
LIE ALGEBRAS

YVES CORNULIER

1. Algebras

By scalar ring, we mean an associative, unital, commutative ring. By default
we do not assume rings/algebras to be associative. In most of these lectures,
the scalar ring will be assumed to be a field, often of characteristic zero and/or
algebraically closed.

We fix a scalar ring R. Let A be an R-algebra (that is, an R-module en-
dowed with an R-bilinear product A × A → A, often denoted (a, b) 7→ ab). Ho-
momorphisms between R-algebras are R-module homomorphisms that are also
multiplicative homomorphisms. Subalgebras are R-submodules stable under the
product. A 2-sided ideal (or 2-sided R-ideal) I is an R-submodule such that
x ∈ I, y ∈ A implies that both xy and yx ∈ I. The quotient A/I then canoni-
cally inherits a product structure. If S is a scalar R-algebra (that is, an R-algebra
that is a scalar ring), then S ⊗R A is naturally an S-algebra; this is called “ex-
tension of scalars”.

An R-derivation (or derivation, if R can be omitted) of A is a R-module en-
domorphism f of A satisfying f(ab) = f(a)b + af(b). For x, y ∈ A, we write
Lx(y) = Ry(x) = xy; thus Lx, Rx are R-module endomorphisms of A.

The algebra A is said to be

(1) associative if Lxy = LxLy for all x, y ∈ A, or equivalently if LxRy = RyLx
for all x, y ∈ A. As a formula, this means that x(yz) = (xy)z for all
x, y, z ∈ A;

(2) (left) Leibniz if Lxy = LxLy − LyLx for all x, y ∈ A, or equivalently if Lx
is a derivation for every x. As a formula, this reads as the “Leibniz-Loday
identity” (xy)z − x(yz) + y(xz) = 0 for all x, y, z ∈ A.

(3) alternating if xx = 0 for all x ∈ A;
(4) skew-symmetric if xy + yx = 0 for all x, y ∈ A; (thus alternating implies

skew-symmetric and the converse holds if 2 is invertible in A)
(5) Lie if it is both alternating and Leibniz. (For an alternating algebra,

the Leibniz-Loday identity can be rewritten as Jac(x, y, z) = 0, where
Jac(x, y, z) = x(yz) + y(zx) + z(xy); this is known as Jacobi identity.
Note that in an alternating algebra, the trilinear map Jac is alternating,
i.e., vanishes whenever two variables are equal.)
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All these conditions are stable under taking subalgebras and quotients. They
are also stable under taking extensions of scalars1 (for all multilinear conditions
this is straightforward; for the alternating condition this easily follows, first using
that alternating implies skew-symmetric).

If A is associative, the product defined as commutator bracket [a, b] = ab− ba
is Lie. For this reason, it is custom to denote the product in a Lie algebra with
brackets (rather than with a dot or no symbol).

For a Lie (or more generally skew-symmetric) algebra, as in the commutative
case, we just talk of “ideals” rather than 2-sided ideals.

If A is Leibniz (e.g., Lie) and if B is an R-subalgebra, the 2-sided normalizer
NA(B) is defined as the set of x such that xB∪Bx ⊂ B (for Lie algebra, we omit
“2-sided”). Then B is a 2-sided ideal of its 2-sided normalizer NA(B) (exercise).

Let V be an R-module. Let glR(V ) be the set of R-module endomorphisms
of V . This is an associative R-algebra, and hence is a Lie R-algebra for the
corresponding commutator bracket. Many important Lie algebras are naturally
constructed as subalgebras of the latter.

Let A be an R-algebra. Then the set of R-derivations of A is a Lie subalgebra
of glR(A) (exercise: check it), denoted DerR(A).

Let h, n be Lie R-algebras and j : h→ DerR(n) an R-algebra homomorphism.
The semidirect product noj h is defined as follows: as an R-module, this is the
direct sum n⊕ h. The product is defined as

[(n1, h1), (n2, h2)] = ([n1, n2] + j(h1)n2 − j(h2)n1, [h1, h2]).

Given a Lie R-algebra g and R-submodules n, h, the Lie algebra g decomposes
as semidirect product noh if and only if n is an ideal and g = n⊕h as R-module.
Here j maps h ∈ h to the restriction (Lh)|n.

If I, J are R-submodules of A, we denote by IJ the R-submodule generated
by {xy : (x, y) ∈ I × J}.

Given an algebra A, one defines A1 = A, and, by induction, Ai =
∑

j+k=iA
jAk.

Here BC is the submodule generated by bc for (b, c) ∈ B×C. Then Ai is a 2-sided
ideal, and A = A1 ⊃ A2 ⊃ A3 ⊃ . . . . The sequence (Ai)i≥1 is called the lower
central series. The algebra A is said to be nilpotent if Ai+1 = {0} for some i ≥ 0;
in this case, it is called i-step nilpotent; the nilpotency class of A is the smallest
i for which this holds.

In the case of a Leibniz algebra g (and hence of a Lie algebra), one has gi =
ggi−1 for all i ≥ 2 (exercise), which simplifies the definition of the lower central
series.

Exercice: for n ≥ 0, consider the alternating algebra whose underlying R-
module has a basis (x, y1, . . . , yn), and brackets [x, yi] = yi+1, 1 ≤ i < n. (others
being zero, except those following by skew-symmetry). Check that it is a Lie

1For fields of prime characteristic p, check that the condition (∀x, xp = x), does not pass to
extensions of scalars.



LIE ALGEBRAS 3

algebra, whose nilpotency class is equal to n as soon as R 6= {0}. (It is known as
standard filiform Lie algebra of class n over R.)

Given a Leibniz algebra, one defines g(0) = g and g(i+1) = g(i)g(i). These are
2-sided ideals (exercise), forming the derived series. The Leibniz algebra g is said
to be solvable if g(i) = {0} for some i; it is then called i-step solvable; the smallest

such i is called derived length (or solvability length) of g. We have g(i) ⊂ g2i (with
equality for i = 0, 1); in particular, nilpotent implies solvable. When the product
is zero (that is, g is 1-step nilpotent, that is, 1-step solvable), g is called abelian.
We say that g is perfect if g = g(1)(= g2).

Exercise: If g is solvable, its only perfect subalgebra is {0}. Conversely, as-
suming that g is finite-dimensional over a field, show that if the only perfect
subalgebra is {0}, then g is solvable.

Exercise: 1) Let I, J be solvable ideals in a Lie algebra; show that I + J is a
solvable ideal. 2) Find a Lie algebra with two abelian ideals I, J such that I + J
is not abelian. 3) (harder) Let I, J be 2-sided ideals in an algebra A. Show that
(I + J)k+`−1 ⊂ Ik + J ` for all k, ` ≥ 1. Deduce that if I, J are nilpotent, then so
is I + J .

A representation of a Lie R-algebra g in an R-module V is an R-algebra homo-
morphism ρ(g)→ glR(V ), the latter being endowed with its commutator bracket.
Endowed with such a homomorphism, V is called a g-module. By definition g-
submodules are R-submodules that are stable under ρ(g). The quotient by a
g-submodule is naturally a module as well.

A g-module V is said to be simple if it is nonzero and its only submodules are
{0} and V ; in this case the representation is said to be irreducible.

The mapping g→ DerR(g), mapping x to Lx, is a representation of g in inself,
called adjoint representation. Its kernel is the center z(g) = {x ∈ g : xy =
yx,∀y ∈ g}. Submodules of the adjoint representations are precisely ideals of g.

An algebra A is said to be simple if its product is not zero2, and its only 2-sided
ideals are {0} and A.

2. Small dimension

Now we assume that the ground scalar ring R is a field, now denoted K.
One can tackle the task of classifying Lie algebras of each given dimension,

possibly restricting to some subclass, or with restrictions on K.
In each given dimension, abelian Lie algebras form one isomorphy class. In

dimension 0,1, these are the only ones. In dimension 2, there is only one other,
which we denote b: it can be described with the basis (x, s) with the bracket
being given by [s, x] = x (by this we mean the other bracket follow from Lie

2Thus a 1-dimensional space over a field, endowed with the zero bracket, is not considered
as a simple Lie algebra. This is just a convention. It plays a role analogous to cyclic groups of
prime order in finite group theory, which, in contrast, are considered as simple groups.
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algebra axioms: [s, s] = [x, x] = 0, [x, s] = −x). We will often use, when 0 6= 2 in
K, the basis (h, x) of b with h = 2s; thus [h, x] = 2x.

Exercise: show that indeed every 2-dimensional non-abelian Lie K-algebra is
isomorphic to b.

Note that b is solvable with derived length 2, and not nilpotent.

Exercise: 1) Show that every 3-dimensional Lie algebra is either solvable or
simple.

2) Show that every solvable 3-dimensional Lie algebra possesses an abelian ideal
(first find a nonzero abelian ideal and discuss according to its dimension). Deduce
that it is isomorphic to a semidirect product gM = K2oMK, where M ∈ gl2(K),
and the notation meaning that the homomorphism K → Der(K2) = gl2(K) is
given by t 7→ tA; two such Lie algebras gM1 , gM2 are isomorphic if and only if
KM1 and KM2 are conjugate by some element of GL2(K). Deduce a list when
K = C, and when K = R.

3) Let g be a 3-dimensional Lie algebra in which Lx is nilpotent for every x.
Show that g is nilpotent.

4) Assume that K is algebraically closed. Let g be simple and 3-dimensional.
Deduce that there exist a 2-dimensional subalgebra, namely s, x such that [s, x] =
x and x 6= 0.

5) Assuming in addition that K is not of characteristic 2, deduce that there
exists y 6= 0 such that [s, y] = −y, with (s, x, y) a basis, and in turn deduce that
y can be chosen so that [x, y] = s.

Exercise: Fix a field K. 1) Let Algn be the space of bilinear laws on K3,
and Altn ⊂ Algn its subspace of alternating bilinear laws. Check that these are
subspaces of the space of all maps K2 → K, of dimension n3 and n2(n − 1)/2
respectively.

2) Let Lien be the subset of Altn consisting of the Lie algebra laws, i.e., those
skew-linear maps B : K2 → K satisfying J(B) = 0, where J(B) is the alternating
trilinear form (x, y, z) 7→ B(x,B(y, z)) + B(y,B(z, x)) + B(z,B(x, y)). Check
that the inclusion Lien ⊂ Altn is an equality for n ≤ 2 and is a proper inclusion
for all n ≥ 3.

3) Show that Altn is not stable under addition, for all n ≥ 3.
4) Let un be the largest dimension of a subspace contained in Lien (note that

it depends a priori on K, which is fixed). Show that lim inf un/n
3 > 0. (Hint:

for n = 2m even, write Kn = V1⊕V2 with dim(V1) = dim(V2) = m, and describe
the set of Lie algebra laws B satisfying B(V1, V1) ⊂ V2 and B(Kn, V2) = {0}.)

Note that the set of isomorphism classes of n-dimensional Lie algebras can be
identified to the quotient GLn(K)\Lien. Informally speaking3, this shows that
Lien has cubic dimension (i.e., bounded above and below by cubic polynomials),
and so is the quotient, since the dimension of GLn(K) is quadratic.

3This can be restated more rigorously using the language of algebraic geometry.
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3. Representations of sl2

We fix a ground field K.
Let V be vector space over K, and f a linear endomorphism. If t ∈ K, define

Vt = Vt(f) =
⋃
k Ker(f − t)k: this is the characteristic subspace of f associated

to t. The Vt generate their direct sum. By definition, f is K-trigonalizable
if and only if

⊕
t∈K Vt = V ; this holds when V is finite-dimensional and K is

algebraically closed; this is called the characteristic decomposition of V with
respect to f .

Let us pass to the 2-dimensional Lie algebra b, with its basis (h, x), with
[h, x] = 2x; we assume here that 2 6= 0 in K (this is somewhat an artificial
restriction here, but it will be convenient in the sequel).

Proposition 3.1. Consider a b-module (V, ρ) (that is, given by a homomorphism
of Lie K-algebras ρ : b→ gl(V )). Write H = ρ(h), X = ρ(x). We have

X
(
Ker((H − t)k)

)
⊂ Ker((H − (t+ 2))k).

In particular, we have
XVt ⊂ Vt+2, ∀t ∈ K.

Proof. The relation [h, x] = 2x implies HX −XH = 2X, which can be rewritten
as (H−2)X = XH, and thus for every t ∈ K we have (H−2− t)X = X(H− t).
By an immediate induction, we deduce (H − 2− t)kX = X(H − t)k for all k ≥ 0.
The formula follows. �

This already has useful consequences:

Corollary 3.2. Let (V, ρ) be a finite-dimensional b-module; if K has charac-
teristic p > 0, assume in addition that p 6= 2 and dim(V ) < p. Then ρ(x) is
nilpotent.

Proof. Write d = dim(V ) and X = ρ(x). For every t ∈ K, the d + 1 elements
t, t + 2, . . . , t + 2d are pairwise distinct in K, and therefore there exists one
of them, say t + 2k, such that Vt′ = {0}. Since X t+2kVt ⊂ Vt+2k, we deduce
that X t+2kVt = {0}; so X t+2dVt = {0}. Hence, assuming V =

⊕
Vt, we have

X t+2d = 0.
This concludes when K is algebraically closed; the general case follows by

considering V ⊗K L as a representation of b ⊗K L for an algebraically closed
extension L of K. �

Now let us pass to sl2(K) with 2 6= 0 in K. We choose a basis (h, x, y) with
[h, x] = 2x, [h, y] = −2y, and [x, y] = h. Originally, this corresponds to the
matrices

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
,

but this matrix interpretation plays no role here. Given a sl2(K)-module (V, ρ),
we always denote H = ρ(h), X = ρ(x), Y = ρ(y).
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Lemma 3.3. For every sl2(K)-module, we have [X, Y n] = nY n−1(H−n+ 1) for
all n ≥ 0.

