
ON THE KOSZUL MAP OF LIE ALGEBRAS

YVES CORNULIER

Abstract. We motivate and study the reduced Koszul map, relating the
invariant bilinear maps on a Lie algebra and the third homology. We show
that it is concentrated in degree 0 for any grading in a torsion-free abelian
group, and in particular it vanishes whenever the Lie algebra admits a positive
grading. We also provide an example of a 12-dimensional nilpotent Lie algebra
whose reduced Koszul map does not vanish. In an appendix, we reinterpret
the results of Neeb and Wagemann about the second homology of current Lie
algebras, which are closely related to the reduced Koszul map.

1. Introduction

Let g be a Lie algebra. Although we are mostly interested in the case when g
is a Lie algebra over a field of characteristic zero, we assume by default that g
is a Lie algebra over an arbitrary commutative ring R (all commutative rings in
the paper are assumed to be associative with unit).

All tensors below are over the ground ring R (unless explicitly mentioned). Re-
call that the homology of g is defined as the homology of the Chevalley-Eilenberg
complex Λ∗g; in particular Hi(g) is a subquotient of Λig.

We consider the symmetric square S2g = g} g. We define the Killing module
Kill(g) as the cokernel of the map from g⊗3 to S2g mapping x⊗ y⊗ z to [x, y]}
z− x} [y, z]. In other words, this is the module of co-invariants of the g-module
S2g. In particular, for every R-module M , HomR-mod(Kill(g),M) is canonically
isomorphic to the R-module of invariant symmetric R-bilinear forms g × g →
M ; for instance, when R is a field, the dual Kill(g)∗ = (Sym2g)g is canonically
isomorphic to the space of invariant symmetric bilinear forms on g.

Let us consider the linear map η̌ : g⊗3 → S2g, mapping x⊗ y ⊗ z to x} [y, z];
it is alternating in the last 2 variables. If we consider the composite map
g⊗3 → Kill(g), it is by definition invariant under cyclic permutations, and there-
fore factors to an R-module homomorphism η : Λ3g→ Kill(g), called the Koszul
map (or homomorphism); it is also known as Cartan-Koszul map. A straight-
forward verification (see Lemma 2.1) shows that η vanishes on 3-cycles. Further-
more, we can restrict η to the submodule of 3-cycles and thus obtain a factor
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map

η̄ : H3(g)→ Kill(g),

called the reduced Koszul map.
Note that over a field and for finite-dimensional Lie algebras, the adjoint of the

Koszul map is the map J : (Sym2g)g → Alt3g mapping an invariant symmetric
bilinear form B on g to the alternating trilinear form JB(x, y, z) = B([x, y], z);
the adjoint of the reduced Koszul map is the resulting map (Sym2g)g → H3(g).

Let us mention a few important situations in which the Koszul map arises.
(This is given as a motivation; the reader can skip this part and go to the state-
ment of results on page 4.)

• Semisimple Lie algebras. Koszul [Kos, §11] considered the above map
J for an arbitrary Lie algebra g over a field of characteristic 6= 2 as a map
(Sym2g)g → (Alt3g)g, showing that it is injective if and only if H1(g) = {0} and
bijective if and only if H1(g) = H2(g) = {0} (the injectivity assertion was already
used by Chevalley-Eilenberg in the proof of [ChE, Theorem 21.1]). He defines g to
be reductive (let us write “Koszul-reductive”) if it is finite-dimensional and Alt∗g
is absolutely completely reducible as a g-module (this is the usual notion when the
field has characteristic zero, but also includes some positive characteristic cases:
for instance any Chevalley absolutely simple Lie algebra is Koszul-reductive in
large enough characteristic). A straightforward fact is that, for arbitrary Lie
algebras, invariant cochains are cocycles, i.e. (Alt∗g)g ⊂ Z∗(g); thus there is a
canonical graded homomorphism (Alt∗g)g → H∗(g), which was proved to be an
isomorphism when g is Koszul-reductive (by Chevalley-Eilenberg [ChE, Theorem
19.1] in characteristic zero and Koszul in general, by the same method [Kos,
Lemme 9.1]). On the other hand, for an arbitrary Lie algebra, if H1(g) = {0},
it is immediate that every invariant 2-cocycle is zero (see [ChE, Theorem 21.1]);
thus if g is Koszul-reductive and perfect (that is, H1(g) = {0}, or equivalently
since g is Koszul-reductive, g has trivial center) it also satisfies H2(g) = {0}.
Combining these results, it follows that if g is perfect and Koszul-reductive, then
the dual of the reduced Koszul map J : (Sym2g)g → H3(g) is an isomorphism.
This applies in particular when K has characteristic zero and g is semisimple,
yielding a description of the third (co)homology group of g: indeed, the dimension

of (Sym2g)g is then easily computable: it is the number of simple factors of g⊗K̂,

where K̂ is an algebraic closure of K.

• The Pirashvili long exact sequences.
Let g be a Lie algebra over a field of characteristic 6= 2. In [Pir], Pirashvili

provides two (closely related) exact sequences:

· · · → Hrel
1 (g)→ HL3(g)→ H3(g)

η̄→ Hrel
0 (g)→ HL2(g)→ H2(g)→ 0;

· · · → HR1(g)→ H2(g, g)
p̄3→ H3(g)

η̄→ HR0(g)
s̄→ H1(g, g)

p̄2→ H2(g)→ 0.
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where both Hrel
0 (g) and HR0(g) are canonically isomorphic to Kill(g). Let us

partially indicate the meaning of the terms: HL∗(g) is the Leibniz homology of g
(discovered by Loday), which is the homology of the Leibniz complex, a complex
lifting the usual Chevalley-Eilenberg complex but using tensor powers instead
of the exterior algebra [Lod, §10.6]. The map s̄ is induced by the natural map
s : S2g→ g⊗2 defined by s(x} y) = x⊗ y + y⊗ x, and the map p̄i is induced by
the natural projection g⊗i → Λig.

