1-existentially closed
group has cofinality 6= ω. We give a stronger result:

Theorem 6.13. Every ω1-existentially closed group G is strongly bounded.

Proof : Let G act isometrically on a nonempty metric space X. Fix x ∈ X, and
define ℓ(g) = d(gx, x) for all g ∈ G. Then ℓ is a length function, i.e. satisfies
ℓ(1) = 0 and ℓ(gh) ≤ ℓ(g) + ℓ(h) for all g, h ∈ G. Suppose by contradiction that
ℓ is not bounded. For every n, fix cn ∈ G such that ℓ(cn) ≥ n2. Let C be the
group generated by all cn. By the proof of the HNN embedding Theorem [LySc77,
Theorem 3.1], C embeds naturally in the group

Γ = 〈C, a, b, t ; cn = t−1b−nabnta−nb−1an (n ∈ N)〉,

which is generated by a, b, t. Since G is ω1-existentially closed, there exist ā, b̄, t̄ in
G such that the group generated by C, ā, b̄, and t̄ is naturally isomorphic to Γ. Set
M = max(ℓ(ā), ℓ(b̄), ℓ(t̄)). Then, since ℓ is a length function and cn can be expressed
by a word of length 4n+4 in a, b, c, we get ℓ(cn) ≤M(4n+4) for all n, contradicting
ℓ(cn) ≥ n2. �

It is known [Sco51] that every group embeds in a ω1-existentially closed group.
Thus, we obtain:
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Corollary 6.14. Every group embeds in a strongly bounded group. �

Note that this was already a consequence of the strong boundedness of symmetric
groups [Ber05], but provides a better cardinality: if |G| = κ, we obtain a group of
cardinality κℵ0 rather that 2κ.

6.5 Powers of finite groups

Theorem 6.15. Let G be a finite perfect group, and I a set. Then the (unrestricted)
product GI is strongly bounded.

Remark 6.16. Conversely, if I is infinite and G is not perfect, then GI maps onto
the direct product Z/pZI for some prime p. Since the latter is an infinite-dimensional
vector space over Fp, it maps onto Z/pZ(N), which has clearly cofinality ω and is
not Cayley bounded, as we see by taking as generating subset the canonical basis of
Z/pZ(N). Thus, GI also has cofinality ω and is not Cayley bounded.

Remark 6.17. By Theorem 6.15, every Cayley graph of GI is bounded. If I is
infinite and G 6= 1, one can ask whether we can choose a bound which does not
depend on the choice of the Cayley graph. The answer is negative: indeed, for all
n ∈ N, observe that the Cayley graph of Gn has diameter exactly n if we choose
the union of all factors as generating set. By taking a morphism of GI onto Gn and
taking the preimage of this generating set, we obtain a Cayley graph for GI whose
diameter is exactly n.

Our remaining task is to prove Theorem 6.15. The proof is an adequate modifi-
cation of the original proof of the (weaker) result of Koppelberg and Tits [KoTi74],
which states that GI has cofinality 6= ω.

If A is a ring with unity, and X ⊂ A, define

R(X) = X ∪ {−1, 0, 1} ∪ {x+ y | x, y ∈ X} ∪ {xy | x, y ∈ X}.

It is clear that
⋃
n∈N

Rn(X) is the subring generated by X.
Recall that a Boolean algebra is an associative ring with unity which satisfies

x2 = x for all x. Such a ring has characteristic 2 (since 2 = 22−2) and is commutative
(since xy − yx = (x + y)2 − (x + y)). The ring Z/2Z is a Boolean algebra, and so
are all its powers Z/2ZE = P(E), for any set E.

Proposition 6.18. Let E be a set, and (Xi)i∈N an increasing sequence of subsets
of P(E). Suppose that R(Xi) ⊂ Xi+1 for all i. Suppose that P(E) =

⋃
i∈N

Xi.
Then P(E) = Xi for some i.

Remark 6.19. 1) We could have defined, in analogy of Definition 6.5, the notion
of strongly bounded ring (although the terminology “uncountable strong cofinality”
seems more appropriate in this context). Then Proposition 6.18 can be stated as:
if E is infinite, the ring P(E) = Z/2ZE is strongly bounded. If E is infinite, note
that, as an additive group, it maps onto Z/2Z(N), so has cofinality ω and is not
Cayley bounded.
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Proof of Proposition 6.18. Suppose the contrary. If X ⊆ E, denote by P(X)
the power set of X, and view it as a subset of P(E). Define L = {X ∈
P(E) | ∀i, P(X) * Xi}. The assumption is then: E ∈ L .

Observation: if X ∈ L and X ′ ⊂ X, then either X ′ or X − X ′ belongs to L .
Indeed, otherwise, some Xi would contain P(X ′) and P(X −X ′), and then Xi+1

would contain P(X).
We define inductively a decreasing sequence of subsets Bi ∈ L , and a non-

decreasing sequence of integers (ni) by:

B0 = E;

ni = inf{t | Bi ∈ Xt};
B′
i+1 ⊂ Bi and B′

i+1 /∈ Xni+1;

Bi+1 =

{
B′
i+1, if B′

i+1 ∈ L ,
Bi −B′

i+1, otherwise.

Define also Ci = Bi −Bi+1. The sets Ci are pairwise disjoint.

Fact 6.20. For all i, Bi+1 /∈ Xni
and Ci /∈ Xni

.

Proof : Observe that {Bi+1, Ci} = {B′
i+1, Bi − B′

i+1}. We already know B′
i+1 /∈

Xni+1, so it suffices to check Bi−B′
i+1 /∈ Xni

. Otherwise, B′
i+1 = Bi− (Bi−B′

i+1) ∈
R({Bi, Bi −B′

i+1}) ⊂ R(Xni
) ⊂ Xni+1; this is a contradiction. �

This fact implies that the sequence (ni) is strictly increasing. We now use a
diagonal argument. Let (Nj)j∈N be a partition of N into infinite subsets. Set
Dj =

⊔
i∈Nj

Ci and mj = inf{t | Dj ∈ Xt}, and let lj be an element of Nj such that
lj > max(mj, j).

Set X =
⊔
j Clj . For all j, Dj ∩X = Clj /∈ Xlj . On the other hand, Dj ∈ Xmj

⊂
Xlj−1 since lj ≥ mj + 1. This implies X /∈ Xlj−1 ⊃ Xj for all j, contradicting
P(E) =

⋃
i∈N

Xi. �

The following corollary, of independent interest, was suggested to me by Romain
Tessera.