The proof is an exercise by induction.
Given an sl2(K)-module (V, ρ), also denote Vt = Vt(h) for t ∈ K. By Propo-

sition (3.1), XVt ⊂ Vt+2 for all t. Also, since (−h, y) can play the same role as
(h, x) and Vt(−H) = V−t, we have Y Vt ⊂ Vt−2 for all t.

Proposition 3.4. For every finite-dimensional sl2(K)-module (V, ρ), with K of
characteristic zero (or, when K has characteristic p > 2, of dimension < p), we
have Vt = {0} for every t /∈ Z1K, and H is K-trigonalizable, with V =

⊕
i∈Z1K

Vi.

Proof. By contradiction, suppose that Vt 6= {0} with t /∈ Z1K . Consider W =⊕
n∈Z Vt+2n; this is a nonzero submodule; passing to W we can suppose that

V = W ; hence, since 0 /∈ t+ Z1K , we have H − k invertible on V , for all k ∈ Z.
By Corollary 3.2, Y is nilpotent.

Let k ≥ 1 be minimal such that Y k = 0. The relation 0 = [X, Y k] = kY k−1(H−
k + 1) holds in W ; since H − k + 1 is invertible, we deduce that Y k−1 = 0 and
get a contradiction.

When K is algebraically closed, the result follows. In general, we consider an
algebraically closed extension L of K, and denote VL = V ⊗K L, so H extends to
an operator HL on VL. By the algebraically closed case, the only eigenvalues of
HL are in Z1K , and hence, we have, for some k, the equality

∏
|i|≤k(HL− i)k = 0.

Hence, by restriction,
∏
|i|≤k(H − i)k = 0. This means that V =

∑
|i|≤k Vi. �

For n ∈ N(= {0, 1, 2, . . . }), write Jn = {n, n− 2, . . . ,−n} ⊂ Z; this subset has
n + 1 elements. Define V as a vector space over K with basis (en)n∈Z, and V[n]
the (n+ 1)-dimensional subspace with basis (ei)i∈Jn . Define

Hei = iei, Xnei =
n− i

2
ei+2, Ynei =

n+ i

2
ei−2.

These define linear endomorphisms of V . By a straightforward computation,
we have [H,Xn] = 2Xn, [H,Yn] = −2Yn, and [Xn, Yn] = H. Therefore, ρn :
(h, x, y) 7→ (H,Xn, Yn) defines a representation of the Lie algebra sl2(K) on V .
Observe that V[n] is a submodule for ρn; we now systematically endow V[n] with
the structure of sl2(K)-module defined by ρn.

Exercise Let A be the polynomial K-algebra K[x, y], and write A[n] for its
(n + 1)-dimensional subspace of homogeneous polynomials of degree n. Define
the linear endomorphisms of A: X = Ly∂x and Y = Lx∂y. Check that these
are derivations of A, preserving A[n] for all n. Check that the Lie subalgebra
of Der(A) generated by X, Y is isomorphic to sl2(K) (for some isomorphism
mapping X to X and Y to Y ), and that the representation of sl2(K) on A[n] is
isomorphic to V[n].

Lemma 3.5. Fix n ∈ N. Suppose that K has characteristic zero, or, if K has
characteristic p > 0, that n < p. Then V[n] is a simple sl2(K)-module.
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Proof. It is nonzero. The characteristic assumption implies the nonvanishing of
the coefficients n±i

2
except n+i

2
for i = −n and n−i

2
for i = n. Thus Xn maps Kei

onto Kei+2 for all i ∈ Jnr{n}, and Yn maps Kei onto Kei−2 for all i ∈ Jnr{−n}.
In particular, the kernel of the nilpotent endomorphism Xn is reduced to Ken.
Let W be a nonzero submodule, and v ∈ W r {0}. Let k ≥ 0 be maximal such
that w := Xk

nv 6= 0. Then w ∈ Ker(Xn) = Ken. So en ∈ W . Applying Yn
repeatedly, we deduce that ei ∈ W for all i ∈ Jn. So W = V[n]. �

Lemma 3.6. Let V be a sl2(K)-module. Let v be an eigenvector for H, in the
kernel of X. Write wi = Y iv. Then the family (wi)i≥0 linearly generates a
submodule W of V .

If K has characteristic zero, or characteristic p and dim(V ) < p, then its
nonzero elements form a basis of W , and the kernel of X on W is 1-dimensional,
reduced to Kv. In particular, if V is a simple sl2(K)-module, then the kernel of
both X and Y is 1-dimensional, dim(Vn) ≤ 1 for all n, and H is diagonalizable.

Proof. Say that Hv = tv. The relation (H + 2 − i)Y = Y (H − i) implies that
Hwi = (t − 2i)wi for all i. The formula [X, Y i] = iY i−1(H − i + 1) of Lemma
3.3, applied to v, yields Xwi = i(t− i + 1)wi−1 for all i ≥ 0. Since Y wi = wi+1,
Xw0 = 0, we deduce that the given family generates a sl2(K)-submodule.

In characteristic zero, the elements wi belong to distinct eigenspaces, and hence
its nonzero elements form a free family. In characteristic p, d = dim(W ) < p is
finite, and the freeness of the family of nonzero elements in (w0, . . . , wd) implies
that wi = 0 for some i ≤ d, hence wd = 0, and hence (w0, . . . , wd−1) is a basis for
W . Then d(t− d+ 1) = 0 in K, so t = d− 1 in K, and i(t− i+ 1) 6= 0 in K for
1 ≤ i ≤ d− 1, so the kernel of X on W is reduced to Kv.

If in addition V is simple, then by the previous paragraph, there is a nonzero
submodule on which the kernel of X has dimension 1, and hence by simplicity,
this is V and the kernel of X has dimension 1. Changing the roles of (H,X, Y )
and (−H,Y,X), we deduce that the kernel of Y also has dimension 1. Moreover,
since (w0, . . . , wd−1) is a basis and belong to distinct subspaces Vn, we deduce
that dim(Vn) ≤ 1 for all n; in particular H is diagonalizable. �

Theorem 3.7. Every simple sl2(K)-module V (of dimension < p when K has
positive characteristic p) is isomorphic to V[n] for n = dim(V )− 1.

Proof. There exists n ∈ Z such that Vn 6= {0} and Vn+1 = {0}; if K has char-
acteristic p > 0, we choose n ∈ {0, . . . , p − 1}. Choose vn ∈ Vn r {0}. Define
vn−2i = Y ivn ∈ Vn−2i; let k ≥ 0 be the maximal i such that vn−2i 6= 0. By
Lemma 3.6, (vn, vn−2, . . . , vn−2k) is a basis of a submodule, and therefore of V by
simplicity.

In particular, we see that all non-zero Vi are 1-dimensional. The dimension of V
is therefore equal to k+1, and the trace of H is therefore equal to

∑k
i=0(n−2i) =

(k+ 1)n− k(k+ 1) = (k+ 1)(n− k) (in K). Since the trace of H = [X, Y ] is zero
(in K), in characteristic zero, we deduce that k = n. In positive characteristic p,
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we deduce that p divides (k + 1)(n− k) in Z. We get the same conclusion k = n
as follows: since 0 < k + 1 = dim(V ) < p (in Z), we see that p divides n − k;
then we see that n−k belong to {−p+ 1, . . . , p−1}, and hence we conclude that
k = n. Accordingly, (vi)i∈Jn is a basis of V .

For i ∈ Jn, we have Hvi = ivi. Write Xvi = aivi+2 and Y vi = bivi−2, with
an = b−n = 0; set bn+2 = an−2 = 0 for convenience. Then the relation [X, Y ] = H
yields the relation (in K)

ai−2bi − aibi+2 = i, i ∈ Jn;

note that this holds for any basis (vi)i∈Jn with vi ∈ Vi, not only the specific one
constructed above. Writing ci = aibi+2, it yields ci−2 − ci = i, which implies, by
a simple backwards 2-step induction,

(3.1) aibi+2 = ci =

(
n− i

2

)(
n+ i+ 2

2

)
, ∀i ∈ Jn.

By Lemma 3.6, Ker(Y ) is reduced to Kv−n. Thus Y vi 6= 0 for all i ∈ Jnr{−n}.
Similarly, Xvi 6= 0 for all i ∈ Jnr{n}. We now, after choosing en = vn iteratively
define, for i ∈ Jn (with Jn indexed in decreasing order), the element ei−2 by
Y ei = n+i

2
ei−2 for all i ∈ Jn r {−n}. Write Xei = a′iei+2, for i ∈ Jn r {n}. Then

(3.1) holds with bi+2 replaced with n+i+2
2

and ai by a′i, which yields a′i = n−i
2

for
all i ∈ Jn. Thus V is isomorphic to V[n]. �

Corollary 3.8. Let g be a Lie algebra and V a finite-dimensional, faithful g-
module (V, ρ) (faithful means that the ρ is injective). Suppose that g contains a
subalgebra isomorphic to sl2(K). Suppose that K has characteristic 0. Then the
form Bρ : g× g→ K, (g1, g2) 7→ Trace(ρ(x)ρ(y)) is nonzero.

Proof. Restricting, we can suppose that g = sl2(K).
For n ≥ 0, we have tn := BV[n](h, h) =

∑
i∈Jn i

2. So tn ∈ N for all n, and

tn > 0 whenever n > 0 (it equals n(n+1)(n+2)
3

but we do not need this here). There

exist submodules 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V k = V such that V i/V i−1 is irreducible
for all i, say isomorphic to V[ni]. So BV (h, h) =

∑
i tni ≥ 0, and is positive as

soon as ni > 0 for some i. The remaining case is when all ni are zero. In this
case, all Vni are 1-dimensional, and this yields a homomorphism of sl2(K) into
the Lie algebra of strictly upper triangular matrices; the latter is nilpotent and
its only perfect subalgebra is {0}. Thus the representation is zero and cannot be
faithful, a contradiction. �

Corollary 3.9. Let (V, ρ) be a finite-dimensional sl2(K)-module (of dimension
< p in case of positive characteristic p). Then V is irreducible if and only if
ad(h) has only simple eigenvalues, and any two distinct eigenvalues have their
difference in 2Z.

Proof. For each n, V[n] has these properties. Conversely, if V is not irreducible,
then it has a submodule W such that, for some m,n, V[m] is isomorphic to a
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submodule of W and V[n] is isomorphic to a submodule of V/W . If both m and
n are even (resp. odd), then it follows that 0 (resp. 1) is a double eigenvalue of
ad(h). Otherwise, both 0 and 1 are eigenvalues of ad(h). �

Proposition 3.10. Let g be a Lie algebra. Let C be class of (isomorphism classes

of) finite-dimensional g-modules. Let Ĉ be the class of finite-dimensional g-
modules all of whose irreducible subquotients belong to C. Equivalent statements:

(1) any extension of g-modules, 0→ U → V
p→ W → 0 with U,W ∈ C, splits:

there exists a g-module homomorphism i : W → V such that p ◦ i = idW .
(2) any finite-dimensional g-module in Ĉ is sum of its irreducible submodules;

(3) any finite-dimensional g-module in Ĉ is a direct sum of irreducible sub-
modules.

Proof. The implication (2)⇒(3) holds for each given finite-dimensional g-module
V : consider a submodule W of maximal dimension that splits as a direct sum
of irreducible submodules; the assumption implies, if V 6= W , that there is an
irreducible submodule W ′ not contained in W ; then W and W ′ generate their
direct sum and we contradict the maximality of W .

Assuming (3), in the setting of (1), there exists an irreducible submodule P
not contained in U . By simplicity of U , its intersection with U is zero, and by
simplicity of W , its image is all of W . So V = U ⊕ P . Then p restricts to a
bijection P → W , whose inverse yields the desired splitting.

Suppose (1) and let us prove (2). Let V be a counterexample of minimal
dimension. Clearly, V 6= {0}, and hence contains a simple submodule U . By
induction, V/U is a sum of simple submodules Vi/U . Then by (1), we can write
Vi = U ⊕ Pi with Pi a submodule. Hence V is sum of U and all Pi. �

Theorem 3.11. Let K be a field of characteristic zero. Every finite-dimensional
representation of sl2(K) is a direct sum of irreducible representations.

Proof. By Proposition 3.10, we have to prove that for module V and submodule
U such that both U and V/U are irreducible, the corresponding exact sequence
splits, that is, there exists a submodule W such that V = U ⊕W . Equivalently,
we have to prove that the set of submodules of V is not reduced to {{0}, U, V }.

By Theorem 3.7, we can suppose that U is isomorphic to V[n] and W to V[m],
with n,m 6= 0.

We conclude in two ways according to whether m = n. First suppose that
m 6= n. Then since dim(Vm+2) = dim(Vm) − 1, there exists a nonzero element
v in Ker(X) ∩ Vm. Then by Lemma 3.6, there is k ≥ 0 and a submodule W of

V such that W =
⊕k

i=0Wm−2i with dim(Wi) ≤ 1 for all i, dim(Wm) = 1 and
dim(Wm+2) = 0. None of {0}, U and V satisfies these conditions and we are
done.

Now suppose that m = n. So, by Theorem 3.7, U and V/U are isomorphic
sl2(K)-modules. Choosing an isomorphism V/U → U , composed with the ob-
vious maps V → V/U → U ⊂ V , yields a nonzero endomorphism t of the
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sl2(K)-module V , such that t2 = 0. Write A = K[t]/(t2) (as a vector space, it
has the basis (1, t)). Thus, X, Y, Z commute with t, and hence are A-module
endomorphisms of V . We have Im(t) = Ker(t) = U , and in particular, each Vi,
for i ∈ Jn, is a free A-module of rank 1, generated by any element of Vi r Ui.

Choose vn ∈ Vn r Un. Define vn−2j = Y jvn, for i ≤ n. Working in V/U ,
by Lemma 3.6, we obtain that vi is nonzero in V/U for each i ∈ Jn, that is,
vi ∈ Vi r Ui. Therefore (vi)i∈Jn is a basis of the free A-module V of rank n+ 1.