The second sequence, in particular, shows that η̄ = 0 if and only if p̄3 is
surjective, if and only if s̄ is injective, in which case we get an exact sequence

0→ Kill(g)→ H1(g, g)→ H2(g)→ 0.

At the opposite, η̄ is surjective if and only if s̄ = 0, in which case p̄2 is an
isomorphism from H1(g, g) onto H2(g).

In practice, since η̄ is often convenient to handle, a good understanding of
it (such as vanishing results as we provide below) provides information on the
other maps involved, e.g. the maps s̄ : Kill(g) → H1(g, g) or the projection
H2(g, g)→ H3(g); this is used, for instance, in [HPL].

• 2-homology of current Lie algebras
Let g be a Lie algebra over a fieldK of characteristic 6= 2, and A a commutative,

associative, unital K-algebra. The Lie algebra A⊗g (where ⊗means ⊗K), viewed
as Lie algebra over K, is called current Lie algebra. For every i we have a natural
K-linear map Hi(A⊗g)→ A⊗Hi(g); for i ≤ 1 it is an isomorphism and for i ≤ 2
it is surjective; still, for i = 2 it is not necessarily injective, and the determination
of H2(A⊗g) is interesting. Let us assume, to simplify, that H1(g) = H2(g) = {0}.
Let us write η̄g to emphasize g. The results of Neeb and Wagemann can then be
used to yield the following exact sequence:

0→ HC1(A)⊗ Im(η̄g)→ H2(A⊗ g)→ HH1(A)⊗ coker(η̄g)→ 0.

(See Appendix B, where convenient interpretations of the Neeb-Wagemann re-
sults are provided.)

Here HH1(A) is the first Hochschild homology group and HC1 the first cyclic
homology group. Instead of defining them here, we mention two important fun-
damental examples of A, assuming that K has characteristic zero, namely the
polynomial ring and the ring of Laurent polynomials:

HC1(K[t]) ' {0}, HC1(K[t±1]) ' K, HH1(K[t]) ' K[t], HH1(K[t±1]) ' K[t±1].

For instance, when A = K[t] (resp. K[t±1]), H2(A ⊗ g) is zero (resp. finite-
dimensional) if and only if the reduced Koszul map η̄ is surjective, and infinite-
dimensional otherwise.

The above exact sequence degenerates in two extreme cases: the first is when
the reduced Koszul map η̄ is surjective: then we get

H2(A⊗ g) ' HC1(A)⊗Kill(g).
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This is actually the best-known case: indeed it holds for semisimple Lie algebras
when K has characteristic zero, in which case the above isomorphism is notably
due to Bloch [Blo] and Kassel-Loday [KasL].

The other extreme case is when η̄ = 0: then we get

H2(A⊗ g) ' HH1(A)⊗Kill(g).

It turns out that the vanishing condition of the reduced Koszul map is very
common and the semisimple case is quite peculiar. For finite-dimensional g with
K of characteristic zero, the conditions of vanishing of H1(g) and of η̄, imply
that g is both perfect and solvable and thus only hold for g = {0}. Still, these
conditions can be made compatible because all the given exact sequences hold
when g is endowed with a grading (in an arbitrary Lie algebra). Then we can fix
a weight α, so that under the assumption of vanishing of H1(g)α and H2(g)α, the
previous exact sequence holds in degree α. This can be applied in many cases
including finite-dimensional examples, for instance the example of Appendix A.

Remark 1.1. The Neeb-Wagemann computation of the second (co)homology of
current Lie algebras contradicts a description provided 14 years earlier by Zus-
manovich [Zus] but this was not noticed until now. In Appendix A, we make
an explicit computation in a particular case l (some perfect but non-semisimple
6-dimensional complex Lie algebra) and A = C[t], in which H2(C[t]⊗ l) does not
vanish, in accordance with the results in [NW] but confirms that the argument
given in [Zus], extending the previously known semisimple case, is mistaken.

In this paper, we are interested in the reduced Koszul map for more general
Lie algebras, especially nilpotent Lie algebras. For instance it is obviously zero
for abelian Lie algebras a (although H3(a) and Kill(a) are nonzero in general).
Actually it remains zero in a considerably greater generality. Magnin [Mag2] in-
vestigated this phenomenon for some classes of Lie algebras over fields, calling a
Lie algebra I-null if the Koszul map is zero (this just means that all invariant sym-
metric bilinear forms on g factor through S2(g/[g, g]), and I-exact if the reduced
Koszul map is zero (obviously I-null implies I-exact); actually in Magnin’s setting,
I denotes the above map B 7→ JB and to say that the reduced Koszul map is zero
means that JB in an exact 3-cocycle for every B ∈ Sym(g)g. Magnin checked,
for instance, that all complex nilpotent Lie algebras up to dimension 7 have a
vanishing reduced Koszul map, and also exhibits interesting classes of I-null Lie
nilpotent algebras (for instance, the Lie algebra of n×n strictly upper-triangular
matrices for any n ≥ 0).

If g is a Lie algebra graded in an abelian group A, the tensor powers g⊗k are
naturally graded in A, namely by

(g⊗k)α =
∑

β1+···+βk=α

gβ1 ⊗ · · · ⊗ gβk ,
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this grading is compatible with taking exterior or symmetric powers, and is pre-
served by the boundary maps and the Koszul map, and thus the reduced Koszul
map is naturally a graded R-module homomorphism.

Theorem 1.2. Assume that the ground ring R is a commutative Q-algebra (e.g.
a field of characteristic zero). Let g be a Lie algebra graded in a torsion-free
abelian group A. Then the reduced Koszul map is zero in every nonzero degree α.

(We refer to Section 4 for a statement applying to fields of positive character-
istic.)