Corollary 6.21. Let A be a finite ring with unity (but not necessarily associative or
commutative). Let E be a set, and (Xi)i∈N an increasing sequence of subsets of AE.
Suppose that R(Xi) ⊂ Xi+1 for all i. Suppose that AE =

⋃
i∈N

Xi. Then AE = Xi

for some i.

Proof : By reindexing, we can suppose that X0 contains the constants. Write
Yi = {J ⊂ E | 1J ∈ X3i}. If J,K ∈ Yi, 1J∩K = 1J1K ∈ X3i+1 ⊂ X3i+3, so that
J ∩K ∈ Yi+1, and 1J△K = 1J + 1K − 2.1J1K ∈ X3i+3, so that J △ K ∈ Yi+1. By
Proposition 6.18, Ym = P(E) for some m. It is then clear that AE = Xn for some
n (say, n = 3m+ 1 + ⌈log2 |A|⌉). �

If A is a Boolean algebra, and X ⊂ A, we define

D(X) = X ∪ {0, 1} ∪ {x+ y | x, y ∈ X such that xy = 0} ∪ {xy | x, y ∈ X}.
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Ik(X) = {x1x2 . . . xk | x1, . . . , xk ∈ X}.
Vk(X) = {x1 + x2 + . . . xk | x1, . . . , xk ∈ X such that xixj = 0 ∀i 6= j}.

The following lemma contains some immediate facts which will be useful in the
proof of the main result.

Lemma 6.22. Let A be a Boolean algebra, and X ⊂ A a symmetric subset (i.e.
closed under x 7→ 1 − x) such that 0 ∈ X. Then, for all n ≥ 0,

1) Rn(X) ⊂ D2n(X), and
2) Dn(X) ⊂ V22n (I2n(X)).

Proof : 1) It suffices to prove R(X) ⊂ D2(X). Then the statement of the lemma
follows by induction. Let u ∈ R(X). If u /∈ D(X), then u = x+y for some x, y ∈ X.
Then u = (1 − x)y + (1 − y)x ∈ D2(X).

2) Is an immediate induction. �

Definition 6.23 ([KoTi74]). Take n ∈ N, and let G be a group. Consider the set
of functions Gn → G; this is a group under pointwise multiplication. The elements
m(g1, . . . , gn) in the subgroup generated by the constants and the canonical projec-
tions are called monomials. Such a monomial is homogeneous if m(g1, . . . , gn) = 1
whenever at least one gi is equal to 1.

Lemma 6.24 ([KoTi74]). Let G be a finite group which is not nilpotent. Then
there exist a ∈ G, b ∈ G − {1}, and a homogeneous monomial f : G2 → G, such
that f(a, b) = b.

For the convenience of the reader, we reproduce the proof from [KoTi74].

Lemma 6.25 ([KoTi74]). Let G be a group, g ∈ G, and g′ an element of the sub-
group generated by the conjugates of g. Then there exists a homogeneous monomial
f : G→ G such that f(g) = g′.

Proof : Write g′ =
∏
cig

αic−1
i . Then x 7→ ∏

cix
αic−1

i is a homogeneous monomial
and f(g) = g′. �

Lemma 6.26. Let G be a finitely generated group. Suppose that G is not nilpotent.
Then there exists a ∈ G such that the normal subgroup of G generated by a is not
nilpotent.

Proof : Fix a finite generating subset S of G. For every s ∈ S, denote by Ns

the normal subgroup of G generated by s. Since finitely many nilpotent normal
subgroups generate a nilpotent subgroup, it immediately follows that if all Ns are
nilpotent, then G is nilpotent. �

Proof of Lemma 6.24. Let G be a finite group which is not nilpotent. We must
show that there exist a ∈ G, b ∈ G−{1}, and a homogeneous monomial f : G2 → G,
such that f(a, b) = b.

Take a as in Lemma 6.26, and A the normal subgroup generated by a. Let A1

be the upper term of the ascending central series of A. We define inductively the
sequences (ai)i∈N and (bi)i∈N such that

bi ∈ A− A1, ai ∈ A and bi+1 = [ai, bi] ∈ A− A1.
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Since G is finite, there exist integers m,m′ such that m < m′ and bm = bm′ . Set
b = bm, and for all i, choose, using Lemma 6.25, a homogeneous monomial fi such
that fi(a) = ai. Then the monomial

f : (x, y) 7→ [fm′−1(x), [fm′−2(x), . . . , [fm(x), y], . . . ]]

satisfies f(a, b) = b. �

Remark 6.27. If G is a group, and f(x1, . . . , xn) is a homogeneous monomial with
n ≥ 2, then m(g1, . . . , gn) = 1 whenever at least one gi is central: indeed, we can
then write, for all x1, . . . , xn with xi central,

m(x1, . . . , xi, . . . , xn) = m′(x1, . . . , x̂i, . . . , xn)x
k
i .

By homogeneity in xi, m′(x1, . . . , x̂i, . . . , xn) = 1, and we conclude by homogeneity
in xj for any j 6= i.

Accordingly, if (Cα) denotes the (transfinite) ascending central series of G, an
immediate induction on α shows that if f(a, b) = b for some homogeneous monomial
f , a ∈ G and b ∈ Cα, then b = 1. In particular, if G is nilpotent (or even residually
nilpotent), then the conclusion of Lemma 6.24 is always false.

Lemma 6.28. Let G be a finite group, I a set, and H = GI . Suppose that f(a, b) = b
for some a, b ∈ G, and some homogeneous monomial f , and let N be the normal
subgroup of G generated by b. Let (Xm) be an increasing sequence of subsets of H
such that G(Xm) ⊂ Xm+1 (see Definition 6.8), and

⋃
Xm = H. Then N I ⊂ Xm for

m big enough.

Proof : Suppose the contrary. If x ∈ G and J ⊂ I, denote by xJ the element of GI

defined by xJ(i) = x if i ∈ J and xJ(i) = 1 if i /∈ J .
Denote by f̄ = f I the corresponding homogeneous monomial: H2 → H. Upon

extracting, we can suppose that all cI , c ∈ G, are contained in X0. In particular,
the “constants” which appear in f̄ are all contained in X0.