Also Hvn = (n+ λt)vn for some λ ∈ K. Using that [H,Y ] = −2Y , we deduce
that Hvi = (i+ λt)vi for all i. We now use that the trace of H = [X, Y ], viewed
as matrix over A, vanishes. This trace is

∑
i∈Jn(i+λt) = λ(n+1)t. Hence λ = 0.

Thus Hv = iv for all i ∈ Vi and all i ∈ Jn: H is diagonalizable (as K-linear
endomorphism). In particular, vn is an eigenvector of H; we deduce (Lemma 3.6)
that the K-linear subspace spanned by vi is a sl2(K)-submodule of V , and it is
a direct summand of U . �

4. Invariant forms

Let A be an R-algebra and M an R-module. An R-bilinear map f : A×A→M
is said to be invariant if f(ab, c) = f(a, bc) for all a, b, c.

If g is a Lie algebra over a field K and ρ a finite-dimensional representation,
then the form Bρ : (x, y) 7→ Trace(ρ(x)ρ(y)) is a symmetric invariant bilinear
form. It is called trace form associated to ρ. When ρ = ad is the adjoint
representation (defined by ad(x)(y) = [x, y], this is called the Killing form of the
finite-dimensional Lie algebra g.

A Lie algebra g over a field K is said to be semisimple if it is finite-dimensional
and its Killing form is non-degenerate.

Proposition 4.1. Let A be a finite-dimensional K-algebra. Suppose that it ad-
mits a non-degenerate symmetric invariant bilinear form f , and possesses no ideal
J such that J2 = {0}. Then A decomposes as a finite direct product

∏n
i=1 Ai of

simple K-algebras (orthogonal to each other for f , and each being non-degenerate
for f). The Ai are precisely the minimal nonzero 2-sided ideals of A.

Proof. Let I be a minimal nonzero ideal. Let J be the orthogonal of I. The
invariance of f implies that J is a 2-sided ideal (exercise: check it). For x ∈ I,
y ∈ J and z ∈ A, we have f(xy, z) = f(x, yz) = 0 since x ∈ I and yz ∈ J . Using
non-degeneracy, we deduce that xy = 0. That is, IJ = 0; similarly JI = 0.

So I∩J is also a 2-sided ideal. Hence it is equal to either {0} or I. If I∩J = I,
that is, I ⊂ J , the property IJ = 0 implies I2 = {0}, which is excluded by the
assumptions. Hence, I ∩ J = {0}. Since dim(I) = codim(J), we deduce that
I ⊕ J = A (linearly); since IJ = JI = 0, this is a product decomposition.

Since f is non-degenerate in restriction to both I, J , we can pursue by induction
until we have a decomposition A =

∏n
i=1 Ai in which Ai 6= {0} and the only 2-

sided ideals of A contained in Ai are Ai and {0} (and the Ai, being non-degenerate
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for f and orthogonal to each other for f). Since 2-sided ideals of Ai are also 2-
sided ideals in A and since A2

i 6= 0 by assumption, this implies that Ai is simple.
Let I be a nonzero 2-sided ideal. So there exists i such that the projection of

I on Ai is nonzero, say contains some element x. The set of x′ ∈ Ai such that
x′Ai = Aix

′ = 0 is a 2-sided ideal squaring to zero, an hence we deduce that
either xAi or Aix is nonzero. Hence either IAi or AiI is nonzero. Since Ai is
simple, we deduce that Ai ⊂ I. �

Exercice: in the above setting, show that A possesses exactly 2n ideals. In
addition, show that each 2-sided ideal of A, viewed as Z-algebra, is a 2-sided
ideal (i.e., is a K-subspace). (Beware that in general, in non-unital K-algebras,
there might be ideals as Z-algebra that are not K-subspaces.)

Proposition 4.2. Let g be a finite-dimensional Lie algebra. Then every nilpotent
ideal is contained in the kernel of the Killing form.

Proof. For x ∈ I, ad(x) maps g into I, maps I into I2, etc. For y ∈ g, ad(x)
maps each of g, I, I2, etc, into itself. Therefore ad(x)ad(y) maps g into I, maps
I into I2, etc, and thus is nilpotent and has trace zero. This means that x and y
are orthogonal for the Killing form. Since this holds for every y ∈ g, we deduce
that x belongs to the kernel of the Killing form. �

Combining the previous two propositions, we deduce:

Corollary 4.3. (K arbitrary field) Every semisimple Lie K-algebra is a finite
direct product of simple Lie K-algebras.

Proposition 4.4. Let g be a semisimple Lie algebra over a field K. Then every
derivation D of g is inner, i.e., of the form ad(x) for some x.

Proof. Let D be a derivation, and define h as the semidirect product goDK. Let
Bg, resp. Bh be the Killing forms. Let I be the orthogonal of the ideal g in h; as
the orthogonal of an ideal, it is an ideal, and since g has codimension 1, I has
dimension ≥ 1. Since g is an ideal, we have (Bh)|g×g = Bg. Hence I ∩ g = {0}.
Hence I is 1-dimensional, and hence h = g × I, so I is central. Write, in h,
D = g + z with g ∈ g and z ∈ I. Since I is central, we have ad(D) = ad(g),
which, in restriction to g, means that D equals the inner derivation ad(g). �

Exercise: 1) Let g be a Lie algebra with center reduced to {0} and such that
every derivation of g is inner. Show that for every Lie algebra h containing g as
an ideal, h is direct product of g and its centralizer {x ∈ h : [x, g] = {0}}.

(Note: By the previous two propositions 4.4, this assumption is satisfied by
semisimple Lie algebras.) 2) Show that 2-dimensional nonabelian Lie algebras
satisfy this assumption.

Exercise: say that a Lie algebra g is radical-free if it admits no nonzero solvable
ideal. Let g be a Lie algebra andD a derivation. Show that the semidirect product
goD K is radical-free if and only if D is not an inner derivation.
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Remark: if g is a finite-dimensional Lie algebra with trivial radical and D is
a non-inner derivation, then the corresponding semidirect product g oD K is a
radical-free Lie algebra, but is not perfect. We see later that this cannot occur
in characteristic zero (Corollary 6.4).

5. Representation of solvable and nilpotent Lie algebras

Let g be a Lie algebra over a field K. For α ∈ Hom(g, K), write V[α] as K
endowed with the representation ρ(g)v = α(g)v: this is an irreducible represen-
tation. It is straightforward that any representation in the 1-dimensional space
K has this form.

Lemma 5.1. Let K be an algebraically closed field. Let g be a Lie algebra with
a faithful finite-dimensional g-module (V, ρ). If K has positive characteristic p,
suppose in addition that dim(V ) < p. Then [g, g] contains no 1-dimensional ideal
of g.

Proof. Otherwise, let a be such an ideal. We discuss according to whether a is
central and in both cases, we reach a contradiction.

If a is not central, then for some x we have [x, y] = y. By Corollary 3.2 (where
we use the dimension restriction in positive characteristic), ρ(y) is nilpotent. Let
E be the kernel of ρ(y); the relation ρ(x)ρ(y) − ρ(y)ρ(x) = β(x)ρ(y) implies
that ρ(x)E ⊂ E for every x ∈ g. So E is a submodule, nonzero since ρ(y) is
nilpotent. By irreducibility, V = E. So ρ(y) = 0, contradicting the faithfulness
of the representation.

Now suppose that a is central in g. Let t be an eigenvalue of ρ(y). Since y is
central, Ker(ρ(y)− t) is a g-submodule of V , and hence equals V . So the trace of
ρ(y) is equal to t dim(V ). Since x 7→ Traceρ(x) is a homomorphism, it vanishes
on y, and hence t dim(V ) = 0 in K. Since 0 < dim(V ) < p, we deduce that
t = 0. �

Theorem 5.2. Let K be an algebraically closed field of characteristic zero. Let
g be a solvable Lie algebra and (V, ρ) a finite-dimensional g-module.

(1) If V is irreducible then V is isomorphic, as a g-module, to V[α] for some
α.

(2) For any function α : g → K, denote Vα =
⋂
g∈g
⋃
n≥0 Ker(ρ(g) − α(g))n.

Then Vα = {0} whenever α /∈ Hom(g, K) (Hom denoting Lie K-algebra
homomorphisms); the Vα generate their direct sum

⊕
α∈Hom(g,K) Vα ⊂ V .

(3) If g is nilpotent, V =
⊕

α∈Hom(g,K) Vα. Moreover, Vα is a g-submodule for

every α (regardless that K is algebraically closed);

Proof. Let I be the kernel of the representation ρ; it has finite codimension k in
g.

If g is abelian, then it is standard linear algebra that V =
⊕

Vα, that all Vα
are submodules, and that the common eigenspace Eα =

⋂
g∈g Ker(ρ(g) − α(g))
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is nonzero as soon as Vα 6= {0}. The condition Eα 6= {0} clearly implies that
α ∈ Hom(g, K); thus V =

⊕
α∈Hom(g,K) Vα. If V is irreducible, since

⊕
Eα is a

nonzero submodule, it is equal to V , and irreducibility implies that V = Eα for
some α. Since the action is scalar, V = Eα is 1-dimensional, and we deduce that
V is isomorphic to V[α] as g-module. This proves all the assertions when g/I is
abelian, and in particular when k ≤ 1.

The result predicts that, when V is irreducible, g/I is abelian. So, consider, by
a contradiction, a counterexample with k ≥ 2 minimal. Write h = g/I. Let a be
a nonzero abelian ideal contained in the derived subalgebra [h, h]; we can suppose
that it has minimal dimension. So a is an irreducible h-module for the adjoint rep-
resentation, and actually an irreducible (h/a)-module. Therefore, by minimality
of k, we have dim(a) = 1. Using Lemma 5.1 now yields a contradiction.

Let us prove the second assertion. Using that irreducible representations are
1-dimensional, there exist g-submodules {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V such
that Vi/Vi−1 is 1-dimensional, and isomorphic to V[αi] for some αi ∈ Hom(g, K).
Suppose that Vα 6= {0}, and let i be minimal such that Vα ⊂ Vi. Then i ≥ 1, and
the projection of Vα on Vi/Vi−1 is nonzero. Since, for every g ∈ g, ρ(g)− α(g) is
nilpotent on Vα and ρ(g)−αi(g) is nilpotent on Vi/Vi−1, we deduce that αi(g) =
α(g). So α = αi, and thus α ∈ Hom(g, K).

Next, suppose by contradiction that the sum is not direct: so there exists α
and a finite subset I of Hom(g, K)r{α}, such that Vα∩

∑
β∈I Vβ 6= {0}. Since K

is infinite, there exists g ∈ g such that α(g) 6= β(g) for every β ∈ I. Then, if V ′t
is the characteristic subspace of ρ(g) with respect to t ∈ K, we have Vβ ⊂ V ′β(g)

for all g; since V ′α(g) ∩
∑

β∈I V
′
β(g) = {0}, we deduce that Vα ∩

∑
β∈I Vβ = {0}, a

contradiction.
Now suppose that g is nilpotent and let us prove the last assertion; consider a

counterexample of minimal dimension d; then d ≥ 2 since the case of dimension
1 is noticed above.

Let W ⊂ V be a simple submodule, thus of dimension 1 by the above, and iso-
morphic to V[β] for some β ∈ Hom(g, K). Then (V/W ) =

⊕
α∈Hom(g,K)(V/W )α,

and (V/W )α is a submodule of V/W .
Fix α such that (V/W )α is nonzero. First case: (V/W )α 6= V/W (i.e., V/W

has at least two weights). Let U(α) be the inverse image of (V/W )α in V ; this
is a g-submodule. Then by induction U(α) is sum of common characteristic
subspaces, and applying this to all α, we deduce that V is generated by common
characteristic subspaces, proving the decomposition. Moreover, Vα ⊂ U(α), and
is therefore a g-submodule, again by induction. So V is not a counterexample.
Thus, we have shown that for a counterexample of minimal dimension, for every
irreducible submodule W ⊂ V , we have (V/W )α = V/W for some α.

For every v ∈ V and g ∈ g, we have (ρ(g)− α(g))dim(V )−1v ∈ W . If α = β, we
deduce that (ρ(g)− α(g))dim(V )v = 0, and hence V = Vα and is a submodule, so
we have a contradiction.
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It remains to consider the case when α 6= β. Consider an irreducible g-
submodule of V/W , thus 1-dimensional, and let T be its inverse image in V .
Thus T is 2-dimensional. Choosing a basis (e1, e2) of T with e1 ∈ W , the repre-
sentation in T can be written as

g 7→
(
β(g) u(g)

0 α(g)

)
.

Its image cannot be the whole algebra of upper triangular matrices, because
the latter is not nilpotent. Therefore, its image has dimension ≤ 2. Since any
nilpotent Lie algebra of dimension ≤ 2 is abelian, we deduce that the image is
abelian. Therefore, the abelian case applies, and we deduce that T = Tα ⊕ Tβ.
We use the uniqueness of the weight of the quotient V/Tα. Since the image of
Tβ in this quotient is nonzero, we have V/Tα = (V/Tα)β. Modding out by T , we
deduce that V/T = (V/T )α. But as a quotient of V/W , we have V/T = (V/T )β.
Therefore, if V 6= T , we deduce α = β, a contradiction. So V = T = Vα ⊕ Vβ,
which is not a counterexample and again we have a final contradiction. �

Exercise: exhibit one case, with g solvable (and K algebraically closed), for
which V 6=

⊕
α Vα.

Corollary 5.3. Let K be a field of characteristic zero. For every finite-dimensional
solvable Lie algebra g, the derived subalgebra [g, g] is nilpotent.

Proof. First suppose that K is algebraically closed. Consider the adjoint repre-
sentation. Its kernel is the center z of g; write z′ = z ∩ [g, g]. Since irreducible
representations have dimension 1 by the theorem, one can embed g/z into the
Lie algebra of upper triangular matrices of size dim(g). Its derived subalgebra is
nilpotent. This shows that [g, g]/z′ is nilpotent. Since z′ is central, this implies
that [g, g] is nilpotent.