Although here we emphasize the study of the vanishing of the reduced Koszul
map, another point of view consists in considering Lie algebras endowed with an
invariant symmetric bilinear form B:

Corollary 1.3. Let g be a Lie algebra over a field of characteristic zero, with
an invariant symmetric bilinear form B. Suppose that g admits a grading in a
torsion-free abelian group for which B is homogeneous of nonzero degree. Then
the 3-form η∗(B) is exact.

An elementary particular case (already observed by Neeb and Wagemann) is
the case of the coadjoint semidirect product g n g∗, where g is an arbitrary Lie
algebra over a field (of characteristic 6= 2, 3), and g∗ its coadjoint representation
(viewed as an abelian ideal): indeed the canonical bilinear form has degree -1 for
the natural grading in which g has degree 0 and the ideal g∗ has degree 1.

Let us provide some particular cases of Theorem 1.2.

Corollary 1.4. Assume that R is a commutative Q-algebra. If g is graded in the
set of non-negative integers N, then the reduced Koszul map of g coincides with
the reduced Koszul map of g0.

Note that this is not true when g is graded in Z: indeed, the simple Lie algebra
sl2 has a grading in {−1, 0, 1}, has a nonzero reduced Koszul map, but g0 is 1-
dimensional abelian so obviously has a zero reduced Koszul map.

Corollary 1.5. Under the same assumption on R, if g is graded in the set of
positive integers N∗, then the reduced Koszul map of g is zero.

Note that when the set of weights (i.e., those α such that gα 6= {0}) is finite
(e.g., g is finite-dimensional over a field), then having a grading on N∗ implies
that g is nilpotent. For instance, Corollary 1.5 provides:

Corollary 1.6. Suppose that the ground ring is a field of characteristic zero. If
g is a 2-nilpotent Lie algebra (that is [g, [g, g]] = {0}), then the reduced Koszul
map of g is zero.

Indeed, such a Lie algebra admits a grading in {1, 2}. Nevertheless, the state-
ment of Corollary 1.6 is shown to hold over an arbitrary field of characteristic 6= 3
(as a consequence of Theorem 3.1). Counterexamples when the ground ring is a
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field of characteristic 3 are provided in Proposition 3.8; counterexamples when
the ground ring is a Q-algebra but has nonzero nilpotent elements are provided
in Proposition 3.7.

Actually, the class of nilpotent Lie algebras with a grading on N∗ is consid-
erably larger. It includes, in particular, the Carnot-graded Lie algebras, namely
those Lie algebras over a field, graded in N∗ such that [g1, gi] = gi+1 for all i ≥ 1.
A Lie algebra admitting such a grading is called Carnot. For instance, if R is a
field, then every 2-nilpotent Lie algebra over R is Carnot.

In turn, the class of Lie algebras admitting a grading in N∗ is much larger than
the class of Carnot Lie algebras. For instance, over a field of characteristic zero,
every nilpotent Lie algebra of dimension ≤ 6 admits a grading in N∗, while there
are exactly two non-isomorphic five-dimensional non-Carnot nilpotent complex
Lie algebras (L5,5 and L5,6 in [Gr07]).

Let us also provide one application in a case which is not graded, but closely
related: let v be an R-module graded in Z. Define its right completion to be the
R-module v of sequences

∑
n∈Z vn with vn ∈ vn and v−n = 0 for n large enough.

If v = g is a Lie algebra and the grading is a Lie algebra grading, then g inherits
the structure of a Lie algebra in the natural way.

The following is not obtained as a corollary of Theorem 1.2, but by running
the same proof.

Corollary 1.7. Suppose that the ground ring is a Q-algebra and that g is graded
in Z, with right completion g. Then the reduced Koszul map of g is concentrated
in degree 0, in the sense that for every 3-cycle c ∈ Z3(g) written as

∑
n∈Z cn with

cn ∈ Z3(g)n, we have η(c) = η(c0). In particular, if g is graded in N∗, then the
reduced Koszul map of g is zero, and if g is graded in N, then the reduced Koszul
map of g coincides with that of g0.

Right completions of Lie algebras graded in N∗ occur in many places in the
literature, as particular but common instances of pro-nilpotent Lie algebras.

On the other hand, say over a field of characteristic zero, there exist finite-
dimensional nilpotent Lie algebras with no grading in N∗. For instance, charac-
teristically nilpotent Lie algebras, namely Lie algebras in which every derivation
is nilpotent, have no nontrivial grading in Z. Indeed if g has a grading in Z,
then the operator of multiplication by i on gi is a derivation, and is nilpotent
only if g = g0. (Such Lie algebras exist in dimension ≥ 7.) However, case-by-case
computations show that small-dimensional known characteristically nilpotent Lie
algebras have a zero reduced Koszul map, and Fialowski, Magnin and Mandal
[FMM] asked whether there indeed exists a (complex) nilpotent Lie algebra with
a zero reduced Koszul map. It took us some significant effort to find an example.

Theorem 1.8. Let K be any field. There exist a 12-dimensional 7-nilpotent Lie
algebra over K whose reduced Koszul map is nonzero.
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Actually, we check in Section 5 that for nilpotent Lie algebras over a field of
characteristic zero, up to dimension 9 the reduced Koszul map is always zero
(by reduction to regular quadratic Lie algebras and using in this case, using the
classification in [Kat], the existence of a grading in positive integers and Corol-
lary 1.5); the same seems to also hold in dimension 10 (we have not completely
checked).

Concerning the nilpotency length, we do not know if the reduced Koszul map
is zero for all complex 3-nilpotent Lie algebras; actually we check (Corollary
2.11) that this is equivalent to whether it vanishes for all complex metabelian Lie
algebras (metabelian means 2-solvable, i.e. the derived subalgebra is abelian).

In Section 7, we address the solvable case:

Theorem 1.9. Let K be any field. There exists a 9-dimensional 3-solvable
(central-by-metabelian) Lie algebra with nonzero reduced Koszul map; if K has
characteristic zero this is the smallest possible dimension for such an example.