Hence we have, for all m, f̄(Xm, Xm) ⊂ Xm+d, where d depends only on the
length of f . For J,K ⊂ I, we have the following relations:

aI .a
−1
J = aI−J , (6.5.1)

f̄(aJ , bK) = bJ∩K , (6.5.2)

f̄(aJ , bI) = bJ , (6.5.3)

If J ∩K = ∅, bJ . bK = bJ⊔K . (6.5.4)

For all m, write Wm = {J ∈ P(I) | aJ ∈ Xm}, and let Am be the Boolean
algebra generated by Wm. Then

⋃
m Am = P(I). By Proposition 6.18, there exists

some M such that AM = P(I). Set Xn = Rn(WM). Then, since AM = P(I),⋃
n Xn = P(I). Again by Proposition 6.18, there exists some N such that XN =

P(I). So, by 1) of Lemma 6.22, we get

D2N(WM) = P(I). (6.5.5)
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Define, for all m, Ym = {J ∈ P(I) | bJ ∈ Xm}. Then from (6.5.3) we get:
Wm ⊂ Ym+d; from (6.5.2) we get: if J ∈ Wm and K ∈ Ym, then J ∩K ∈ Ym+d; and
from (6.5.4) we get: if J,K ∈ Ym and J ∩K = ∅, then J ⊔K ∈ Ym+1.

By induction, we deduce Ik(Wm) ⊂ Ym+kd for all k, and Vk(Ym) ⊂ Ym+k for all
k. Composing, we obtain Vk(Il(Wm)) ⊂ Vk(Ym+ld) ⊂ Ym+ld+k. By 2) of Lemma
6.22, we get Dn(Wm) ⊂ Ym+2nd+22n . Hence, using (6.5.5), we obtain P(I) = YD,
where D = M + 4Nd+ 24N

.
Let B denote the subgroup generated by b, so that N is the normal subgroup

generated by B. Let r be the order of b. Then BI is contained in XD+r. Moreover,
there existsR such that every element ofN is the product ofR conjugates of elements
of B. Then, using that cI ∈ X0 for all c ∈ G, N I is contained in XD+r+3R. �

Theorem 6.29. Let G be a finite group, and let N the last term of its descending
central series (so that [G,N ] = N). Let I be any set, and set H = GI . Let (Xm) be
an increasing sequence of subsets of H such that G(Xm) ⊂ Xm+1 and

⋃
Xm = H.

Then N I ⊂ Xm for m big enough.

Proof : Let G be a counterexample with |G| minimal. Let W be a normal subgroup
of G such that W I is contained in Xm for large m, and which is maximal for this
property. Since G is a counterexample, N * W . Hence G/W is not nilpotent, and is
another counterexample, so that, by minimality, W = {1}. Since G is not nilpotent,
there exists, by Lemma 6.24, a ∈ G, b ∈ G − {1}, and a homogeneous monomial
f : G2 → G, such that f(a, b) = b. So, if M is the normal subgroup generated by b,
M I is contained, by Lemma 6.28, in Xi for large i. This contradicts the maximality
of W (= {1}). �

In view of Proposition 6.9, Theorem 6.15 immediately follows from Theorem
6.29.

Question 6.30. Let G be a finite group, and N a subgroup of G which satisfies the
conclusion of Theorem 6.29 (I being infinite). Is it true that, conversely, N must be
contained in the last term of the descending central series of G? We conjecture that
the answer is positive, but the only thing we know is that N must be contained in
the derived subgroup of G.

Remark 6.31. We could have introduced a relative definition: if G is a group and
X ⊆ G is a subset, we say that (G,X) is strongly bounded if, for every isometric
action of G on any metric space M and every m ∈ M , then the “X-orbit"Xm is
bounded. Note that G is strongly bounded if only if (G,G) is strongly bounded.
Proposition 6.9 generalizes as: (G,X) is strongly bounded if for every sequence (Xn)
of subsets of G such that

⋃
nXn = G and G(Xn) ⊂ Xn+1 for all n, one has Xn ⊇ X

for some n.
Theorem 6.29 is actually stronger than Theorem 6.15: it states that if G is a

finite group, if N is the last term of its descending central series, and if I is any set,
then the pair (GI , N I) is strongly bounded. In particular, it has relative Property
(FH): for every isometric action of GI on an affine Hilbert space, N I has a fixed
point. This shows that a solvable group can have an infinite subgroup with relative
Property (FH) (compare Remark 6.12). We do not know if this can happen in a
nilpotent group (see also Question 6.30).

86



Question 6.32. We do not assume the continuum hypothesis. Does there exist a
strongly bounded group with cardinality ℵ1?

It seems likely that a variation of the argument in [She80] might provide exam-
ples.

Question 6.33. Let (Gn) be a sequence of finite perfect groups. When is the
product

∏
n∈N

Gn strongly bounded?

It follows from Theorem 6.15 that if the groups Gn have bounded order, then∏
n∈N

Gn is strongly bounded. If all Gn are simple, Saxl, Shelah and Thomas prove
[SST96, Theorems 1.7 and 1.9] that

∏
n∈N

Gn has cofinality 6= ω if and only if there
does not exist a fixed (possibly twisted) Lie type L, a sequence (ni) and a sequence
(qi) of prime powers tending to infinity, such that Gni

≃ L(qi) for all i. Does this still
characterize infinite strongly bounded products of non-abelian finite simple groups?

87



Chapter 7

Short notes

7.1 Complements on subgroups of algebraic groups

Recall that two algebraic K-groups are called geometrically isogeneous (resp.
isomorphic) if they are isogeneous (resp. isomorphic) over an algebraic closure K̂
of K. For instance, the R-groups SO3 and PGL2 are geometrically isomorphic.

The following result is an analog of Theorem 1.28 in the case of algebraic groups.

Theorem 7.1. Let G be a linear algebraic K-group. Suppose that char(K) = 0, and
that G is defined over some number field F ⊂ K. Then G(K) is Haagerup if and
only if G is geometrically isogeneous to SL2

n ×R for some n, and R solvable.

Proof : Suppose that G is geometrically isogeneous to SL2
n × R for some n, and

R solvable. Then, since G(K) embeds in G(K̂), it suffices to show that G(K̂) is
Haagerup. This is an easy consequence of Theorem 7.7.

Conversely, suppose that G(K) is Haagerup. Then so is G(F ). Let S denote
a semisimple Levi factor of the radical in G, defined over F . It is known [BoTi,
Théorème 2.14(b)] that S splits over some finite extension L of F . As a classical
consequence of the Cebotarev Theorem, L embeds in Fv for some (in fact, infinitely
many) non-Archimedean valuation(s) on F .

On the other hand, G(F ) embeds as a co-Følner discrete subgroup in G(AF )
(recall that the only obstructions for being a lattice are characters1). This implies
that G(AF ) is Haagerup, so that G(Fv) is Haagerup.