When K is arbitrary, fix an algebraically closed extension; then g⊗KL satisfies
the property, which passes to its Lie K-subalgebra g. �

Corollary 5.4. Let K be a field of characteristic zero. Let g be a solvable Lie
algebra and (V, ρ) a finite-dimensional g-module.

(1) The Vα generate their direct sum;
(2) if g is nilpotent, then the Vα are g-submodules;
(3) if ρ(g) is nilpotent for every g ∈ g, then V = V0. If moreover V is

irreducible, then it is 1-dimensional and isomorphic to V[0].

Proof. Let L be an algebraically closed extension of K. Define gL : g ⊗K L and
V L = V ⊗K L. We have Vα = V L

α ∩ V . Hence these generate their direct sum,
and, when g is nilpotent, are submodules.

Now suppose that ρ(g) is nilpotent for every g ∈ g. We have V L =
⊕

α∈Hom(gL,L)(V
L)α.

Fix α such that (V L)α 6= {0}. For every g ∈ g, α(g) is an eigenvalue of ρ(g),
but the latter is nilpotent (this is inherited from V to V L). Hence α(g) = 0
for all g ∈ g. Note that g M -linearly spans gL, and hence α = 0. So V L =
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(V L)0. So V0 = (V L)0 ∩ V = V . Let W be an irreducible L-subspace of V L.
Then W is 1-dimensional, and hence elements of W belong to the intersection⋂
g∈g Ker(ρ(g)V L). Since all ρ(g) are matrices over K, this intersection is also

nonzero at the level of V . Hence
⋂
g∈g Ker(ρ(g)V L) 6= {0}. If V is irreducible, we

deduce that it is 1-dimensional and with null action, i.e., isomorphic to V[0]. �

Corollary 5.5 (Engel’s theorem). Let K be a field of characteristic zero. Let g
be a finite-dimensional Lie algebra such that ad(x) is nilpotent for every x ∈ g.
Then g is nilpotent.

Proof. We first assert that g is solvable. Let g be a counterexample of minimal
dimension. Let h be a maximal solvable subalgebra of g, so h 6= g. Under the
adjoint action, we view g as an h-module. Then g/h contains an irreducible
h-submodule m/h. By Corollary 5.4(3), m/h has dimension 1 and has a null
action, which implies [h,m] ⊂ h. In particular, m is contained in the normalizer
n of h. As m/h is a 1-dimensional subalgebra, and hence m is a subalgebra with
[m,m] ⊂ h. So m is solvable, and this contradicts the maximality of h.

So g is solvable. Let {0} = g[0] ⊂ g[1] ⊂ . . . g[k] be submodules (under the
adjoint representation) such that each successive quotient is irreducible. By
Corollary 5.4(3), each g[i]/g[i−1] is 1-dimensional, with null action. Choosing
a compatible basis, we can therefore express all ad(x), x ∈ g, as strictly upper
triangular matrices. So g is nilpotent. �

Remark: Engel’s theorem holds over arbitrary fields; see [J, Chap. II.2].

Lemma 5.6. Let R be a scalar ring. Let A be an algebra (with product denoted
by [·, ·]) and D an R-linear derivation of A. Then for all t, u ∈ R, x, y ∈ A, and
n ∈ N we have

(D − t− u)n[x, y] =
n∑
k=0

(
n

k

)
[(D − t)kx, (D − u)n−ky].

Proof. By induction on n; the case n = 0 is clear. Suppose that n ≥ 1 and that
the formula is proved for n− 1. Then

(D − t− u)n(xy) =(D − t− u)(D − t− u)n−1(xy)

=(D − t− u)
n−1∑
k=0

(
n− 1

k

)
[(D − t)kx, (D − u)n−1−ky].

Use that (D − t− u)[(D − t)kx, (D − u)n−1−ky] is equal to

[(D − t)k+1x, (D − u)n−1−ky] + [(D − t)kx, (D − u)n−ky],

and then (as in the proof of the classical binomial expansion) change the variable
k + 1 to k in the left-hand term, use the formula

(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
to obtain

the desired formula. (Exercise: fill in details.) �
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Theorem 5.7. Let K be a field of characteristic zero. Let h be a nilpotent Lie K-
algebra. Let A be a finite-dimensional K-algebra (with product denoted as [·, ·]),
and ρ : g→ Der(A) a K-algebra homomorphism. Let A ⊃

⊕
α∈Hom(g,K) Aα be the

characteristic decomposition of A. Then this is an algebra grading: [Aα, Aβ] ⊂
Aα+β for all α, β ∈ Hom(h, K).

Proof. Write d = dim(A). Fix α, β ∈ Hom(h, K). For x ∈ Aα, y ∈ Aβ and
g ∈ h, we have x ∈ Ker(ρ(g) − α(g))d and y ∈ Ker(ρ(g) − β(g))d. Then the
formula of Lemma 5.6, for t = α(g) and u = β(h), shows that [x, y] belongs to
the kernel of (ρ(g)−α(g)−β(g))2d. Since this holds for all g ∈ h, we deduce that
[x, y] ∈ Aα+β. �

6. Cartan subalgebras

Let g be a Lie algebra. A Cartan subalgebra is a nilpotent subalgebra, equal
to its normalizer.

Assume that we work over an infinite ground field K. Let g be a finite-
dimensional Lie algebra. For x ∈ g, write g0(x) = Ker(ad(x)dim(g), the character-
istic subspace of ad(x) with respect to the eigenvalue zero (“null-characteristic
subspace of ad(x)”). We say that x ∈ g is a regular element if dim g0(x) is
minimal, that is, equals miny∈g dim(g0(y)). The existence of regular elements is
obvious.

Exercise: show that in the space of matrices, having a centralizer of dimension
≥ k is a Zariski-closed condition (i.e., can be defined as zero set of a certain
set of polynomials). Deduce that the set of regular elements is a (nonempty)
Zariski-open subset of g.

Theorem 6.1. Let K be an infinite field. Let g be a finite-dimensional Lie K-
algebra. Then for every regular element x ∈ g, the null-characteristic subspace
g0(x) of ad(x) is a Cartan subalgebra of g.

Proof. First suppose that K is algebraically closed. Fix x ∈ g. Write g =⊕
t∈K gt, the characteristic decomposition with respect to ad(x). So g0 = g0(x).

Write g∗ =
⊕

t6=0 gt. By Theorem 5.7 (with (Kx, g) playing the role of (g, A)),

(gt)t∈K is a grading of g, and in particular, g0 is a subalgebra and [g0, g∗] ⊂ g∗.
We first check (for arbitrary x ∈ g) that g0 is equal to its own normalizer n.

Since x ∈ g0, n is ad(x) invariant, and hence n is a graded subspace of g. Thus,
if, by contradiction, n 6= g0, there exists t 6= 0 such that nt 6= {0}. Since nt
is ad(x)-invariant, there exists an eigenvector, so there exists y ∈ nt r {0} such
that [x, y] = ty. So ad(y)(t−1x) = −y; this contradicts the assumption that y
normalizes g0.

Now we check that g0 is nilpotent. By Corollary 5.5 (Engel’s Theorem) it
is enough to show that ad(y) is nilpotent for every y ∈ g0. Assume otherwise.
For y ∈ g0, write Ny = ad(y)|g0 and Ty = ad(y)|g∗ . Then Nx is nilpotent, Tx
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is invertible. We have to show that Ny is nilpotent. Assume, by contradiction,
otherwise.

The set of s ∈ K such that Tx + sTy = Tx+sy is invertible is the complement
of a finite subset F∗. Also, the set F0 of s ∈ K such that Nx + sNy is nilpotent
is finite: otherwise Nx + sNy is nilpotent for all s, namely (Nx +Ny)

d = 0 for all
s, with d = dim(g); expanding and taking the term of degree d yields Nd

y = 0, a
contradiction. So, for s /∈ F0 ∪ F∗ and z = x+ sy, we have Nz not nilpotent and
Tz is invertible. Thus, dim g0(z) < dim g0(x), contradicting that x is regular. �

We henceforth assume that K has characteristic zero.
We say that h is a split (or K-split) Cartan subalgebra if the adjoint represen-

tation of h on g can be made upper triangular in some basis. We say that g is a
split (or K-split) Lie algebra if it admits a split Cartan subalgebra (beware that
this does not always mean that all Cartan subalgebras are split). If h is a split
Cartan subalgebra, we have g =

⊕
α∈Hom(h,K) gα. We call this a Cartan grading

of g.
Let g be endowed with a Cartan grading.

Lemma 6.2. For all α, β ∈ Hom(g0, K) such that gβ 6= {0}, we have β|[gα,g−α] ∈
Q(α|[gα,g−α]).

Proof. Write gβ+Zα =
⊕

n∈Z gβ+nα. This is a g0+Zα-submodule of g. For x ∈ gα,
y ∈ g−α, write z = [x, y]; both ad(x) and ad(y) preserve gβ+Zα, and hence
their commutator ad(z), restricted to g[β,α], has trace zero. Computing this trace
componentwise, we obtain the equality

0 =
∑
n∈Z

(dim gβ+nα)(β + nα)(z),

which can be rewritten as

dim(gβ+Zα)β(z) = −

(∑
n∈Z

n dim gβ+nα

)
α(z);

by linearity the latter equality holds for all z ∈ [gα, g−α]. Since the characteristic
is zero and gβ 6= {0}, this dimension is nonzero in K, and we deduce that in

restriction to [gα, g−α] we have β = qα with q =
∑
n∈Z n dim(gβ−nα)

dim(gβ+Zα)
. �

Proposition 6.3. Let g be a finite-dimensional Lie algebra over a field K of
characteristic zero. Then the kernel of the Killing form is a solvable ideal.

Proof. If I is the kernel of the Killing form and L is an extension of K, the kernel
of the Killing form of the Lie L-algebra g ⊗K L is equal to I ⊗K L. Hence, we
can suppose that K is algebraically closed, and we fix a Cartan grading on g.

We start proving the following claim: if g is a nonzero perfect finite-dimensional
Lie algebra over K, then its Killing form B is not zero.
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Assume by contradiction that B = 0. Since g is perfect, we have g0 = g0 ∩
[g, g] =

∑
α[gα, g−α]. Fix z ∈ [gα, g−α]. Then

B(z, z) = Trace(ad(z)2) =
∑
β

dim(gβ)β(z)2.

By Lemma 6.2, we have β(z) = qα,βα(z) for some qα,β ∈ Q. So

0 = B(z, z) =
∑
β

dim(gβ)2q2
α,βα(z)2.

Hence, for every β such that gβ 6= {0}, every α and every z ∈ [gα, g−α] we have
β(z) = qα,βα(z) = 0. Since g0 =

∑
α[gα, g−α], we deduce that β(z) = 0 for all

z ∈ g0, i.e., gβ 6= {0} implies β = 0. This means that g = g0 is nilpotent, a
contradiction with g being perfect and nonzero.

The claim being proved, let us prove the proposition. Let I be the kernel of
the Killing form, (I(n)) its derived series, and J =

⋂
n I

(n). Then J is a perfect
ideal. If by contradiction J 6= {0}, then by the previous fact, its Killing form is
nonzero. It is straightforward that the Killing form of an ideal is the restriction
of the Killing form of the larger algebra, and hence the Killing form of g does
not vanish on J × J . This contradicts the assumption that J is contained in the
kernel of the Killing form. Hence J = {0}, which means that I is solvable. �

In characteristic zero, we therefore have a converse to Proposition 4.2.

Corollary 6.4. Let K be a field of characteristic zero, and g a finite-dimensional
Lie K-algebra. Equivalent properties:

(1) g is semisimple (i.e., has a non-degenerate Killing form);
(2) g has no nonzero abelian ideal (or the same with “abelian” replaced with

“solvable”, or “nilpotent”)
(3) g is isomorphic to a finite direct product of simple K-algebras.

Proof. If we have a nonzero solvable ideal, its derived series consists of ideals
(exercise) and hence its last nonzero term is a nonzero abelian ideal. So the 3
differents readings of (2) are equivalent (with K arbitrary).

For an arbitrary field, (1)⇒(3) is the contents of Proposition 4.1 respectively
(with K arbitrary). Also, (3)⇒(1) is immediate: if we have a nonzero solvable
ideal, its projection to some simple factor is a nonzero solvable ideal, and hence
the simple factor is solvable, which is not possible.

Finally, (2)⇒(1) is the implication making this a corollary: suppose that g has
no nonzero solvable ideal. By the proposition, the kernel of the Killing form is
solvable, and hence is zero; hence the Killing form is non-degenerate. �

Given an algebra g graded in an abelian group Λ and B a bilinear form on g,
we say that B is concentrated in degree zero if B(gα, gβ) = {0} for all α, β ∈ Λ
such that α + β 6= 0.

Proposition 6.5. Let g be a finite-dimensional Lie K-algebra.
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(1) if g is endowed with a grading in a torsion-free abelian group, the Killing
form of g is concentrated in degree 0;

(2) if g is endowed with a Cartan grading, then every invariant symmetric
bilinear form B is concentrated in degree 0.

Proof. For x ∈ gα and y ∈ gβ with α + β 6= 0, ad(x)ad(y) shifts the degree by
α+β, and hence is nilpotent, since the grading abelian group is torsion-free. This
establishes the first assertion.

For the second assertion, assume the contrary: consider x0 ∈ gα, y0 ∈ gβ,
such that B(x0, y0) 6= 0. Fix any h ∈ h such that (α + β)(h) 6= 0. Define
xn = (ad(h) − α(h)I)nx0 and yn = (ad(h) − β(h)I)ny0. Then xn and yn are
zero for n large enough. So, there exists n,m ≥ 0 such that B(xn, ym) 6= 0
and B(xn+1, ym) = B(xn, ym+1) = 0. Since xn+1 = [h, xn] − α(h)xn the relation
B(xn+1, ym) reads as B([h, xn], yn) = α(h)B(xn, yn). Similarly, B(xn, [h, yn]) =
β(h)B(xn, yn). The invariance of B implies that these two numbers are opposite,
so (α + β)(h)B(xn, yn) = 0; since this is nonzero, we have a contradiction. �

Proposition 6.6. Let g be a finite-dimensional Lie K-algebra with a Cartan
grading (gα). Let Φ = {α ∈ Hom(g0, K) : gα 6= {0}} be the set of roots. Then
K =

⋂
α∈Φ Ker(α) is contained in the kernel of the Killing form.