Theorem 1.2 also has applications in the description of the second (co)homology
of current Lie algebras addressed above, see Corollary B.12 (and the preceding
remarks) and Corollary B.13.

Acknowledgements. I am grateful to Louis Magnin for interesting discussions
and for a computer checking of the construction of Section 6. I also thank Karl-
Hermann Neeb and Friedrich Wagemann for useful discussions and comments;
many thanks are due to the referee for pointing out many typos.

2. Preliminaries

2.1. Lie algebras, tensor products. Let us work over an arbitrary commuta-
tive ring R.

Recall that Lie algebra is an R-module endowed with a bilinear map [·, ·] :
g× g→ g satisfying [x, x] = 0 for all x, and jac(x, y, z) = 0 for all x, where

jac(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]].

We denote by ∧ the exterior product and by } the symmetric product.
If g is a Lie algebra, we define its lower central series by

g(1) = g, g(i+1) = [g, g(i)].

It is a Lie algebra filtration, in the sense that [g(i), g(j)] ⊂ g(i+j) for all i, j, and
moreover the above inclusion is always an equality. We also define the derived
series by D0g = g, Di+1g = [Dig, Dig]. By an obvious induction, we have

Dig ⊂ g(2i) for all i ≥ 0.
Recall that g is k-nilpotent if g(k+1) = {0} and nilpotent if is k-nilpotent for

some k; the smallest k for which this holds is called nilpotency length (or nilindex)
of g: it is 0 by definition for the zero Lie algebra and 1 for nonzero abelian Lie
algebras.



8 YVES CORNULIER

2.2. Killing module. If g is Lie algebra, we define its Killing module Kill(g) the
space of co-invariants of the g-module S2g. Thus Kill(g) = coker(T ), where

T : Λ2g⊗ g→ S2g, ((x ∧ y)⊗ z) 7→ x} [y, z]− y } [z, x]

We also write x ≡ y, for x, y ∈ S2g, to mean that x and y represent the same
element of Kill(g), i.e. x− y ∈ Im(T ).

The terminology is more a tribute to Wilhelm Killing (1847-1923) than a direct
reference to the Killing form: the latter only makes sense for finite-dimensional
Lie algebras over field, and for instance is always zero in the nilpotent case, while
Kill(g) can be interestingly complicated; it is also denoted by B(g) by [Had, Zus],
but we avoid this notation in order to avoid confusion, especially with the group
of boundaries. Actually, Kill(g) is a “predual” to the more familiar concept of
the space of symmetric bilinear forms: for instance when R = K is a field, the
dual Kill(g)∗ is then the space of invariant symmetric bilinear forms on g. Any
homomorphism between Lie algebras f : g→ h functorially induces an R-module
homomorphism Kill(f) : Kill(g) → Kill(h), which is surjective as soon as f is
surjective.

2.3. Koszul map. We consider the raw Koszul map as the map η̌ : g⊗Λ2g→ S2g
defined by η̌(x⊗ (y ∧ z)) = x} [y, z], and the composite map into Kill(g) clearly
factors to a map η : Λ3g→ Kill(g), called the Koszul map.

The Koszul map is especially known at a dual level: assuming that R is a field,
the adjoint η∗ maps an invariant symmetric bilinear form B on g to the trilinear
alternating form JB = η∗(B) defined by JB(x, y, z) = B(x, [y, z]).

A well-known observation is the following:

Lemma 2.1. The Koszul map η vanishes on B3(g).

Proof. Recall that

∂n(x1 ∧ . . . ∧ xn) =
∑
i<j

(−1)i+j[xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn;

define a map ∂̌n : g⊗n → g⊗n−1 by the same formula, replacing signs ∧ by ⊗.
Then we obtain

η̌∂̌4(x⊗ y ⊗ z ⊗ t) = −2([x, y]} [z, t] + [x, z]} [t, y] + [x, t]} [y, z])

= 2
(
t} jac(x, y, z) + T

(
([x, y] ∧ t)⊗ z + ([z, x] ∧ t)⊗ y + ([y, z] ∧ t)⊗ x

))
.

Thus η∂4 = 0. �

At a dual level, again assuming that the ground ring is a field, Lemma 2.1
says that the image of η∗ consists of 3-cocycles. More generally, the lemma is
equivalent to the well-known statement that for every R-module m (viewed as a
trivial g-module), the dual map Hom(Kill(g),m) → Hom(Λ3g,m) has an image
consisting of 3-cocycles.
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Definition 2.2. The reduced Koszul map η̄ is the map H3(g)→ Kill(g) induced
by the restriction of η to Z3(g).

Remark 2.3. In this paper, we are often mainly interested in the image of η̄. In
particular, to determine this image, it is enough to consider the restriction of η
to Z3(g) and we do not have to bother with 3-boundaries. Still, of course Lemma
2.1 can be useful when we have information about 3-homology (e.g. vanishing).

2.4. Regular quadratic Lie algebras. Here, the ground ring is a field K.

Definition 2.4. A regular quadratic Lie algebra is a Lie algebra over K endowed
with an invariant nondegenerate symmetric bilinear form.

A Lie algebra is quadrable if it can be endowed with a structure of regular
quadratic Lie algebra.

As far as I know, these notions were first introduced by Tsou and Walker
[TW]. If char(K) 6= 2, a Lie algebra g is quadrable if and only if the adjoint and
coadjoint representation of g are isomorphic as Kg-modules [MR93, Theorem
1.4]. (This can look at first sight as a triviality, but there is a little issue in
proving this condition implies that g is quadrable: formally, it only implies the
existence of a nondegenerate bilinear form, not necessarily symmetric. However,
an easy argument shows that [g, g] is contained in the kernel of every invariant
alternating bilinear form and this helps to conclude.)