Since G is split over Fv, this implies, by Theorem 1.23, that [S,Ru] = 1, and
that S(Fv) is Haagerup, so has no factor of rank ≥ 2, so that S is geometrically
isogeneous to SL2

n for some n, and G is geometrically isogeneous to the product of
SL2

n by a solvable linear algebraic group. �

Remark 7.2. It is not clear at all that the assumption that G is defined over some
number field can be dropped. For instance, let n = 5 or 6 and q be the quadratic
form

∑n
i=1 tix

2
i over the field of rational fractions K = Q(t1, . . . , tn). We do not

1More precisely: let H be the intersection of all kernels of rational characters of G. Then H(F )
is a lattice, hence is co-Følner in H(AF ), which is co-abelian, hence co-Følner in G(AF ); this
implies that H(F ), hence G(F ), is co-Følner in G(AF ).
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know whether G = SO(q)(K) is Haagerup. The point is that G has many dense
embedding in simple groups of rank one. We can prove that G has no infinite
subgroup with Property (T):

Let H ⊂ G be an infinite subgroup with Property (T). Then H is finitely gener-
ated, hence contains a nontorsion element z generating an infinite cyclic subgroup
Z. By Proposition 7.3 below, H is conjugated to a subgroup of GL(n, Q̂). Thus
z has its eigenvalues in Q̂. Since one of these eigenvalues is not a root of unity,
it has modulus > 1 in some completion of Q. Since z is an orthogonal matrix in
O(n,R), this completion cannot be R; so it is Qp for some p. Since n ≤ 6, we
can choose t1, . . . , tn ∈ Qp so that the group SO(q)(Qp) has rank one2 and hence is
Haagerup. The image of Z in SO(q)(Qp) is discrete, because of the eigenvalue of
modulus different from one, and is relatively compact, since H has Property (T).
This is a contradiction.

Proposition 7.3 (Selberg [Sel60]). Let G ⊂ GL(n,R) be an algebraic subgroup,
defined over some subfield K. Let Γ be a finitely generated group, and Γ → G be a
representation such that H1(Γ, g) = 0. Then gπ(Γ)g−1 ⊂ GL(n, K̂) for some g ∈ G.

Let us now discuss the existence of an infinite subgroup with Property (T). As
in Proposition 3.7, it is immediate to reduce to the case of simple groups. Moreover,
changing the ground field, we can deal with absolutely simple groups; it is also
harmless to deal with simply connected groups.

Theorem 7.4. Let G be an absolutely simple, simply connected algebraic group
defined over the local field K of characteristic zero. Then G(K) has no infinite
subgroup with Property (T) if and only if either

• K 6= R, and G is geometrically isomorphic to SL2, or

• K = R, and G is isomorphic to the universal covering of SO(3), SO(n, 1)
(n = 2, 3, 4), or SU(2, 1).

Moreover, if G(K) has Property (T), then, when it exists, the infinite subgroup
with Property (T) can be chosen dense.

Proof :

• The case when K = R is entirely contained in Theorem 3.3 and Proposition
3.7 of Chapter 3, and covers the case when K = C. �

• Suppose that K is non-Archimedean, and suppose that G is not geometrically
isogeneous to SL2. Suppose that K = Kv for some non-Archimedean valuation
v on the number field K. Then, by [BoHa78, Theorem B], we can suppose
that G is defined over K, and, without changing the isomorphism class of G
over K, that G is split over all Archimedean places. Now, Γ = G((OK)v) is

2Indeed, there exists an anisotropic quadratic form q0 in four variables [Ser70, Chapitre IV, §2.3,
Corollaire of Théorème 7]. We can choose q(x) = q0(x1, x2, x3, x4) + x2

5
−x2

6
. In the corresponding

quadratic space, the maximal isotropic subspaces have dimension one: this follows from [Ser70,
Chapitre IV, §1.6, Corollaire of Théorème 4].
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a lattice in G(K) ×∏s∈S G(Ks), where S denote the set of all Archimedean
places of K. Since G is split over all Archimedean places and is simple of
geometric rank ≥ 2, the group

∏
s∈S G(Ks) has Property (T).

If the K-rank of G is not one, then Γ has Property (T) and projects densely
onto G(K).

If the K-rank of G is one, let H = G(OK) ×∏s∈S G(Ks). Then, since H is
open in G(K) ×∏s∈S G(Ks), the group Γ ∩ H is a lattice in H, hence has
Property (T), and projects densely onto G(OK).

Still supposing that K 6= R, let us turn to the converse. Then G(K) embeds
in some product of groups SL2, so the result is immediate from [Zim84]. �

When K is not a local field, we have no general characterization of groups G(K)
having an infinite subgroup with Property (T). We already gave, in Remark 7.2, an
example of a group G which is geometrically isomorphic to SO6 but such that G(K)
has no infinite subgroup with Property (T), where K = Q(t1, . . . , t6).

When K is a number field, we can sometimes conclude.

Proposition 7.5. Let G be an absolutely simple K-group, where K is a number
field. Suppose that, for every embedding K → R, G(R) has Property (T). Then
either

• G is geometrically isogeneous to SL2, or

• G(K) has an infinite subgroup with Property (T).

Proof : Suppose that G is not geometrically isogeneous to SL2; it follows that G
has geometric rank ≥ 2. There exists some completion Kv such that G is split over
Kv. Then G((OK)v) has Property (T), and is infinite. �

Example 7.6. Let K = Q(
√

2), q =
∑4

i=1 t
2
i +

√
2t25−

√
2t26, and G = SO(q). We are

not able to answer whether or not G(K) has an infinite subgroup with Property (T).
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7.2 Haagerup Property for subgroups of SL2 and

residually free groups

The purpose of this short note is to point out a straightforward generalization of the
following theorem:

Theorem 7.7 (Guentner-Higson-Weinberger [GHW05, §5, Theorem 4]).
Let K be a field, and G be a subgroup of SL(2, K). Then G has the Haagerup
property (as a discrete group).

Using theorem 7.7, we obtain the following generalization.

Theorem 7.8. Let R be a reduced (= without nilpotent elements) commutative ring,
and G be a subgroup of SL(2, R). Then G has the Haagerup property (as a discrete
subgroup).

Proof : 1) Suppose R is a finite product of fields. Then it is an immediate con-
sequence of theorem 7.7 (since the Haagerup property is stable under taking finite
direct products and (closed) subgroups).