Proof. For x, y ∈ g0, and B the Killing form, we have

B(x, y) = Tr(ad(x)ad(y)) =
∑
α

dim(gα)α(x)α(y).

In particular, if x ∈ K, we have B(x, y) = 0. Since we also have B(g0, gα) = {0}
for α 6= 0 (by Proposition 6.5), we deduce that x belongs to the kernel of the
Killing form. �

Let g be endowed with a Cartan grading. LetB be an invariant, non-degenerate
symmetric bilinear form on g. By Proposition 6.5 it is non-degenerate on g0, and
hence for every α ∈ g0 there exists a unique h

′B
α ∈ g0 such that B(h

′B
α , ·) = α on

g0.4 When B is the Killing form 〈·, ·〉 (thus assumed non-degenerate, i.e., g is split
semisimple, we write it as h′α (the prime is there because it will be convenient in
the sequence to renormalize it and define hα = 2

〈h′α,h′α〉
h′α; at the moment we do

not even know that the denominator does not vanish).

Proposition 6.7. Let g be as above. Then hBα ∈ [gα, g−α] for all α such that
gα 6= {0}. More precisely, for every 1-dimensional g0-submodule Kx of gα, we
have [g−α, Kx] = KhBα .

Proof. Let x be a common g0-eigenvector in gα. For any y ∈ g−α and z ∈ g0, we
have

B(z, [x, y]) = B([z, x], y) = B(α(z)x, y) = B(z, hBα )B(x, y) = B(z,B(x, y)hBα )

4In the lectures, this definition as well as the next proposition will be stated in the case of
semisimple Lie algebras and Killing form, at the beginning of the next chapter.
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hence (using non-degeneracy on g0) for all y ∈ g−α we have [x, y] = 〈x, y〉hBα .
Choosing y such that 〈x, y〉 = 1 (using that B(·, ·) yields a duality between gα
and g−α), we obtain the result. �

7. Structure of semisimple Lie algebras

We now consider a semisimple Lie algebra g over a field of characteristic zero
endowed with a Cartan grading, and its Killing form 〈·, ·〉. Call Φ = {α ∈
Hom(g0, K) : gα 6= {0}} the set of roots, and Φ∗ = Φ r {0}. The dimension of
g0 is called the rank5 of g (it does not depend on the choice of Cartan grading,
since by definition all Cartan subalgebras have the same dimension).

By either assertion of Proposition 6.7, the Killing form is concentrated in degree
zero, so 〈gα, gβ〉 = {0} whenever α+β 6= 0, and the Killing form induces a duality
between gα and g−α for all α. Recall that h′α is the element of g0 characterized
by the property 〈h′α, h〉 = α(h) for all h ∈ g0 (so h′α = −h′−α, and is nonzero for
α 6= 0).

Proposition 7.1. The Cartan subalgebra g0 is abelian and linearly generated by
the h′α when α ranges over Φ∗.

Proof. By Proposition 6.6,
⋂
α∈Φ∗ Ker(α) is contained in the kernel of the Killing

form, which is {0}. Since this intersection contains [g0, g0], it follows that g0 is
abelian. This intersection is also the orthogonal of the subspace spanned by the
hα, and hence this subspace is all of g0. �

Proposition 7.2. We have 〈h′α, h′α〉 6= 0 for every α ∈ Φ∗ (so the “coroot”
hα = 2

〈h′α,h′α〉
h′α is well-defined).

Proof. By Proposition 6.7, h′α ∈ [gα, g−α]. By Lemma 6.2, we can write, for every
β ∈ Φ, β(h′α) = qβα(h′α) for every β, for some rational qβ. If by contradiction
〈h′α, h′α〉 = 0, then this number being equal to α(h′α), we deduce β(h′α) = 0 for
all β ∈ Φ. Since

⋂
β∈Φ Ker(β) = {0} by Proposition 6.6, we deduce h′α = 0, and

hence α = 0. �

Proposition 7.3. For every nonzero root α ∈ Φ∗, we have dim(gα) = 1, while
dim(gnα) = 0 for every n ∈ N≥2.

Proof. By Proposition 6.7, there exists x ∈ gα and y ∈ g−α such that hα = [x, y],
and such that Ky is a 1-dimensional g0-submodule of g−α; thus [Kx,Ky] =
[gα, Ky] = Khα. Write M =

(⊕
n≥1 gnα

)
⊕Khα ⊕Ky.

5When g is not semisimple, we can still call dim(g0) the Cartan rank of g, although it
does maybe not deserve to be called “rank”. We can call effective rank of g the dimension of
g0/

⋂
α∈Φ Ker(α), that is, the dimension of the linear span of Φ in g∗0; it is at most equal to the

Cartan rank, with equality for semisimple Lie algebras (and not only them). For nilpotent Lie
algebras, the Cartan rank equals the dimension while the effective rank is zero.
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Hence M is stable under both ad(x) and ad(y), and hence their commutator
ad(hα) has trace zero on M . This trace can be computed as(

−1 +
∑
n≥1

n dim(gnα)

)
〈hα, hα〉.

Since K has characteristic zero and given that 〈hα, hα〉 6= 0 (Proposition 7.2),
this can be zero only if dim(gα) = 1 and dim(gnα) = 0 for all n ≥ 2. �

Corollary 7.4. For each α ∈ Φ∗ and β ∈ Φ and x ∈ gβ, we have [hα, x] =
〈h′α,h′β〉
〈h′α,h′α〉

x; in particular for x ∈ gα we have [hα, x] = 2x. �

Corollary 7.5. For every nonzero root α ∈ Φ∗, we have [gα, g−α] = Khα. In
particular, sα = g−α ⊕Khα ⊕ gα is isomorphic to sl2(K), with an isomorphism
mapping hα to h.

Proof. The first assertion follows from Propositions 6.7 and 7.3. For the second,
choose nonzero elements x ∈ gα and y ∈ g−α; by the first assertion, [x, y] is a
nonzero scalar multiple of hα, so we can renormalize y to assume that it equals
hα. By Corollary 7.4, we have [hα, x] = 2x and [hα, y] = −[h−α, y] = −2y. �

Theorem 7.6. (Only in this theorem, g is not assumed semisimple; K still has
characteristic zero.) Let a finite-dimensional Lie algebra g be endowed with a
Cartan grading. Then g is semisimple if and only if it satisfies the three following
conditions:

(1)
⋂
α∈Φ∗ Ker(α) = {0}

(2) ∀α ∈ Φ∗, dim(gα) = 1;
(3) ∀α ∈ Φ∗, α|[gα,g−α] 6= 0.

Proof. That g semisimple satisfies these conditions has already been checked.
Suppose they are satisfied. Let n be the kernel of the Killing form. Being nor-
malized by g0, n is a graded ideal. It follows from the last two assumptions that
for α ∈ Φ∗, gα is contained in copy of sl2(K). Hence n ⊂ g0; in particular,
[n, gα] ⊂ gα; since n is an ideal, it follows that n centralizes gα for every α, and
hence n ⊂

⋂
α∈Φ∗ Ker(α). By the first assumption, we deduce n = {0}. �

Given α, β ∈ Φ∗, define mα,β = m,nα,β = n by the requirement that kα + β
is a root for all k ∈ {−m, . . . , n}, and not for k = −m − 1, n + 1, and define
vα,β =

⊕n
k=−m gkα+β. This is a sα-submodule of g.

By Proposition 7.3, kα + β 6= 0 for every k ∈ Z, so dim(gkα+β) = 1 for all
integer k in [−m,n], again by Proposition 7.3.

Proposition 7.7. Let α, β be nonzero roots such that α + β is also a nonzero
root. Then [gα, gβ] = gα+β.

Proof. Choose a nonzero x ∈ gα. Since α + β is a root, we have n = nα,β ≥ 1.
The eigenvalues of ad(hα)|vα,β , with multiplicity, are (kα + β)(hα) for −mα,β ≤
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k ≤ nα,β. Since kα(hα) = 2k, we deduce that these eigenvalues are distinct and
their difference lie in 2Z. Therefore, by Corollary 3.9, vα,β is an irreducible sα-
module; in particular, the kernel of ad(x)|vα,β is 1-dimensional and reduced to
gnα+β. Hence ad(x) is injective on gβ, and thus [gα, gβ] = gα+β. �

Proposition 7.8. Given α, β ∈ Φ∗, with α 6= ±β; write m = mα,β and n = nα,β.
Then

2
〈h′β, h′α〉
〈h′α, h′α〉

= m− n.

Proof. For h ∈ g0, the trace of ad(h) on vα,β is

〈h, h′α〉
n∑

k=−m

k + 〈h, h′β〉
n∑

k=−m

1 = (m+ n+ 1)

(
n−m

2
〈h, h′α〉+ 〈h, h′β〉

)
Since vα,β is a sα-submodule, this trace vanishes for h = h′α. The formula

follows. �

This first allows to improve the second part of Proposition 7.3.

Proposition 7.9. If α ∈ Φ∗, t ∈ K and tα ∈ Φ, then t ∈ {−1, 0, 1}.

Proof. Write β = tα and suppose t /∈ {−1, 0, 1}. We apply Proposition 7.8;
the existence of m,n follows from the assumption on g. The formula reads as
2t = m− n, so t ∈ 1

2
Z. Switching the role of α and β, we also deduce 1/t ∈ 1

2
Z.

So t ∈ {±1/2,±2}. The case t = ±2 is excluded by Proposition 7.3, and so is
the t = ±1/2 by switching α and β. �

Proposition 7.10. For all nonzero roots α, β, we have 〈h′α, h′β〉 ∈ Q (and hence
〈hα, hβ〉 ∈ Q as well).

Proof. By Proposition 7.8, it is enough to show that 〈h′α, h′α〉 ∈ Q. This is by
definition equal to

Tr(ad(h′α)2) =
∑
β

〈h′α, h′β〉2.

Hence

1

〈h′α, h′α〉
=
∑
β

〈h′α, h′β〉2

〈h′α, h′α〉2
∈ Q. �

Lemma 7.11. Let V be a finite-dimensional vector space over K (here, an arbi-
trary field) with a non-degenerate bilinear form 〈·, ·〉, and I a subset of V , linear
spanning V , such that 〈x, y〉 ∈ F for all x, y ∈ V and some subfield F of V .
Then, for any basis J of V as a K-linear space, I is contained in the F -linear
span of J .



LIE ALGEBRAS 23

Proof. First suppose that J is an orthogonal basis. Then for every x ∈ I, we have

x =
∑

y∈J
〈x,y〉
〈y,y〉y and the result holds. In general, write J = (e1, . . . , ek); then we

can orthogonalize, namely find, for all i, e′i with e′i − ei in the F -linear span of
{ej : j < i}, with J ′ = {e′i : 1 ≤ i ≤ k} an orthonormal basis as well, and it still
holds that 〈x, y〉 ∈ F for all x ∈ I ∪ J ′. So every x ∈ I belongs to the F -linear
span of J ′, which coincides with the F -linear span of J . �

For any subfield F of K, write gF0 the K-linear span of Φ (where Φ is identified
to {h′α : α ∈ Φ}). By Lemma 7.11, we have dimF (gF0 ) = dimK(g0).

In a field F , say that t ∈ F is positive, written t > 0, if t is a sum of a
nonempty finite number of nonzero squares. A real field is a field in which 0 is
not positive. We say that a bilinear form B, on a vector space over a real field is
definite positive if B(x, x) > 0 for all x 6= 0.

Proposition 7.12. For every subfield F of K which is a real field, the Killing
form is positive-definite on the F -linear span of Φ. More generally, for every
subfield F of K, field extension F ′ of F such that F is a real field, the extension
of the Killing form to gF

′
0 = gF0 ⊗F F ′ is definite-positive.

Proof. Fix a basis J of g0 contained in Φ, and consider an element of gF0 , which
can be, by Lemma 7.11, in the form v =

∑
y∈J tyy with ty ∈ F . We have

〈v, v〉 =
∑

(y,z)∈J2

tytz〈y, z〉 =
∑

(y,z)∈J2

tytzTr(ad(y)ad(z))

=
∑

(y,z)∈J2

tytz
∑
α

α(y)α(z) =
∑
α

(∑
y∈J

tyα(y)

)2

=
∑
α

α(v)2;

If v 6= 0, there exists α such that α(v) 6= 0 and hence, since β(v) =
∑

y〈β, y〉 ∈ F
for all β, we deduce that 〈v, v〉 > 0, and the Killing form is therefore positive-
definite.

The same proof applies to the generalized statement. �

When K = C, we usually consider F = R in this statement; when K is
arbitrary, one usually consider F = Q and F ′ = R, and we view Φ as a subset of
the Euclidean space gR0 , although the latter is no longer considered as a subset
of g.

For nonzero elements α, β ∈ gR0 , define θα,β = arccos
(
〈α,β〉
‖α‖‖β‖

)
∈ [0, π], the

angle between α and β.

Proposition 7.13. For any α, β ∈ Φ∗ with ‖β‖ ≥ ‖α‖, 〈α, β〉 ≤ 0, we have one
of the following:

(a) θα,β = π/2 (that is, 〈α, β〉 = 0)
(b) θα,β = π/3, ‖β‖ = ‖α‖; α + β ∈ Φ

(c) θα,β = π/4, ‖β‖ =
√

2‖α‖; α + β, 2α + β ∈ Φ
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(d) θα,β = π/6, ‖β‖ =
√

3‖α‖; α + β, 2α + β, 3α + β, 3α + 2β ∈ Φ;
(e) θα,β = 0; α = −β.