Remark 2.5. Regular quadratic Lie algebras have many other names in the lit-
erature, including: quadratic Lie algebras, (symmetric) self-dual Lie algebras,
metrized/metric Lie algebras, orthogonal Lie algebras. Also, they sometimes de-
note Lie algebras admitting (at least) a non-degenerate invariant quadratic form,
or Lie algebras endowed with such a form, or ambiguously both (still, Tsou-
Walker and Astrakhantsev initially used two distinct words, namely “metrized/
metric” and “metrizable”). Also, almost all these terminologies are used for
other meanings (quadratic Lie algebra for quadratically presented Lie algebra;
metric Lie algebra for a Lie algebra endowed with a scalar product which is not
necessarily invariant, orthogonal Lie algebra for the usual son). Using “regular
quadratic”, we follow the terminology from Favre-Santharoubane [FS].

We recall the notion of double extension. Let h be a regular quadratic Lie alge-
bra and let D be a skew-symmetric self-derivation of h. The double extension
g of h by D [FS, MR85] is defined as follows: as a space, it is Ke⊕h⊕Kf , where
e, f are symbols representing generators of the lines Ke and Kf . The scalar
product is defined so that it extends the original scalar product on h, the vectors
e, f are isotropic and orthogonal to h, and 〈e, f〉 = 1. The new Lie bracket [·, ·]
is defined so that f is central, and, denoting [x, y]′ the original bracket on h

[e, x] = Dx, [x, y] = [x, y]′ + 〈Dx, y〉f, ∀x, y ∈ h.

Note that if h is solvable then so is g, and if h is nilpotent, then g is nilpotent if
and only if D is a nilpotent endomorphism. See §5 for basic examples.
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Actually, any finite-dimensional solvable regular quadratic Lie algebra can be
obtained from an orthogonal space (viewed as an abelian regular quadratic Lie
algebra) using iterated double extensions; this provides a classification scheme in
small dimensions.

2.5. Koszul map and regular quadratic Lie algebras. The following lemma
is easy but useful in the study of the Koszul map.

Lemma 2.6. Let g be a Lie algebra over K. Suppose that the reduced Koszul
map of g does not vanish. Then some quotient of g is quadrable and also has a
nonzero reduced Koszul map.

Proof. Suppose that c ∈ Z3(g) does not belong to the kernel of ηg (the function
η of g). Consider a linear form f on Kill(g) not vanishing on η(c): it defines an
invariant symmetric bilinear form B on g. The kernel of the symmetric bilinear
form B is an ideal i of g; let h = g/i be the quotient. Clearly B factors through
a symmetric bilinear form B′ on h, and (h, B′) is a regular quadratic Lie algebra.
Moreover, since c is a 3-cycle, its image c′ in Λ3h is a 3-cycle as well, and ηh(c)
is the projection of ηg(c). If f ′ is the linear form on Kill(h) defined by B′, then
f is the composite of the projection Kill(g) → Kill(h) and f ′. Thus we have
f ′(ηh(c

′)) = f(η(c)) 6= 0. Hence c′ /∈ Ker(ηh). �

Remark 2.7. A regular quadratic Lie algebra is endowed with a canonical alter-
nating 3-form, namely the image of the symmetric bilinear form by the adjoint
Koszul map, called canonical 3-form. It is invariant and hence closed. Its image
in cohomology is called canonical 3-cohomology class. Regular quadratic Lie al-
gebras for which the canonical 3-form is exact (i.e. whose canonical 3-cohomology
class vanishes) are sometimes called exact. For instance, the regular quadratic
Lie algebra (h, B′) constructed in the proof of Lemma 2.6 is non-exact.

Note that being exact is a property of regular quadratic Lie algebras; but this
is not a property of the underlying Lie algebra. Indeed, assume for simplicity
that K has characteristic zero, and let (g, B) be a non-exact regular quadratic
Lie algebra (e.g., a simple Lie algebra). Consider the semidirect product g n g∗

(as described after Corollary 1.3), where the dual g∗ is viewed as an abelian ideal
with the coadjoint representation; let B′ be the bilinear form given by duality
(for which both g and g∗ are isotropic); also view B as a bilinear form on gn g∗,
with kernel g∗. Then for all but finitely many λ ∈ K, the form B′ + λB is
non-degenerate; on the other hand, since η∗B′ is exact and η∗B is non-exact (by
a simple argument using that the projection g n g∗ → g is split), B′ + λB is
non-exact whenever λ 6= 0. Hence g n g∗ carries both structures of exact and
non-exact regular quadratic Lie algebra.

2.6. Filtration on the Killing module. Let again R be arbitrary. There is a
natural filtration on Kill(g), defined as follows: for i ≥ 2, we let Kill(i)(g) be the
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image of g⊗ g(i−1) in Kill(g). Thus

Kill(g) = Kill(2)(g) ⊃ Kill(3)(g) ⊃ . . .

The quotient Kill(2)(g)/Kill(3)(g) is obviously isomorphic to the symmetric

square S2(g/[g, g]). Thus the most interesting part of Kill(g) lies in Kill(3)(g),

which is the image of the Koszul map η. Again, Kill(i) can be viewed as a functor,
mapping surjections to surjections.

If g is k-nilpotent then Kill(k+2)(g) = {0}. More generally, we have:

Lemma 2.8. For every i ≥ 0, the projection Kill(g)→ Kill(g/g(i+1)) induces an
isomorphism of R-modules

Kill(g)/Kill(i+2)(g)→ Kill(g/g(i+1)). �

This shows that the quotients Kill(g)/Kill(i+2)(g) are encoded in nilpotent quo-
tients of g.

Proposition 2.9. If g is metabelian (i.e., Dg = [g, g] is abelian), then Kill(5)(g) =
{0}. In particular, the surjection g → g/g(4) induces an isomorphism Kill(g) →
Kill(g/g(4)).

Proof. Denoting ≡ the equivalence relation on S2g meaning equality in Kill(g),
we have, for any elements x, y, z, u, v ∈ g

x} [y, [z, [u, v]]] ≡ [x, y]} [z, [u, v]] ≡ z } [[u, v], [x, y]] = 0.