2) General case. We can suppose that G is finitely generated, hence that R is
finitely generated as a ring. So R is Noetherian, hence has a finite number of minimal
prime ideals pi. Since R is reduced,

⋂
pi = {0}, so that R embeds in

∏
R/pi, hence

in the finite product
∏
Ki, where Ki = Frac(R/pi). So case 1 applies. �

Remark 7.9.

• The assumption that R is reduced cannot be dropped. For instance,
SL(2,Z[t]/t2) does not have the Haagerup property. Indeed, if H is the kernel
of the natural morphism SL(2,Z[t]/t2) → SL(2,Z), then H is infinite, while
the pair (SL(2,Z[t]/t2), H) has Kazhdan’s relative Property (T). This can be
seen by embedding it as a lattice in the Lie group SL(2,R[t]/t2), which is
isomorphic to SL(2,R) ⋉ sl(2,R), where the action of SL2(R) on the vector
space V = sl(2,R) is the adjoint action. This is the three-dimensional real irre-
ducible representation of SL2(R), so that it is well-known that (SL2(R)⋉V, V )
has Property (T); see, for instance, Chapter 1 in [BHV05].

• The commutativity assumption cannot be dropped, even in theorem 7.7. In-
deed, let H be the skew-field of Hamilton quaternions. Then SL(2,H) has infi-
nite subgroups with Kazhdan’s property (T): recall that SL(2,H) ≃ SO(5, 1),
the latter contains SO(5) as a subgroup, and it is well-known that SO(5) has
infinite subgroups with property (T) (for instance, obtained by projecting an
irreducible lattice of SO(5) × SO(2, 3)).

Here is an application of theorem 7.8. Recall that a group G is called residually
free [Bau67] is it satisfies one of the (clearly) equivalent conditions:

• (i) For all x ∈ G\{1}, there exist a (nonabelian) free group F and a morphism
f : G→ F such that f(x) 6= 1.

91



• (ii) G embeds in a product of free groups.

• (iii) G embeds in a product of free groups of finite rank.

Theorem 7.10. Let G be a residually free group. Then G has the Haagerup property.

Proof : It suffices to show that any product
∏

i∈I Fi of free groups of finite rank has
the Haagerup property. But such a product embeds in

∏
i∈I SL(2,Z) = SL(2,ZI).

So this follows from theorem 7.8. �

Remark 7.11. The Haagerup property is not closed under infinite products (with
the discrete topology). If it were, all residually finite groups would have the Haagerup
property! For instance, the discrete group

∏
i SL(n,Z/piZ) does not have the

Haagerup property if n ≥ 3, since it contains the infinite Kazhdan group SL(n,Z)
as a subgroup. On the other hand, we do not know if the class of torsion-free groups
with the Haagerup property is closed under infinite products.

Remark 7.12. V. Guirardel pointed out to us that, using some nontrivial properties
of residually free groups, theorem 7.10 follows directly from theorem 7.7. Indeed,
a residually free group can be embedded in SL(2, R), where R is a finite product
of fields. The first ingredient is that a residually free group can be embedded in a
finite product of fully residually free groups. The second ingredient is that a fully
residually free group can be embedded in the ultraproduct ∗F2, which embeds in
SL(2,∗Q), and ∗Q is a field. For details and and many other interesting properties
of (fully) residually free groups, see [ChGu05].

92



7.3 A note on quotients of word hyperbolic groups

with Property (T)

All groups in this note are discrete and countable. Shalom [Sha00, Theorem 6.7] has
proved the following interesting result about Property (T).

Theorem 7.13 (Shalom, 2000). For every group G with Property (T), there exists
a finitely presented group G0 with Property (T) which maps onto G.

In other words, this means that, given a finite generating subset for G, only
finitely many relations suffice to imply Property (T). This can be interpreted in
the topology of marked groups [Cha00] as: Property (T) is an open property. See
[Gro03, 3.8] for a generalization to other fixed point properties.

A word hyperbolic group is a finitely generated group whose Cayley graph sat-
isfies a certain condition, introduced by Gromov, meaning that, at large scale, it is
negatively curved. We refer to [GhHa90] for a precise definition that we do not need
here. We only mention here that word hyperbolic groups are necessarily finitely
presented, that word hyperbolicity is a fundamental notion in combinatorial group
theory as in geometric topology. Word hyperbolic groups are groups with “many”
quotients, and thus can be considered as a generalization of free groups.

It was asked [wor01, Question 16] whether every group with Property (T) is
quotient of a group with Property (T) with finiteness conditions stronger than fi-
nite presentation. We give an answer here by showing that we can impose word
hyperbolicity.

Proposition 7.14. For every group G with Property (T), there exists a torsion-free
word hyperbolic group G0 with Property (T) which maps onto G.

Note that Proposition 7.14 contains Theorem 7.13 as a corollary; however it is
proved by combining Theorem 7.13 with the following remarkable result of Ollivier
and Wise [OlWi05]. Since it involves some technical definitions, we do not quote it
in full generality.

Theorem 7.15 (Ollivier and Wise, 2005). To every finitely presented group Q,
we can associate a short exact sequence 1 → N → G→ Q→ 1 such that

1. G is torsion-free, word hyperbolic,

2. N is 2-generated and has property (T).

Corollary 7.16. For every finitely presented group Q with Property (T), there ex-
ists a torsion-free word-hyperbolic group G with Property (T) mapping onto Q with
finitely generated kernel.

Proof : Apply Theorem 7.15 to Q, so that G lies in an extension 1 → N → G →
Q→ 1, whereN has Property (T) andQ has Property (T). SinceQ has Property (T)
and since Property (T) is stable under extensions, G also has Property (T). �

Remark 7.17. Corollary 7.16 answers a question at the end of [OlWi05].
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Proof of Proposition 7.14: Let G be a group with Property (T). By Theo-
rem 7.13, there exists a finitely presented group Q with Property (T) mapping onto
G, and by Corollary 7.16, there exists a torsion-free word hyperbolic group G0 with
Property (T) mapping onto Q, so that G0 maps onto G. �

Question 7.18. 1) In Theorem 7.15, can G be chosen, in addition, residually fi-
nite? In [Wis03], a similar result is proved, G being torsion-free, word hyperbolic,
residually finite, and N finitely generated, but never having Property (T).

2) Let G be a word hyperbolic group (maybe torsion-free), and H a quotient
of G generated by r elements. Does there exist an intermediate quotient which is
both word hyperbolic and generated by r elements? (The analog statement with
“word hyperbolic” replaced by “finitely presented” is immediate.) The motivation is
that, in Proposition 7.14, we would like to have G0 generated by no more elements
than G. Theorem 7.15 only tells us that if G is r-generated, then G0 can be chosen
(r + 2)-generated.