In particular, if they are not orthogonal, we have ‖β‖2 = tα,β‖α‖2 with tα,β ∈
{1, 2, 3}.

Proof. Write c = − cos(θα,β) ∈ [0, 1]. The cases c = 0 and c = 1 yield respec-
tively (a) and (e); in the latter case, we use Proposition 7.9 to deduce α = −β.
Otherwise, 0 < c < 1.

We first Proposition 7.9, which implies that θ̂α,β > 0 (equivalently, c < 1), and,

to start with, the consequence of Proposition 7.8, namely that s := 2−〈α,β〉〈β,β〉 ∈ Z

and t := 2−〈α,β〉〈α,α〉 ∈ Z. Indeed, this can be rewritten as s = 2c‖α‖‖β‖ ∈ Z and

t = 2c ‖β‖‖α‖ ∈ Z. Multiplying, this yields st = 4c2 ∈ Z; since 0 < c < 1 is a

cosine, we deduce st = 4c2 ∈ {1, 2, 3}. Since ‖β‖ ≥ ‖α‖, we deduce that t ≥ s,

and hence s = 1. So ‖β‖/‖α‖ = 2c =
√

4c2 ∈ {1,
√

2,
√

3}, so the corresponding
value of c is 1/2, 1/

√
2,
√

3/2 respectively, corresponding to the given values of
the angles given in Cases (b), (c), (d) respectively.

Now use more precisely Proposition 7.8, which says that t = n − m, where
kα + β ∈ Φ for all k ∈ {1, . . . , n}, and m ≥ 0. So n ≥ t. In the above items, the
value of t is respectively 0, 1, 2, 3, and the additional assertion follows in each case,
except, in the last case, 3α+2β. But denoting β′ = −β−3α′ and α′ = −β−2α′,
we have ‖β′‖ =

√
3‖α′‖, 〈α′, β′〉 < 0, and hence applying the result to this pair,

we deduce that 3α′ + β′ = 3α + 2β belongs to Φ. �

8. Root systems

Definition 8.1. Let E be a Euclidean space. A root system is a finite subset Φ
of E satisfying 0 ∈ Φ, Φ = −Φ, and satisfying the conclusion of Proposition 7.13.

For F ⊂ E, we write F ∗ = F r {0}. We call a subset F of E irreducible if
it is not reduced to {0}, and cannot be written as F1 ∪ F2 with 〈F1, F2〉 = {0},
F ∗1 6= F ∗ 6= F ∗2 .

We write this section separately, because it is pure Euclidean geometry.

Definition 8.2. Let E be a Euclidean space and F a subset of E, with F = −F .
We say that B ⊂ F is a fundamental basis of F if

• B is linearly independent;
• we have F ∗ = (ΣB ∩ F ) ∪ −(ΣB ∩ F ), where ΣB is the subsemigroup

generated by B (the set of nonempty sums of elements of B)
• 〈x, y〉 ≤ 0 for all x, y ∈ B.

Lemma 8.3. Let E be a Euclidean space. Let F be root system in E, or more
generally a finite subset of E such that

• F = −F ;
• for all x, y ∈ F such that 〈x, y〉 < 0, we have x+ y ∈ F .
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Let ` be a linear form on E, such that ` does not vanish on F r {0}. Write
F+[`] = {x ∈ F : `(x) > 0} and F 1

+[`] = F+[`] r (F+[`] + F+[`]). Then F+
1 [`] is

a fundamental basis of F and F+[`] = F ∩ Σ(F+
1 [`]). (In particular, F+[`] and

F 1
+[`] determine each other.) Moreover, every fundamental basis of F has this

form (for some `).

Proof. Enumerating elements of F+ as x1, . . . , xk with `(x1) ≤ `(x2) ≤ . . . , by an
immediate induction, we see that xi belongs to the Z-span of F 1

+. Since F = −F
and ` does not vanish on F r {0}, the complement of F r {0} is −F r {0}.

Suppose by contradiction that x, y ∈ F 1
+ with 〈x, y〉 > 0. Then 〈−x, y〉 < 0,

and −x, y ∈ F , so −x+ y ∈ F , and hence x− y ∈ F as well. Up to switch x and
y, we can suppose that `(x− y) > 0, so x = (x− y) + y does not belong to F 1

+, a
contradiction.

Consider, by contradiction, a nontrivial combination between elements of F 1
+.

Gathering coefficients of the same sign, write it as wU = wV , where wU =∑
x∈U txx, with U, V disjoint subsets of F 1

+, U nonempty, and tx > 0 for all
x ∈ U ∪ V . In particular, `(wU) > 0, and hence wU 6= 0. So 0 < 〈wU , wU〉 =
〈wU , wV 〉 ≤ 0, a contradiction. Hence F 1

+ is a free family.
The inclusion Σ(F 1

+) ∩ F ⊂ F+ is clear. Conversely, by construction if x ∈
F+ r Σ(F 1

+) with `(x) minimal, then x /∈ F 1
+, so we can write x = y + z with

y, z ∈ F+ so `(y), `(z) < `(x) and thus by minimality, one has y, z ∈ Σ(F 1
+).

Hence x also belongs to Σ(F 1
+), a contradiction.

Finally, let B be a fundamental basis; choose ` with ` = 1 on B. Then the
corresponding F 1

+ (determined by `) contains B, and since it is a basis of the
span of F as well as B, we deduce that F 1

+ = B. �

Definition 8.4. A spread system in E is a subset B of Er{0} such that the angle
between any two distinct elements of B belongs to {π/2, 2π/3, 3π/4, 5π/6}. It is
called a normed spread system if, in addition, it satisfies the norm compatibility
of root systems: if α, β ∈ B are distinct and non-orthogonal, and ‖β‖ ≥ ‖α‖ and
the angle between them is 2π/3, resp. 3π/4, resp. 5π/6, then ‖β‖ = ‖α‖, resp.
‖β‖ =

√
2‖α‖, resp. ‖β‖ =

√
3‖α‖.

By Lemma 8.3, for very root system Φ (and choice of linear form ` not vanishing
on Φ∗), the subset Φ1

+, called set of fundamental roots (relative to `), is a linearly
independent normed spread system.

Definition 8.5. The (non-oriented) Dynkin diagram of a spread system P is the
graph whose set of vertices is P , with an edge between any two non-orthogonal
roots:

• labeled by 3, or denoted as a simple edge, if the angle is 2π/3;
• labeled by 4, or denoted as a double edge, if the angle is 3π/4;
• labeled by 6, or denoted as a triple edge, if the angle is 5π/6.
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Given a normed spread system, its (oriented) Dynkin diagram consists in endow-
ing each edge labeled by 4 or 6, using an arrow from the largest to the smallest
vector (to memorize the convention, think of the arrow as a > sign!).

Definition 8.6. We call (non-oriented) Dynkin diagram a finite set endowed
with a function from the set of 2-element subsets to {2, 3, 4, 6}, and represent it
as a graph according to the previous rules; an orientation on a Dynkin diagram
means a choice of orientation on edges labeled 4 or 6. We call a Dynkin diagram
realizable (resp. freely realizable, resp. non-freely realizable) if it the Dynkin
diagram of some spread system (resp. of some linearly independent spread system,
resp. of some linearly dependent spread system). Given an orientation, we call
it strongly realizable if it is the oriented Dynkin diagram of some normed spread
system.

Given a spread system, if we replace each each element with a scalar multiple,
we obtain another spread system, with the same Dynkin diagram. We call this
“rescaling”. The following shows that up to rescaling, a spread system is entirely
determined by its Dynkin diagram:

Proposition 8.7. Let F ⊂ E, F ′ ⊂ E ′ be spread systems, and u : F → F ′ a
bijection inducing an isomorphism of Dynkin diagrams. Then there is a unique
isometry ū from the R-span of F onto the R-span of F ′, such that ū(v) is posi-
tively collinear to u(v) for all v ∈ F . In particular, F cannot be both freely and
non-freely realizable.

Proof. Uniqueness is clear, since one necessarily has ‖ū(v)‖ = ‖v‖
‖u(v)‖u(v) for all

v ∈ F .
We can suppose that F spans E and F ′ spans E ′. Choose a bijection u : F → F ′

defining a graph isomorphism. We can rescale elements of F ′ to ensure that
‖u(v)‖ = ‖v‖ for all v ∈ F ′.

Consider the space RF , with basis (ev)v∈F . Define the symmetric bilinear form
defined by B(ev, ev′) = 〈v, v′〉, extended by bilinearity. Let ψ be the unique linear
map mapping ev ∈ RF to v ∈ E. Then B(x, x′) = 〈ψ(x), ψ(x′)〉 for all x, x′ ∈ RF .
Hence Ker(ψ) equals the kernel K of B, and ψ induces an isometric isomorphism
from RF/K to E.

Also, define ψ′ as the unique linear map mapping ev to u(v). Note that u is a
graph isomorphism means that θu(v),u(v′)) = θv,v′ for all v, v′ ∈ V . Since

〈u(v), u(v′)〉 = ‖u(v)‖.‖u(v′)‖ cos(θu(v),u(v′)) = ‖v‖.‖v′‖ cos(θv,v′) = 〈v, v′〉

for all v, v′ ∈ V , the same reasoning applies to ψ′, which induces an isometric
isomorphism from RF/K to E. Composing, we deduce a isometric isomorphism
from E to E ′ extending u. �

(See pictures of Dynkin diagrams in separate file)
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Proposition 8.8. All Dynkin diagrams An, Bn Cn, Dn, E6,7,8, F4, G2 are

strongly freely realizable. All (non-oriented) Dynkin diagrams Ãn, B̃n, C̃n, D̃n,
Ẽ6,7,8, F̃4, G̃2 are non-freely realizable.

Proof. The proof consists in giving a list of vectors and can mechanically be
checked by a computation of scalar products.

Use (e1 . . . , ek) as a basis of Rk; write Rk+1
0 for the (k-dimensional) hyperplane

of vectors with sum 0. Then An (n ≥ 1) can be freely realized by the vectors
(e1−e2, e2−e3, . . . , en−en+1), which form a basis of Rn+1

0 . Adding ξA = en+1−e1,
we non-freely realize Ãn for n ≥ 2.

Now start from the vectors e1 − e2, . . . , en−1 − en (realizing An−1). Then

• adding −e1, resp. −2e1 to the list, we strongly freely realize Bn, resp. Cn;
• adding −e1 − e2, we strongly freely realize Dn (n ≥ 4);
• adding −e1 and en, we non-freely realize C̃n (n ≥ 2);
• adding −e1 and en−1 + en, we non-freely realize B̃n (n ≥ 3);
• adding −e1 − e2 and en−1 + en, we non-freely realize D̃n (n ≥ 4).

It remains to deal with exceptional Dynkin diagrams, namely of type EFG:

• In R3
0, consider the vectors (1,−1, 0) and (−1, 2, 1); it freely realizes G2;

adding the vector (1, 0,−1) non-freely realizes G̃2.
• In R4, consider the vectors (1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1, 0), −1

2
(1, 1, 1, 1).

It freely realizes F4. Adding the vector (0, 0, 0, 1) non-freely realizes F̃4.
• In H8 = R8, consider the vectors

α1 = −1

2
(1, 1, . . . , 1); α2 = e2 + e3; αi = −ei−1 + ei, i ∈ {3, . . . , 8}.

Let H7 be the hyperplane of equation t1 = t8, and H6 the hyperplane of
H6, of equation t1 = t7 = t8. Then for i = 6, 7, 8, (α1, . . . , αi) is a basis of
Hi, and freely realizes Ei. Moreover, define

ξ8 = e1 − e8, ξ7 = e1 + e8 ∈ H7, ξ6 = (1, 1,−1,−1,−1,−1, 1, 1) ∈ H6.

(Thus ξ8 is orthogonal to αj for j 6= 8, ξ7 is orthogonal to αj for j 6= 1, 8; ξ6

is orthogonal to αj for j 6= 3, 7, 8; θξ8,α8 = θξ7,α1 = θξ6,α3 = 2π/3.) Then,

for each of i = 6, 7, 8, (α1, . . . , αi, ξi) non-freely realizes Ẽi (in Hi). �

Theorem 8.9. An oriented connected Dynkin diagram is strongly freely realizable
if and only each of its components is so.

Consider a nonempty oriented connected Dynkin diagram X. Equivalences:

(1) the oriented Dynkin diagram X is isomorphic to one among An (n ≥ 1),
Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6,7,8, F4, G2;

(2) the non-oriented Dynkin diagram X is isomorphic to one among An (n ≥
1), Bn = Cn (n ≥ 2), Dn (n ≥ 4), E6,7,8, F4, G2;

(3) the oriented Dynkin diagram X is strongly freely realizable;
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(4) the (non-oriented) Dynkin diagram X is freely realizable. An oriented
Dynkin diagram is strongly freely realizable if and only if all its components
are strongly freely realizable.

Proof. The first assertion is straightforward.
The implications (3)⇒(4) and (1)⇔(2) are trivial (noting that C2 is isomorphic

to B2 as oriented graph). The implication (1)⇒(3) is part of the contents of
Proposition 8.8.

It remains to prove (4)⇒(2). Let n be the number of vertices. If n = 1, 2 there
is nothing to prove (since A2, B2 = C2, G2 are allowed).

If n = 3, the proposed possibilities are A3 and B3 = C3, and we have to dis-
card all others. Write θ̂ = min(θ, π − θ) ∈ [0, π/2]. Denote the three vectors as

α, β, γ, with θ̂α,β ≤ θ̂α,γ ≤ θ̂β,γ. Since they are non-coplanar, we have the strict
triangle inequality θ−α,β + θ−α,γ > θβ,γ. First, this yields θ−α,β + θ−α,γ > π/2.

This discards the possibilities that (θ̂α,β, θ̂α,γ) is (π/6, π/6), (π/6, π/4), (π/6, π/3),

or (π/4, π/4). In addition, this discards the possibilities that (θ̂α,β, θ̂α,γ, θ̂β,γ) is
among (π/4, π/3, π/3) or (π/3, π/3, π/3). The only remaining possibilities are
(π/4, π/3, π/2), (π/3, π/3, π/2) (which correspond to B3 = C3 and A3 respec-
tively), or (π/k, π/2, π/2) for k = 2, 3, 4, 6, which corresponds to a non-connected
Dynkin diagram.