The second statement follows by applying Lemma 2.8 with i = 3. �

Corollary 2.10. If g is a regular quadrable metabelian Lie algebra over a field,
then it is 3-nilpotent.

Proof. Indeed, Proposition 2.9 shows that g(4) belongs to the kernel of every
invariant symmetric bilinear form. �

Corollary 2.11. Given a field K, we have the following equivalent statements:

(i) Every 3-nilpotent Lie algebra over K has a zero reduced Koszul map;
(ii) every metabelian Lie algebra over K has a zero reduced Koszul map.

Proof. The reverse implication is trivial since 3-nilpotent implies metabelian.
Conversely, assuming (i), let by contradiction g be a metabelian Lie algebra with
a nonzero reduced Koszul map; by Lemma 2.6, we can suppose, replacing g by a
quotient if necessary, that g is regular quadratic, say with non-degenerate scalar
product 〈·, ·〉. Since g is metabelian, we have 〈g, [[g, g], [g, g]]〉 = 0. By invari-
ance, we deduce successively 〈[g, [g, g]], [g, g]〉 = 0 and 〈[g, [g, [g, g]]], g〉 = 0. By
non-degeneracy, we deduce [g, [g, [g, g]]] = 0, i.e. g is 3-nilpotent, in contradiction
with (i). �
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Remark 2.12. Similar arguments show that if g is quadrable and [g(i), g(j)] = {0}
for some i, j ≥ 1, then g is (i+ j − 1)-nilpotent. For instance, if g is abelian-by-
(2-nilpotent) then g is 5-nilpotent.

On the other hand, if g is quadrable and center-by-metabelian (i.e. [g, D2g] =
{0}), then g does not need be 4-nilpotent, nor even nilpotent at all: for instance
the well-known 4-dimensional “split oscillator algebra” with basis (e, x, y, z) and
nontrivial brackets [e, x] = x, [e, y] = −y, [x, y] = z is quadrable, center-by-
metabelian (and (2-nilpotent)-by-abelian as well) but is not nilpotent. We can
also easily find center-by-metabelian nilpotent quadrable Lie algebras of arbitrary
large nilpotency length, e.g. the Lie algebras w(2n− 1) defined in Section 5.

2.7. Killing modules and direct products. The case of abelian Lie algebras
show that of course the Killing module does not behave well under direct prod-
ucts. However, this is, in a sense, the only obstruction, as the proposition below
indicates.

Let g1, g2 be Lie algebras. Then for k = 1, 2, the natural Lie algebra homo-
morphisms gk → g1 × g2 → gk (whose composite is the identity) induce natural
maps Kill(gk) → Kill(g1 × g2) → Kill(gk), whose composite is the identity, and
therefore we obtain natural maps

(2.1) Kill(g1)⊕Kill(g2)→ Kill(g1 × g2)→ Kill(g1)⊕Kill(g2),

whose composite is the identity; in particular the left-hand map is injective and
the right-hand map is surjective. Clearly the same holds, by restriction, for Kill(i).

Proposition 2.13. For every i ≥ 3, the above maps restrict to inverse isomor-
phisms

Kill(i)(g1 × g2)� Kill(i)(g1)⊕Kill(i)(g2).

Moreover, the image of the reduced Koszul map splits according to this product.

Proof. It is enough to check that the right-hand map in (2.1) is injective on

Kill(3)(g1 × g2). Indeed, the image of both (g1 × {0}) ⊗ ({0} × [g2, g2]) and
([g1, g1]× {0})⊗ ({0} × g2) in Kill(g1 × g2) is obviously zero.

For the second statement, it is convenient to view the reduced Koszul map
as defined on the 3-cycles (rather than on the 3-homology). Indeed we have a
canonical decomposition Z3(g1 × g2) = Z3(g1) ⊕ Z3(g2), and clearly η(Z3(gk)),

for each of k = 1, 2, is contained in the factor Kill(3)(gk) of Kill(3)(g1 × g2). �

Remark 2.14. The behavior for infinite products is more of a problem. If gn is a
sequence of Lie algebras over R (the reader can assume that R = C), there is an
obvious homomorphism Kill(

∏
n gn) →

∏
n Kill(gn). It can fail to be surjective

(e.g., when all gn are abelian of unbounded dimension). The injectivity can
also fail (say, when the gn are free Lie algebras of unbounded rank). Then it is
natural to wonder whether it can happen that the reduced Koszul map of each
gn vanishes, but not that of

∏
n gn, or more generally whether the class of Lie
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algebras with zero reduced Koszul map is stable under taking projective limits
of surjective maps.

2.8. Change of scalars. Let R be a commutative ring and let S be a commu-
tative R-algebra. We write KillR instead of Kill, Λn

R instead of Λn, etc., when we
need to emphasize the ground ring R.

Lemma 2.15. Let g be a Lie algebra over R and gS = S⊗Rg. We have a natural
S-module identification Λn

S(gS) ' S ⊗ Λn
R(g). If moreover S is flat over R, then

we also have identifications KillS(gS) ' S⊗RKillR(g) and HS
n (gS) ' S⊗RHR

n (g),
and the Koszul maps (η̌, η, η̄) of the Lie S-algebra gS are obtained from those of
g by tensoring with S.

In particular, if η̄ vanishes for g then it vanishes for the S-algebra gS, and if
S is faithfully flat over R (e.g., R is a field), then the converse holds.

Proof. Inverse isomorphisms between Λn
S(gS) and S ⊗ Λn

R(g) are given, say for
n = 2, by (s1x1 ∧ s2x2) 7→ s1s2 ⊗ (x1 ∧ x2) from the left to the right and s ⊗
(x1 ∧ x2) 7→ (sx1) ∧ x2 from the right to the left; they restrict (using flatness) to
inverse isomorphisms between ZS

n (gS) and S ⊗ ZR
n (g). By right-exactness of the

functor S ⊗R −, the identification HS
n (gS) ' S ⊗RHR

n (g) follows. The argument
for the other maps is similar.