Question 7.19. Following [Ser77], a group has Property (FA) if every isometric
action on a simplicial tree has a fixed point. Is it true that every group with Property
(FA) is a quotient of a finitely presented group with Property (FA)?
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7.4 Kazhdan Property for spaces of continuous

functions

All the rings here are unitary and commutative. If R is a ring, let E(n,R) denote
the subgroup of SL(n,R) generated by elementary matrices. If E(n,R) is normal in
SL(n,R), the quotient is denoted by SK1,n(R).

If R is a topological ring, then E(n,R) and SL(n,R) are topological groups for
the topology induced by the inclusion in Rn2

. We say that a topological ring is
topologically finitely generated it it has a finitely generated dense subring.

For any topological spaces X,Y , we denote by C(X,Y ) the set of all continuous
functions X → Y . If K denotes R or C, C(X,K) is a topological ring for the
compact-open topology, which coincides with the topology of uniform convergence
on compact subsets.

It is known [Vas86] that, if n ≥ 3,

E(n, C(X,K)) = {u : X → SL(n,K) homotopically trivial}
(this is immediate if X is compact, for all n ≥ 2).

In this note, and in contrast to the remaining of the present work, we deal with
non-locally compact groups.

Theorem 7.20. Let n ≥ 3, and X ⊂ Rd be a topological subspace of a Euclidean
space. Let K = R or C. Endow C(X,K) with the topology of uniform convergence
on compact subsets. Then E(n, C(X,K)) has Kazhdan’s Property (T).

Corollary 7.21. Let n ≥ 3, and X ⊂ Rd be a compact subset. Endow X with the
topology of uniform convergence. Then SL(n, C(X,K)) has Kazhdan’s Property (T)
if and only if the discrete group SK1,n(C(X,K)) = SL(n, C(X,K))/E(n, C(X,K))
does.

Proof : Since X is compact3, E(n, C(X,K)), is open (hence closed) in
SL(n, C(X,K)). The corollary follows from the trivial fact that Property (T) is
stable under quotients and extensions. �

Example 7.22. Fix k ≥ 1 and n ≥ 3. Then SK1,n(C(Sk,K)) = πk(SL(n,K)),
which is an abelian group. It follows that SL(n, C(Sk,K)) has Kazhdan’s Property
(T) if and only if πk(SL(n,K)) is finite; it is known (see [MiTo91]) that it is infinite
if and only if:

• K = C, k is odd, and 3 ≤ k ≤ 2n− 1, or
• K = R, (k ≡ −1 (mod 4) and 3 ≤ k ≤ 2n− 1) or (n is even and k = n− 1)

In particular, πk(SL(n,K)) is finite for k = 1, k even, or k ≥ 2n.

Example 7.23. Let W denote a Cantor set. It is straightforward to show that,
for every connected manifold M , all maps W → M are homotopic. Thus,
SK1,n(C(W,K)) is trivial, and accordingly, for all n ≥ 3, SL(n, C(W,K)) has Kazh-
dan’s Property (T).

3If X is not compact, we do not know whether E(n, C(X,K)) is closed in SL(n, C(X,K)) for
the topology of uniform convergence on compact subsets. However, we can restate the corollary as
follows: SL(n, C(X,K)) has Kazhdan’s Property (T) if and only if the group SK1,n(C(X,K)) =

SL(n, C(X,K))/E(n, C(X,K)) does.
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Theorem 7.20 rests on two results: a K-theoretic result of Vaserstein (Theorem
7.27), and the work of Shalom on Kazhdan’s Property (T) (Theorem 7.26).

In [Sha99p], Shalom introduces new methods to establish Kazhdan’s Property
(T) for the special linear groups over certain rings. This leads, for instance, to
the first proof that Γ = SL(n,Z), n ≥ 3, has Property (T), that does not use the
embedding of Γ into SL(n,R) as a lattice (see also §7.6).

Before stating his main result, let us begin with a definition.

Definition 7.24. If G is a group and S ⊂ G is a subset, we say that G is boundedly
generated by S if there exist m <∞ such that every g ∈ G is a product of at most
m elements in S.

Theorem 7.25 (Shalom, [Sha99p]). Let n ≥ 3, and let R be a topologically
finitely generated ring. Suppose that SL(n,R) is boundedly generated by elementary
matrices. Then SL(n,R) has Kazhdan’s Property (T).

As an application, Shalom proves bounded elementary generation for the loop
group SL(n, C(S1,C)) (n ≥ 3), and deduces that it has Property (T). He asks if
the same holds for R instead of C, noting that SL(n, C(S1,R)) is not generated
by elementary matrices (since π1(SL(n,R)) 6= 1). This is answered positively by
Theorem 7.20; see Example 7.22.

Actually, without modification, the proof of Theorem 7.25 ([Sha99p], see also
[BHV05]) gives a stronger statement.

Theorem 7.26. Let n ≥ 3, let R be a topologically finitely generated commutative
ring, and suppose that E(n,R) is boundedly generated by elementary matrices. Then
E(n,R) has Kazhdan’s Property (T).

Theorem 7.25 is the particular case of Theorem 7.26 when E(n,R) = SL(n,R).

Theorem 7.26 is a strong motivation for studying bounded elementary generation
for the group E(n,R). For instance, this is an open question for R = Fp[X,Y ] or
R = Z[X], for all n ≥ 3. We now focus on the case when R = C(X,K), where
K = R or C.

The notion of dimension of a topological space involved here is defined in [Vas71],
and it will be sufficient for our purposes to know that dim(X) is finite for every
topological subspace of a Euclidean space.

Theorem 7.27 (Vaserstein, [Vas88]). Let X be a finite dimensional topological
space, and let K = R or C, and fix n ≥ 3. Then E(n, C(X,K)) is boundedly
generated by elementary matrices.

Now we show how Theorems 7.26 and 7.27 imply Theorem 7.20. Since X ⊂ Rd

for some d, X is finite dimensional, so that Theorem 7.27 applies: E(n, C(X,K)) is
boundedly generated by elementary matrices.

It remains to show that Theorem 7.26 applies, that is, C(X,K) is topologically
finitely generated for the compact-open topology (that is, the topology of uniform
convergence on compact subsets).