If n ≥ 4, first we claim that the diagram has no edge labeled by 6, and no 2
consecutive edges labeled by 4. Indeed, otherwise, it has an induced connected
subgraph on 3 vertices with (at least) one edge labeled by 6 or two edges labeled
by 4, and this has been excluded.

Next, we claim that the diagram has no loop. Loops with only edges labeled
by 3 are excluded, since the graph Ãn is non-freely realizable for n ≥ 2. If the
loop has length ≥ 5 and at least two edges labeled by 4, then it has an induced
subgraph isomorphic to C̃n for some n ≥ 2 and hence is non-freely realizable. If
has a single edge labeled by 4 and others by 3 and n ≥ 6, then it has an induced
subgraph isomorphic to F̃4, and this is non-freely realizable. The remaining cases
are: a loop of size 4 with 1 or 2 non-consecutive edges labeled by 4, or a loop of
size 5 with a single edge labeled by 4. Choosing the vectors to be of radius

√
2,

if realizable, the corresponding matrix of scalar products is the following:
2 -1 0 -

√
2

-1 2 -1 0
0 -1 2 -1

-
√

2 0 -1 2

 ,


2 -1 0 -

√
2

-1 2 -
√

2 0

0 -
√

2 2 -1

-
√

2 0 -1 2

 ,


2 -1 0 0 -

√
2

-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1

-
√

2 0 0 -1 2

 .

The determinant of each of these matrices (−1−2
√

2, −7, and −2−2
√

2 respec-
tively) is negative, so all these cases are discarded (since any Gram matrix has a
non-negative determinant), and we conclude that the diagram has no loop.
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Next, we claim that there is at most one edge labeled by 4: otherwise, there
is an induced subgraph isomorphic to C̃n for some n ≥ 2, which is non-freely
realizable, and this is excluded.

Next, we claim that if there is an edge labeled by 4, then the diagram is filiform.
Indeed, otherwise, there is an induced subgraph isomorphic to B̃n for some n ≥ 3,
which is non-freely realizable, and this is excluded.

Finally, if there is an edge labeled by 4, we claim that the diagram is of type
Bn = Cn (n ≥ 2) or F4: otherwise, since we know that it is filiform with a single
edge labeled by 4, it contains an induced subgraph isomorphic to F̃4, and this
excluded.

It remains to consider the case of a loop-free diagram with only edges labeled
by 3. If there are two branching vertices, or a vertex of degree ≥ 4, then there
is an induced subgraph isomorphic to D̃n for some n ≥ 4, which is non-freely
realizable, and this is excluded.

Finally, either we have a graph of type An, or we have a graph with a sin-
gle trivalent branching points, and branches of size (not counting the branching
point) 1 ≤ k1 ≤ k2 ≤ k3 (so n = 1 + k1 + k2 + k3). Call this X(k1, k2, k3).

If k1 ≥ 2, then we have an induced subgraph isomorphic to X(2, 2, 2) = Ẽ6.
So k1 = 1. If k2 ≥ 3, then we have an induced subgraph isomorphic to Ẽ7. So
k2 ≤ 2.

If k2 = 1, then the graph has type X(1, 1, k3) = Dk3+3. Otherwise, k2 = 2. If
k3 ≥ 5, then we have an induced subgraph isomorphic to X(1, 2, 5) = Ẽ8. The
remaining possibilities are X(1, 2, k) for k = 2, 3, 4, which correspond to E6, E7,
and E8. �

Let Φ be a root system (with `). For x =
∑

α∈Φ+
tαα in the span of Φ, define

the subset {α ∈ Φ+ : tα 6= 0}, called the support of x. Write |x| =
∑

α |tα|.

Lemma 8.10. For every positive root β there exists a fundamental root α in the
support of β such that 〈α, β〉 > 0 and β − α ∈ Φ+ ∪ {0}.

Proof. Write β =
∑

α∈F nαα with F a nonempty subset of Φ+, and nα a positive
integer for all α ∈ F . Then

0 < ‖β‖2 =
∑
α∈F

nα〈β, α〉.

So there exists α ∈ F such that 〈β, α〉 > 0. Hence β − α ∈ Φ. Since β − α =∑
γ∈Fr{α} nγγ + (nα − 1)α, we deduce that β − α ∈ Φ+ ∪ {0}. �

Let B,F be subsets of a Euclidean space. Define, for k = 1, 2, 3

uk(B,F ) = {kα + β : α ∈ B, β ∈ F : 〈α, β〉 < 0, ‖β‖2 ≥ k‖α‖2}.
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Define inductively

B(n) = ∅, n ≤ 0, B(1) = B, B(n) =
3⋃

k=1

uk(B,B
(n−k)), (n ≥ 2), B(∞) =

⋃
n≥1

B(n).

This yields an effective procedure to construct elements of a root system start-
ing with a fundamental basis.

Proposition 8.11. Let Φ be a root system with a fundamental basis B and
Φ+ = ΣB ∩ Φ the corresponding set of positive roots. Then Φ+ = B(∞) (and
Φ = B(∞) ∪ {0} ∪ (−B(∞))). In particular, if Φ,Ψ are root systems with a
common fundamental basis, then they are equal.

Proof. Choose a linear form ` to be equal to 1 on B. We prove, by induction on
n ≥ 1, that Φ ∩ `−1({n}) = B(n). This is clear for n = 1, and for arbitrary n the
inclusion ⊃ follows from the root system axioms.

For n ≥ 2, let γ belong to Φ ∩ `−1({n}). By Lemma 8.10, there exists a
fundamental root α in the support of γ such that 〈α, γ〉 > 0; set β = γ − α ∈ Φ.
By induction, we have β ∈ B(n−1).

First suppose that ‖α‖ ≥ ‖γ‖, and write ‖γ‖2 = t‖α‖2 with t ≤ 1; we have
〈α, γ〉 = 〈α, α〉/2. Then 〈β, α〉 = −‖α‖2/2 < 0. Hence γ = α + β belongs to
B(n).

Otherwise, ‖γ‖2 = k‖α‖2 for k ∈ {2, 3} (so 〈α, γ〉 = 〈γ, γ〉/2). In this case,
δ = γ − kα belongs to Φ ∩ `−1({n− k}).

We need to check that k < n; if k = 1 this holds; if k = 2, 3, since γ − iα
is a nonzero root for 0 ≤ i ≤ k, we have `(γ − iα) 6= 0, and it follows (by an
intermediate value argument) that `(γ − iα) ≥ 1 for all such i, so for i = k this
yields n− k = `(δ) ≥ 1.

Hence, by induction, δ belongs to B(n−k). Then 〈δ, α〉 = −‖γ‖2/2 < 0 and
‖δ‖2 = ‖γ‖2 = k‖α‖2, so γ = δ + kα belongs to B(n). �

Remark 8.12. If B is a normed spread system, then it is immediate (by induc-
tion) from the definition that {‖v‖ : v ∈ B(∞)} = {‖v‖ : v ∈ B}: the construction
does not provide new norms.

It follows that if B has no edge labeled by 6 (so we can renormalize on each
component so that the norms are in {1,

√
2}, then the induction simplifies to

B(n+1) = u1(B,B(n−1)) ∪ u2(B,B(n−2)). In turn, if B has only simple edge (no
edge labeled by 4 or 6), then the induction simplifies to B(n+1) = u1(B,B(n−1)).

(Note that ‖β‖ ∈ {‖α‖, ‖δ‖}. Thus, by induction, ‖β‖ = ‖α′‖ for some α′ ∈ B.
In particular, if the Dynkin diagram only has edges labeled 3, then all nonzero
roots have the same norm and in particular, the only possible angle (up to θ 7→
π−θ) between non-collinear non-orthogonal roots is π/3; in particular it is enough
to consider k = 1 in the above algorithm. Similarly, if the Dynkin diagram
only has edges labeled by 3 and 4, the only possible angles are π/3 and π/4; in
particular, it is enough to consider only k = 1, 2 in the above algorithm.)
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Lemma 8.13. Let Φ be a subset of a Euclidean space, all of whose norms lie in
{
√

2, 2}. Then Φ is a root system if and only if it satisfies the following conditions:

(1) 0 ∈ Φ, Φ = −Φ;
(2) for all α, β ∈ Φ, one has 〈α, β〉 ∈ Z;
(3) for all α, β ∈ Φ such that max(‖α‖, ‖β‖) = 2, one has 〈α, β〉 ∈ 2Z;
(4) for all α, β ∈ Φ such that 〈α, β〉 < 0, one has α + β ∈ Φ;
(5) for all α, β ∈ Φ such that 〈α, β〉 < 0 and ‖β‖ > ‖α‖, one has 2α+β ∈ Φ.

Proof. A root system with norms in {
√

2, 2} indeed satisfies these conditions.
Conversely, if satisfied, for any α, β with ‖β‖ ≥ ‖α‖ and 〈α, β〉 < 0, α 6= −β, one
has (‖α‖, ‖β‖, 〈α, β〉) is one of (

√
2,
√

2,−1), (2, 2,−2), or (
√

2, 2,−2); this gives
one of the allowed configurations (excluding the angle 5π/6), α+β belongs to Φ,
and in the third case, 2α + β belongs to Φ.

Finally, Φ is a subset of the 2-ball whose distinct elements have distance ≥
√

2,
hence is finite. �

Proposition 8.14. Every normed spread system B is contained in a root system
Φ; we can choose Φ to be generated by B, in the sense that no root system properly
contained in Φ contains B.

Proof. We can suppose that the Dynkin diagram has a single component.
First suppose that the Dynkin diagram has type G2. Denote the fundamental

roots by α and β with ‖β‖2 = 3‖α‖2. The the algorithm successively outputs
α + β, 2α + β, 3α + β, 3α + 2β. That this defines a root system is checked by
hand.

Next, we suppose that the Dynkin diagram has no edge labeled by 6. Let us
first show that B (arbitrary normed spread system) is contained in a root system.

Define B[1] = B ∪ (−B) ∪ {0} and inductively

B[n] = B[n−1] ∪
⋃

p+q=n

{α + β : α ∈ B[p], β ∈ B[q], 〈α, β〉 < 0}

∪
⋃

2p+q=n

{2α + β : α ∈ B[p], β ∈ B[q], 〈α, β〉 < 0, ‖β‖ =
√

2‖α‖}.

Let us prove that Φ =
⋃
nB

[n] is a root system.
Up to renormalization, we can suppose that the set of norms of elements of B

is contained in {
√

2, 2}. It follows that the set of norms of elements of Φ is also
contained in {

√
2, 2}; we call elements of norm

√
2 small and elements of norm 2

large.
Let Λ be the Z-submodule of the ambient Euclidean space, generated by B.

Denote by B′ the subset {2α : α ∈ B : ‖α‖ =
√

2} ∪ {α ∈ B : ‖α‖ = 2}. Let Λ′

be the Z-submodule generated by B′ (it has finite index in Λ).
Clearly, Φ is contained in Λ. Since the scalar product is integral on B×B, it is

therefore integral on Λ× Λ, and hence on Φ× Φ. Moreover, since all large roots
produced are obtained as sum of two large roots, or sum of a large root and twice
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a small root, the set of large roots is contained in Λ′. Since the scalar product
takes even values on B×B′, we deduce that the scalar product takes even values
on Λ× Λ′, and hence the scalar product of any root with a large root is even.

This yields the integrality conditions in Lemma 8.13. The stability condition
is obvious from the inductive definition of B[n].

It is clear that B generates Φ in the specified sense. �

Proposition 8.15. Let B be a free normed spread system, and suppose that B
is contained in a root system Φ, and generates Φ. Then B is a fundamental basis
of Φ.

Proof. We can suppose that B is irreducible, so Φ is also irreducible. We can
suppose that Φ spans the ambient Euclidean space.

In type An, we write B = {ei − ei+1 : 1 ≤ i ≤ n} ⊂ Rn+1
0 and define Φ+ =

{ei−ej : 1 ≤ i < j ≤ n+1}. Clearly Φ+ is contained in Φ, and Φ+∪ (−Φ+)∪{0}
is a root system, so equals Φ. Since every element of Φ+ belongs to ΣB, we
deduce that B is a fundamental basis. A similar explicit argument holds in types
Dn, Bn and Cn.

The exceptional cases can be checked by long computations, but also with
little computation as follows: one first observes that in the root system of type
Bn (resp. Cn), the set of large (resp. small) roots is a root system of type Dn,
and the set of small roots has type nA1 (all non-collinear roots are orthogonal).
Here it is understood that D3 = A3 and D2 = 2A1.

• the spread system of type G2 does not embed isometrically into any other
irreducible root system (which have no π/6 angle);
• the spread system of type F4 does not embed isometrically into any other

irreducible root system: indeed, it is the only one (with G2) with the prop-
erty of having both small and long non-orthogonal non-collinear roots.
• the spread system E6 does not embed into Dn for any n, by a specific

elementary verification. As a consequence, Ei does not embed into any
irreducible root system of type ABCD.

This being done, suppose that B has exceptional type (EFG). Since B cannot
be embedded isometrically into a root system of classical type, we deduce that
Φ has exceptional type, and since there is at most one such type by dimension,
we deduce that Φ has the same type as B. This means, B′ being a fundamental
basis of B, that the type of B and B′ are the same. Since B and B′ have the
same norms (which is the set of norms achieved by Φ), we deduce that there is
an isometry f mapping B onto B′; by Lemma 8.7, it extends to a self-isometry
of E. Since Φ is the root system generated by both B and B′, we have f(Φ) = Φ.
So B = f−1(B′) is a fundamental basis. �

Lemma 8.16. Let V be a real vector space and W a finite (or countable) union
of affine subspaces of codimension ≥ 2. Then any two points x, x′ in V rW can
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be joined by a path [x, y] ∪ [y, x′] consisting of two segments. In particular, it is
connected for any topological vector space structure on V .