The second statement is immediate. �

An easy example of application of Lemma 2.15 is the following:

Lemma 2.16. Let g be a finite-dimensional nilpotent Lie algebra over a field
K of characteristic zero, whose reduced Koszul map is nonzero (resp. is surjec-
tive). Then there exists a complex Lie algebra g′ of the same dimension and same
nilpotency length, whose reduced Koszul map is nonzero (resp. surjective) as well.

Proof. Let L ⊂ K be a countable field of definition of g (e.g., the field generated
by the structural constants in a given basis): this means that g ' K ⊗L h for
some Lie algebra h over L. Fix an embedding of L into C. Then the complex Lie
algebra g′ = C⊗Lh has the same dimension as g, the same nilpotency length, etc.
By Lemma 2.15, its reduced Koszul map has the same linear algebra properties
(dimension of the image and of the cokernel), whence the conclusion. �

3. 2-nilpotent Lie algebras

The ground ring R is commutative.

Theorem 3.1. Let g be a Lie algebra over R. Suppose that TorR1 ([g, g], g/[g, g]) =

0. Then the image of 3η̂ is contained in Kill(4)(g). In particular, if 3 is invertible

in R, then the image of the reduced Koszul map η̄ is contained in Kill(4)(g).

Example 3.2. The assumption TorR1 ([g, g], g/[g, g]) = 0 holds when either [g, g] is
flat or g/[g, g] is a flat R-module. In particular, it holds when R is a PID and
[g, g] is a torsion-free R-module.



14 YVES CORNULIER

Remark 3.3. The proof shows more generally that the theorem holds as soon as
the inclusion of [g, g] into g induces an injection after tensoring with g/[g, g]. In
particular, it holds when [g, g] is a direct factor in g.

Lemma 3.4. Consider an exact sequence of R-modules

0→ W → V
p→ B → 0.

Suppose that TorR1 (W,B) = {0}. Then the sequence

W ⊗W i→ (V ⊗W )⊕ (W ⊗ V )
j→ V ⊗ V

i(w ⊗ w′) = (w ⊗ w′,−w ⊗ w′); j((v ⊗ w), (w′ ⊗ v′)) = v ⊗ w + w′ ⊗ v′;
is exact.

Proof. The composite map is obviously zero. To prove it is exact, consider an
element in the kernel of j; we denote it as ((v ⊗ w), (w′ ⊗ v′)) as a shorthand to
mean that it is a finite sum of such elements. By assumption, we have, in V ⊗V ,
v⊗w+w′⊗ v′ = 0. In particular, the image in B⊗V of v⊗w is zero. Using the
Tor-assumption, we have a monomorphism B ⊗W → B ⊗ V ; it follows that the
image in B⊗W of v⊗w is zero. Using right-exactness of the functor −⊗W , we
deduce that v⊗w belongs to the image of W ⊗W in V ⊗W , say v⊗w = w′′⊗w′′′
(meaning a sum of tensors again) in V ⊗W (and hence in V ⊗V ). It follows that
((v ⊗ w), (w′ ⊗ v′)) = i(w′′ ⊗ w′′′). �

Lemma 3.5. Under the assumptions of Lemma 3.4, there is a unique homomor-
phism f from the image (V ⊗W ) + (W ⊗ V ) of j onto B⊗W mapping v⊗w to
p(v)⊗ w and w ⊗ v to 0 for all v ∈ V , w ∈ W .

Proof. Such a surjective homomorphism can obviously be uniquely defined at the
level of (V ⊗W )⊕ (W ⊗ V ), and vanishes on the image of i; by Lemma 3.4, this
image is exactly the kernel of j; hence this homomorphism factors through the
image of j. �

Lemma 3.6. Keep the assumptions of Lemma 3.4. There exist unique homomor-
phisms g, h from the image of V ⊗W in S2V and Λ2V respectively, to B ⊗W ,
mapping v } w (resp. v ∧ w) to p(v)⊗ w for all v ∈ V , w ∈ W .

Proof. Let us prove the case of Λ2V , the proof in the symmetric case being
analogous. Define λ : Λ2V → V ⊗2 by λ(v ∧ v′) = v ⊗ v′ − v′ ⊗ v. Then λ maps
the image I of V ⊗W in Λ2V into V ⊗W +W ⊗ V . Hence, given f as provided
by Lemma 3.5, the composite homomorphism f ◦λ is well-defined on I, mapping
v ∧ w to p(v)⊗ w for all v ∈ V and w ∈ W . �

Proof of Theorem 3.1. Denote by p the projection g → g/[g, g]. Consider a 3-
cycle, given as x ∧ y ∧ z (i.e., a sum of such elements). By definition, we have
x∧ [y, z]+y∧ [z, x]+z∧ [x, y] = 0. Applying the function h of Lemma 3.6 (which
holds by the Tor-assumption), we deduce that p(x)⊗ [y, z] +p(y)⊗ [z, x] +p(z)⊗
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[x, y] = 0 in (g/[g, g]) ⊗ [g, g]. By right-exactness of − ⊗ [g, g], we deduce that
x⊗ [y, z] + y⊗ [z, x] + z ⊗ [x, y] ∈ g⊗ [g, g] belongs to the image of [g, g]⊗ [g, g].
It follows that in g} g, the element x} [y, z] + y } [z, x] + z } [x, y] belongs to
the image of [g, g]} [g, g]. Thus the image in Kill(g) of 3x} [y, z] belongs to the

image of [g, g]} [g, g]; in other words, 3η(x ∧ y ∧ z) ∈ Kill(4)(g). �

Proposition 3.7. Let R be a commutative ring in which 2 is invertible, and
suppose that R is not reduced (i.e., contains a nonzero nilpotent element). Then
there exists a 2-nilpotent Lie algebra over R whose reduced Koszul homomorphism
is nonzero.