96



Let p1, . . . , pd be the projections of X on the d coordinates of Rd, and let A
be the K-subalgebra of C(X,K) generated by p1, . . . , pd. By the Stone-Weierstrass
Theorem, A is dense in C(X,K) for the topology of uniform convergence on compact
subsets. Then the finite family {(pj),

√
2} (resp. {(pj),

√
2, i}) generates a dense

subring in C(X,K) if K = R (resp. if K = C). �

Remark 7.28.

1. The hypothesis in Theorem 7.20 that X is homeomorphic to a subset of an
Euclidean space is close to being necessary in order to apply Theorem 7.26.
Indeed, suppose that C(X,K) is endowed with a topology such that the evalua-
tion functions f 7→ f(x) are continuous. Besides, suppose that C(X,K) is topo-
logically finitely generated as a ring by p1, . . . pd. Then there exists a continuous
injection of X in some Euclidean space, given by x 7→ (p1(x), . . . , pd(x)).

2. If X is metrizable and non-compact, and C(X,K) is endowed with the uniform
convergence topology, then an easy growth argument shows that C(X,K) is
not topologically finitely generated.

It would be interesting to generalize Theorem 7.27 to general semisimple Lie
groups without compact factors, and Theorem 7.26 to semisimple groups without
compact factors and with Property (T), or at least to higher rank ones. Theorem
7.25 is extended to symplectic groups in [Neu03]. On the other hand, if G is a
connected compact simple Lie group, C(S1, G) does not have Kazhdan’s Property
(T) [BHV05, Exercise 4.4.5].
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7.5 A lemma about conditionally negative definite

functions

If G is a group, we define unnormalized conditionally negative definite functions as
conditionally negative definite (real-valued) functions, but weakening the hypothesis
ψ(1) = 0 into ψ(1) ≥ 0. Note that ψ−ψ(1) is a (normalized) conditionally negative
definite function (see [BeFo75] for details, where the abelian assumption is useless).

Proposition 7.29. Let G be a locally compact group, and ψ a measurable unnor-
malized conditionally negative definite function, locally bounded. Then there exists
a unique continuous unnormalized conditionally negative definite function ψ̄ of G
such that ψ = ψ̄ locally almost everywhere.

Proof : Let ψ a measurable unnormalized conditionally negative definite function.
Then ϕ = e−ψ is a measurable positive definite function on G. By a result of de
Leeuw and Glicksberg ([dLGl65], see [HeRo70], (32.12) Theorem), ϕ decomposes
as a sum of two positive definite functions: ϕ = ϕc + ϕs, where ϕc is continuous
and ϕs = 0 locally almost everywhere. Since ψ is locally bounded, ϕ is locally
bounded from zero, so that ϕc does not vanish on G. Set ψ̄ = − log(ϕc). Then
ψ̄ is continuous, and ψ = ψ̄ locally almost everywhere, so that ψ̄ is unnormalized
conditionally negative definite. Uniqueness is trivial. �

We need to deal with unnormalized functions in Theorem 7.29: indeed, suppose
that G is any locally compact, non-discrete group. The function ψ defined by:
ψ(1) = 0, ψ(g) = 1 elsewhere is (normalized) conditionally negative definite, but ψ̄,
the constant function 1, is not normalized. However, we have the following corollary.

Corollary 7.30. Let G be a locally compact group, and ψ a measurable conditionally
negative definite function, locally bounded. Then there exists a unique continuous
conditionally negative definite function ψ̄ on G, and a unique constant a ∈ R+, such
that ψ = ψ̄ + a locally almost everywhere. �
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7.6 A criterion for relative Property (T)

Recall the following theorem of Shalom.

Theorem 7.31 ([Sha99t], see also [BHV05], Chapter 1). Let G be a locally
compact group and N a closed normal abelian subgroup. Assume that the only mean
on the Borel subsets of the Pontryagin dual N̂ = Hom(N,R/Z), invariant under the
action of G by conjugation, is the Dirac measure at zero. Then the pair (G,N) has
Property (T).

It allows, for example, to prove Property (T) for (SL(2,K) ⋉ K2,K2) for every
local field K. On the other hand, it does not apply to SL(2,Z)⋉Z2, since the action
of SL(2,Z) on Z2 has many finite orbits. We propose a generalization of Theorem
7.31 which does apply to SL(2,Z) ⋉ Z2. It is strongly inspired by Shalom’s work to
prove Property (T) for (SL(2,Z)⋉Z2,Z2) without using that SL(2,Z)⋉Z2 is a lat-
tice in SL(2,R)⋉R2. The main difference between the following work and Shalom’s
result is that we do not care on explicit Kazhdan constants. This explains why our
proof is much shorter that Shalom’s one ([Sha99p]; see also [BHV05], Chapter 4).

If H is a locally compact abelian group, recall that the weak topology on H is
the coarsest topology that makes all characters χ ∈ Ĥ continuous. It coincides with
the usual topology if and only if H is compact.

Theorem 7.32. Let G be a locally compact group and N a closed, normal, abelian
subgroup. Suppose that there exists a weak neighbourhood V of 1 in N̂ such that the
only G-invariant mean µ on N̂ satisfying µ(V ) = 1 is the Dirac measure at the unit.
Then (G,N) has Property (T).

Proof : Since V is a weak neighbourhood, there exist α > 0 and g1, . . . , gm in N
such that V contains {χ ∈ N̂ , ∀k = 1 . . .m, |1 − χ(gk)| < α}.

Let (π,H ) be a unitary representation of G such that 1 ≺ π and such that N
has no invariant vector. We are going to exhibit a G-invariant mean µ on N̂ − {1}
such that µ(V ) = 1.

Let (Ki, εi) be an increasing net with Ki compact and α > εi > 0, such that Ki

contains all gk, εi → 0,
⋃
Ki = G. Let ξi be a (Ki, εi)-invariant vector.

Let E be the projection valued measure associated to π|N̂ , so that π(g) =∫
N̂
χ(g)dE(χ) for all g ∈ N . For ξ ∈ H , let µξ be the probability on N̂ defined by

µξ(B) = 〈E(B)ξ, ξ〉.
We have:

‖π(g)ξ − ξ‖2 =

∫

N̂

|1 − χ(g)|2dµξ(χ) ∀g ∈ N, ξ ∈ H

‖π(gk)ξi − ξi‖2 =

∫

N̂

|1 − χ(gk)|2dµξi(χ) ≤ ε2
i

Let Ak = {χ ∈ N̂ , |1 − χ(gk)| < α} and Bk its complement in N̂ .
∫

Bk

|1 − χ(gk)|2dµξi(χ) ≤ ε2
i
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α2µξi(Bk) ≤ ε2
i

µξi(
m⋃

k=1

Ak) ≥ 1 −mε2
i /α

2

µξi(V ) ≥ 1 −mε2
i /α

2

Since π as no N -invariant vector, µξi({1}) = 0 for all i. We can suppose that
(µξi) converges to a mean µ, in the sense that µ(B) = limi µξi(B) for all Borel subsets
B. In particular, µ({1}) = 0 and µ(V ) = 1.