Let X be a finite union of affine subspaces of codimension ≥ 1. Then for
x, x′ /∈ X, such a path meets X only at finitely many points (and we can choose
y to be outside X).

Proof. Let (Wi)i∈I be the given subspaces. For x ∈ V , let Hi(x) be the affine
subspace spanned by Wi ∪ {x}; it has codimension ≥ 1, and H(x) =

⋃
i∈I Hi(x).

If x /∈ Wi and y /∈ Hi(x), then the line (xy) has empty intersection with Wi.
So if x /∈ W and y /∈ H(x), then [x, y] ∩W is empty. Thus, for any x, x′, choose
y /∈ H(x) ∪H(x′), and then ([x, y] ∪ [y, x′]) ∪W is empty.

Let H be a hyperplane constituting X. Both segments [x, y] and [y, x′] are not
contained in H, and hence each intersect H at most twice. �

Proposition 8.17. Let Φ be a root system spanning E. For a nonzero root α, let
rα be the orthogonal reflection mapping α to −α. Then rα(Φ) = Φ. The subgroup
W generated by {rα : α ∈ W} is finite.

Proof. For any β ∈ Φ, we have to check that rα(β) ∈ Φ. This is clear if β ∈ Rα,
since β is mapped to −β, or when β is orthogonal to α, since it is mapped to itself.
Otherwise, changing β to −β, we can suppose that 〈α, β〉 < 0. If ‖α‖ ≥ ‖β‖,
then rα maps β to β + α ∈ Φ. Otherwise we have ‖α‖ < ‖β‖, the angle between
α and β is 3π/4 or 5π/6, and rα maps β to β + 2α or β + 3α respectively, and
this belongs to Φ in the respective case.

The kernel of the W -action on Φ is trivial, since Φ spans E. Since Φ is finite,
we deduce the finiteness assertion. �

Definition 8.18. W is called the Weyl group of the root system Φ.

Proposition 8.19. W acts transitively on the set of fundamental bases of Φ.
In particular, the fundamental bases of Φ have isomorphic (as labeled graphs)
Dynkin diagrams.

Proof. Let X (resp. W ) be the set of elements of E orthogonal at least one
nonzero root, resp to at least two non-collinear roots. So X is a finite union of
hyperplanes, and W ⊂ X is a finite union of subspaces of codimension 2.

For ξ ∈ E, write Φ+(ξ) = {α ∈ Φ∗ : 〈α, ξ〉 ≥ 0. We have Φ+(ξ) ∪ (−Φ+(ξ)) =
Φ∗, and Φ+(ξ)∩ (−Φ+(ξ)) = {α ∈ Φ∗ : 〈α, ξ〉 = 0. In particular, this intersection
is empty if ξ /∈ X; if ξ ∈ X rW , then this intersection is reduced to {α,−α} for
some α ∈ Φ∗; denote α = αξ (we will always consider the pair ±αξ, so the choice
does not matter).

By a straightforward verification, we have rα(Φ+(ξ)) = Φ+(rα(ξ)) for all α ∈ Φ∗

and ξ ∈ E. When ξ ranges over its connected component C(ξ) in E r X, the
subset Φ+(ξ) does not vary.

Now consider ξ0 and ξ1 in E r X, and using Lemma 8.16, join them by a
continuous and piecewise affine path (ξt)t∈[0,1] valued in E rW , such that S =
{t : ξt ∈ X} ⊂ ]0, 1[ is finite and (ξt) is smooth at each t ∈ S.
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For t ranging over each given component of [0, 1] r S, Φ+(ξt) does not vary.
For s ∈ S, let αs be the unique (up to sign) root that is orthogonal to s, and Hs

the orthogonal of αs. There exists a neighborhood V of s, v ∈ Er {0} such that
ξt = (t− s)v + ξs for all t ∈ V ; decompose v as v′ + v′′ with v′ ∈ Rαs (nonzero)
and v′ ∈ Hs. Write ξ′t = (t − s)v′ + ξs. For t close enough to s, ξt and ξ′t are in
the same component of E r X. Moreover, rαs(ξ

′
s+t) = ξ′s−t for all t. Hence, for

t > 0 small enough, we have rαs(Φ+(ξs+t)) = Φ+(ξs−t). Iterating and denoting
S = {s1 < s2 < · · · < sk} we deduce that Φ+(ξ1) = rαsk . . . rαs1Φ+(ξ0). �

9. Back to semisimple Lie algebras

Proposition 9.1. The root system Φ ∈ E determines the Lie algebra up to
isomorphism. More precisely, consider the graded vector space g =

∑
α∈Φ gα,

with g0 = E and each gα = K for each nonzero α. Say that a Lie bracket [·, ·] on
g is compatible if it preserves the grading, and [h, x] = 〈α, h〉x for every h ∈ g0,
every α ∈ Φ, and every x ∈ gα.

Then any two compatible Lie brackets are conjugated by some linear automor-
phism of g preserving the grading and acting as the identity on g0. Moreover,
if there at least one such Lie bracket, then there is one such that the structure
constant are rational (as soon as the scalar product between elements of Φ are all
rational).

Proof. We now choose ` not vanishing on any difference of two roots. We thus
view Φ as a totally ordered set, with α < β if `(α) < `(β).

Let P be the set of pairs (α, δ) of elements of Φ, such that α + δ is a nonzero
root. Let P+ be its subset of pairs such that α, δ > 0. Let P+

min be the subset of
P+ of such pairs satisfying: α < δ and for every (β, γ) ∈ P such that β+γ = α+δ,
we have α ≤ β.

Recall that for α ∈ Φ∗, hα is the unique scalar multiple of h′α such that α(hα) =
2. For each α ∈ Φ+, choose a nonzero element eα in gα, and choose e−α ∈ g−α
determined by the condition [eα, e−α] = hα.

For (α, β) ∈ P , we write [eα, eβ] = uα,βeα+β (we also write uα,β = u
(α+β)
α,β

sometimes to emphasize α+ β). By Proposition 7.7, we have uα,β 6= 0. Say that
the basis is normalized if uα,δ = 1 for every (α, δ) ∈ P+

min.
We can always choose the basis to be normalized. Indeed, the map (α, δ) 7→

α + β is injective on P+
min. Therefore, for each (α, δ) ∈ P+

min, we can replace
e±(α+δ) with u±1

α,δe±(α+δ). This change of basis preserves the previous properties
and replaces uα,δ with 1.

We now prove that the structure constants uβ,γ are uniquely determined, when
the basis is normalized. Let us start with a preliminary computation, which will
be used several times.
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Consider (α, δ), (β, γ) ∈ P such that ε := α + δ = β + γ. If β − α is a root
(which is automatic if 〈α, β〉 > 0), we have

uβ,γeε = [eβ, eγ] =
1

uα,β−α
[[eα, eβ−α], eγ]

=
1

uα,β−α
([eα, [eβ−α, eγ]] + [[eα, eγ], eβ−α])(9.1)

=
uβ−α,γ
uα,β−α

[eα, eδ] +
1

uα,β−α
[[eα, eγ], eβ−α];

if in addition α + γ is a not a root, we deduce

(9.2) u
(ε)
β,γ =

u
(δ)
β−α,γ

u
(β)
α,β−α

u
(ε)
α,δ.

We now first show that for every non-fundamental root ε > 0, writing ε = α+δ
where (α, δ) ∈ P+

min, the structure constants uβ,γ for β+γ = ε, β, γ > 0, uniquely
determined by uα,δ(= 1), and are rational. We can suppose that α, β, γ, δ are
pairwise distinct. We argue by induction on `(ε).

Let us first do it entirely when E is linearly generated by α, β, γ, δ. Since
δ = β + γ − α, E has at most dimension 3. Then Φ is irreducible of dimension 2
or 3, since otherwise one of α, β, γ, δ would be orthogonal to all three others and
cannot sum to a root any of them. By the classification, the type is A2, B2 = C2,
G2, A3, B3, or C3.

We have to determine all ways to describe ε as a sum of two positive roots; if
there is a single way (up to ordering), there is nothing to do. So we classify, in
each type, the ways a positive root can be written in at least two ways as a sum
of two positive roots.

(1) in type A2, B2, there is none. In type G2 with fundamental roots a, b and
other positive roots a + b, 2a + b, 3a + b, 3a + 2b, we have the possibility
(3a+ b) = b+ (3a+ b) = (a+ b) + (2a+ b).

(2) in types A3, B3, C3, write the fundamental roots as a, b, c with a orthogonal
to c; so the positive roots of length 2 are a + b and b + c we have the
possibility a+ b+ c = a+ (b+ c) = (a+ b) + c;

(3) in type B3 (with a the smaller root), the positive roots of length ≥ 3
are 2a + b, a + b + c, 2a + b + c, 2a + 2b + c; we have the possibility
2a + b + c = a + (a + b + c) = (2a + b) + c, as well as 2a + 2b + c =
b+ (2a+ b+ c) = (a+ b) + (a+ b+ c) = (b+ c) + (2a+ b).

(4) in type C3 (with a the largest root), the positive roots of length ≥ 3
are a + 2b, a + b + c, a + 2b + c, a + 2b + 2c; we have the possibility
a + 2b + c = c + (a + 2b) = b + (a + b + c) = (a + b) + (b + c), as well as
a+ 2b+ 2c = c+ (a+ 2b+ c) = (b+ c) + (a+ b+ c).

These are all possibilities. In all cases but one exception, such an equality
is written as α + δ = β + γ, such that β − α is a root and α + γ is not a
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root. So Formula 9.2 applies: u
(ε)
β,γ = (u

(δ)
β−α,γ/u

(β)
α,β−α)u

(ε)
α,δ. This is relation of

proportionality between uα,δ and uβ,γ, in terms of (rational) structure constants
that were already imposed by induction.

The only case where this does not apply is in case C3, the double equality
c + (a + 2b) = b + (a + b + c) = (a + b) + (b + c). In this case, choosing
(α, β, γ, δ) = (b, a + b, b + c, a + b + c) satisfies these conditions, so we have a
given relation of proportionality between ub,a+b+c and ua+b,b+c. Next, choosing
(α, β, γ, δ) = (c, b + c, a + b, a + 2b), we still have β − α a root, so we have
the above formula, but in this case α + γ is indeed a root, and the relation
(9.1) yields a linear combination with only nonzero (given, rational) coefficients
between uc,a+2b, ua+b,b+c, and ub,a+b+c. Combining these two combinations yields
a relation of proportionality between each two of uc,a+2b, ua+b,b+c, and ub,a+b+c

(with rational, already determined coefficients).
Hence uβ,γ is well-determined, and rational, whenever β, γ > 0.
Now we have to check that the values of uα,δ for all pairs (α, δ) ∈ P+, determine

all other values, and generate the same subfield. It is enough to consider the case
of irreducible roots systems in dimension 2.

We leave the case of G2 to the reader (since G2 does not embed into a larger
connected Dynkin diagram, the proof remains complete in higher dimension). So
we are in type A2 or B2.

We say that a nonzero root is large if it has maximal norm, and small if it has
minimal norm (so in type A2, all nonzero roots are both small and large).

It is convenient to renormalize: define Eα = eα for α > 0 and Eα = 〈α,α〉
2
eα for

α < 0: thus [Eα, E−α] = h′α. Write [Eα, Eβ] = vα,β = Eα+β for (α, β) ∈ P .
For α, β, γ nonzero such that α+β+γ = 0, the Jacobi identity on (Eα, Eβ, Eγ)

yields vβ,γh
′
α + vγ,αh

′
β + vα,βh

′
γ = 0, which yields

(9.3) vβ,γ = vγ,α = vα,β

For α, β nonzero roots such that α − β is not a root and α + β is a nonzero
root, the Jacobi identity on (Eα, E−α, Eβ) yields the equality vα,βvα+β,−α = 〈α, β〉.
Using that (9.3) gives vα+β,−α = v−α,−β, we deduce vα,βv−α,−β = 〈α, β〉.

Now let α1, α2 be arbitrary nonzero roots with α1 6= ±α2, and set α3 = −α1−
α2. Suppose (this is is automatic when we are not in type G2) that there is i (i
is counted modulo 3) such that αi−αi+1 is not a root. By (9.3) vαj ,αj+1

does not
depend on j (j counted modulo 3), and v−αj ,−αj+1

does not depend on j. Writing
k = 〈αi, αi+1〉, we have vαi,αi+1

v−αi,−αi+1
= k, and hence vαj ,αj+1

v−αj ,−αj+1
= k.

Since at least one of the six pairs (αj, αj+1), (−αj,−αj+1) belongs to P+, we see
that vα1,α2 is determined by the restriction of v to P+ (and is rational as soon as
v is rational on P+).

(In type G2, it remains to consider α1, α2 small roots with negative scalar
product.) �
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Theorem 9.2. Given a root system Φ, there exists a compatible Lie bracket (in
the sense of the previous proposition). That is, there is a semisimple K-split Lie
algebra whose root system is isometric (after rescaling on irreducible factors) to
Φ.

This is a long proof!
One approach is case-by-case, by computing roots in sln+1 (type An), so2n

(type Dn), so2n+1 (type Bn), and sp(2n) (type Cn).
Then one has to provide tables in each of the exceptional types. More precisely,

one has to specify the coefficient uα,β for each pair (α, β) of nonzero roots such
that α + β is a root. In the largest case, E8, there are 240 roots and therefore
about 30000 unordered pairs of distinct roots. The Jacobi relation has to be
checked on each (unordered) triple of roots, and there are about 2000000 such
triples. This is accessible with a good software; however using the symmetries
of the root system (and a choice of entries with good symmetries), restricting to
triples whose sum is also a root, drastically reduces these numbers (I’m not sure
to which extent).

Another approach is uniform, and consists in defining the Lie algebra associated
to Φ by a presentation by generators and relations. See Chapter 7 in Carter’s
book [?].
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