It is easily checked, using
⋃
Ki = G and εi → 0, that µ is G-invariant. �

Corollary 7.33. (SL2(Z) ⋉ Z2,Z2) has Property (T).

Proof : Fix 0 < α < 1/4. Let u+ be the matrix

(
1 1
0 1

)
and u− its transpose.

Let V = [−α, α]2 mod Z2. Suppose, by contradiction, that there exists a SL2(Z)-
invariant mean m on R2/Z2 such that m(V ) = 1 and m({0}) = 0.

Let i be the section of the projection p = R2 → R2/Z2 with image (−1/2, 1/2]2

and m̃ = i∗m. We claim that i is SL2(Z)-invariant. It is well-known that u+ and
u− generate SL(2,Z). It suffices to prove that u±∗m̃ = m̃. Denote Ṽ = i(V ).

Then, for any Borel subset B of R2,

m̃(B) = m̃(B ∩ u−1
± (Ṽ ))

= m̃(u−1
± (u±(B) ∩ Ṽ ))

= m(p(u−1
± (u±(B) ∩ Ṽ ))) using u−1

± (Ṽ ) ⊆ (−1/2, 1/2]2

= m(u−1
± (p(u±(B) ∩ Ṽ )))

= m(p(u±(B) ∩ Ṽ ))

= m̃(u±(B) ∩ Ṽ )

= m̃(u±(B)).

Now, it is easy to show that this is a contradiction: it is well known and easy to
show that SL(2,Z) does not preserve any mean on R2\{0}. �

Remark 7.34. Using the fact that SLn(Z) is boundedly generated by elementary
matrices, it is a standard consequence of Corollary 7.33 that SLn(Z) has Property
(T) (see [BHV05, Chap. 4]).
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7.7 Open questions

(1) Let G be a locally compact group, and N a closed, normal subgroup of G.
Suppose that G has the Haagerup Property. In general, G/N does not have
the Haagerup Property (e.g. when G is a free group). However, does G/N
have the Haagerup Property in the following cases:

(a) N is connected?

(b) N is amenable?

(c) More specifically, when N is central in G?

(2) The Haagerup Property is not stable under extensions, as shown by the ex-
amples SL2(Z) ⋉ Z2 and SL2(R) ⋉ R2. However, does the converse of (1)(c)
hold; namely, is it true that the Haagerup Property is stable under central
extensions? This is asked in [CCJJV01, Chap. 7]. This is true in the realm of
connected Lie groups [CCJJV01, Chap. 4].

(3) ([AkWa81], see §2.1.1) Let G be a locally compact, compactly generated group.
Suppose that G does not have the Haagerup Property. Does this implies the
existence of a non-compact, closed subset X ⊂ G such that (G,X) has relative
Property (T)?

(4) Does the implication (3) ⇒ (1) in Theorem 2.16 hold without assuming the
locally compact group G σ-compact (where relative Property (T) is defined as
in Definition 2.1, in terms of definite positive functions)? This is known when
X is a normal subgroup of G [Jol05].

(5) Let A be a finitely generated ring and fix n ≥ 3. When does SLn(A) have
Property (T)? This is known to hold for many rings A of Krull dimension 1;
however there is no ring of dimension 2 (e.g. Z[X] or Fp[X,Y ]) for which this
is known to hold. In general, it is known that (SLn−1(A) ⋉ An−1, An−1) has
relative Property (T) [Sha99p].

(6) Let V be an abelian group (say, discrete). Let G be a discrete group acting on
V by automorphisms. When does the pair (G ⋉ V, V ) have relative Property
(T)? This is well understood when V is torsion-free of finite rank. It is widely
open in the test-case when V is an infinite dimensional vector space over a
prime field K (Fp or Q).

No such examples with relative Property (T) are known when K = Q. When
K = Fp, some examples are known, for instance when V = An, with n ≥ 2
and A an infinite, finitely generated ring of characteristic p, and G = SLn(A).

(7) Does there exist an infinite subgroup with Property (T) in one of the following
groups:

(a) Homeo(S1)
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(b) Homeo+(R) (i.e. does there exist a non-trivial left-orderable4 group with
Property (T)? [wor01, Question 19])

(c) Diffr+(R) for a given r > 0?

By a result of Navas [Nav02], Diffr+(S1) has no infinite subgroup with Property
(T) for r > 3/2.

(8) Let G be a bi-orderable group. Does it have the Haagerup Property? Note
that, if Γ is a non-abelian free subgroup of SL2(Z), then Γ⋉Z2 is left-orderable,
but does not have the Haagerup Property since (Γ⋉Z2,Z2) has relative Prop-
erty (T). On the other hand, a nontrivial finitely generated bi-orderable group
maps onto Z, hence fails to have Property (T).

(9) Let G be a residually torsion-free nilpotent group. Does it have the Haagerup
Property? It is easy to check that, in such a group G, there is no infinite
subgroup H such that (G,H) has relative Property (T). On the other hand, a
residually torsion-free nilpotent group is bi-orderable.

(10) Does the braid group Bn have the Haagerup Property? This is true and easy for
n ≤ 3, but unknown for n ≥ 4. It is known that Bn has a finite index subgroup
which is residually torsion-free nilpotent, namely the pure braid group Pn.

(11) Let K be a non-Archimedean local field, and let G be a linear algebraic group
over K. It is true that, if G(K) has the Haagerup Property, then G is K-
isogeneous to the direct product of a semisimple group S with simple factors of
K-rank one with a group M such that M/rad(M) is K-anisotropic (i.e. M(K)
is amenable)? This was established for char(K) = 0 in Chapter 1. Note that,
conversely, this condition implies that G(K) has the Haagerup Property.

(12) Let A be a locally compact, reduced commutative ring. Is it true that SL2(A)
has the Haagerup Property? This is true for A discrete [GHW05] (see also
Section 7.2).

(13) In the groups SL3(R), Sp4(R), Sp(2, 1), does there exist a discrete subgroup
of infinite covolume, with Property (T) (see Proposition 3.9)?

4A group is left-orderable (resp. bi-orderable) if it has a total order invariant under left (resp.
both left and right) translations.
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