Proof. By assumption, there exists an element t ∈ R r {0} such that t2 = 0.
Consider the Lie algebra g over R whose underlying module is the free module R3

with basis (ei)i∈Z/3Z, and whose law is given by the nonzero brackets [ei, ei+1] =
tei+2 for i (modulo 3). It is readily seen to be indeed a 2-nilpotent Lie algebra.

Consider the element ĉ = e1 ⊗ (e2 ∧ e3) ∈ g ⊗ Λ2g, and let c be its image in
Λ3g. We will prove the proposition by showing that c ∈ Z3(g) r Ker(η).

Since 2 is invertible, we have ei ∧ ei = 0 for all i. Thus we have ∂3(c) =∑
i∈Z/3Z xi ∧ txi = 0, so that c ∈ Z3(g).

To check that c /∈ Ker(η), let us define a grading of g in the abelian group
(Z/2Z)3 with basis (ωi)i∈Z/3Z, for which ei has weight ωi+1 + ωi+2. Then c has
weight (0,0,0). So let us compute Kill(g)0. We have (S2g)0 =

⊕
i gi } gi, a

free module of rank 3 with basis (ei } ei)i∈Z/3Z. Also ((Λ2g) ⊗ g)0 is the free
module on the basis ((ei ∧ ei+1) ⊗ ei+2)i∈Z/3Z. We have T ((ei ∧ ei+1) ⊗ ei+2) =
t(ei } ei − ei+1 } ei+1). Thus, in the above basis of (S2g)0, the image of T is the
set of triples (u, v, w) ∈ (tR)3 such that u + v + w = 0. On the other hand, we
have η̌(ĉ) = e0 } [e1, e2] = te1 } e1, which is (t, 0, 0) in the above basis, and thus
does not belong to the image of T . Thus η̄(c) 6= 0. �

Let us now indicate a counterexample over a field of characteristic 3.
We begin with a general classical definition: let R be an arbitrary commutative

ring and let V,W be R-modules with an alternating bilinear map f : V ×V → W .
Define a Lie algebra structure on M ⊕ N by [(v, w), (v′, w′)] = (0, f(v, v′)), and
denote it by g(V,W, f). Note that it is 2-nilpotent, with a natural grading in
{1, 2}.

Now we choose V = V (R) to be the free R-module of rank 7, with basis
(ei)−3≤i≤3; we endow it with the resulting grading in {−3, . . . , 3} ⊂ Z. We
choose W = V , and define f as follows:
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e−3 e−2 e−1 e0 e1 e2 e3

e−3 −e−3 e−2 -e−1 e0

e−2 −e−3 e−2 −e0 e1

e−1 e−3 e−1 −e0 −e2

e0 e−3 −e−2 −e−1 e1 e2 −e3

e1 −e−2 e0 −e1 e3

e2 e−1 e0 −e2 −e3

e3 −e0 −e1 e2 e3

(for instance f(e1, e2) = e3, f(e1, e3) = 0, etc.) This follows the definition of the
“octonion product” given by R. Wilson in [Wil]. In addition, define a symmetric
bilinear form b on V by b(ei, ej) = 1 if i + j = 0 and 0 otherwise. As mentioned
in [Wil], the trilinear form t defined by t(x, y, z) = b(f(x, y), z) is alternating.

Although this is not important here, note that (V (R), f) is a Lie algebra when
3 = 0 in R, but not otherwise.

We now consider the 2-nilpotent Lie algebra g(V, V, f). The symmetric bilinear
form defined by B((v1, v

′
1), (v2, v

′
2)) = b(v1, v

′
2)+ b(v2, v

′
1) is thus invariant. Define

Ei = (ei, 0) and Fi = (0, ei), so that g(V, V, f) is a free module of rank 14 over
the basis ((Ei)−3≤i≤3, (Fi)−3≤i≤3)

Now consider the 3-chain

c = E0 ∧ (E1 ∧ E−1 + E2 ∧ E−2 + E−3 ∧ E3)− E1 ∧ E2 ∧ E−3 − E−1 ∧ E−2 ∧ E3.

Then η(c) is represented by 3e0} f0− e1} f−1− e−1} f1, and thus B(η(c)) = 1,
so η(c) 6= 0 in Kill(g).

On the other hand, ∂3(c) = 3e0 ∧ f0. In particular, if 3 = 0 in R then c is
a 3-cycle and hence the reduced Koszul map of g(V, V, f) is nonzero. We have
proved:

Proposition 3.8. For every field of characteristic 3, there exists a 2-nilpotent
Lie algebra whose reduced Koszul map is nonzero.

4. Vanishing for graded Lie algebras

Theorem 4.1. Assume that 6 is invertible in the ground commutative ring. Let g
be graded in an abelian group A endowed with an injective group homomorphism
φ into a subfield of the ground ring. Then the Koszul homomorphism of g is
concentrated in degree 0.

Proof. Since 2 is invertible, we have natural embeddings of both g ∧ g and g} g
into g⊗ g. Let s be the flip of g⊗ g (namely s(x⊗ y) = y ⊗ x).

Define ∂′3, ∂
′′
3 : g ∧ g ∧ g→ g⊗ g by

∂′3(x ∧ y ∧ z) = x⊗ [y, z] + y ⊗ [z, x] + z ⊗ [x, y]; ∂′′3 = s ◦ ∂′3.
Also define graded module endomorphisms Φ,Ψ : g ⊗ g → g ⊗ g as being the

multiplication by φ(j − i), resp. φ(i+ j) on gi ⊗ gj.



ON THE KOSZUL MAP OF LIE ALGEBRAS 17

Define T ′, T ′′ : g⊗ g⊗ g→ g⊗ g by

T ′(x⊗ y ⊗ z) = x⊗ [y, z]− y ⊗ [z, x], T ′′ = s ◦ T ′.
Let ι be the projection g⊗3 → Λ3g.

We claim that 3Φ(∂′3 − ∂′′3 )ι = Ψ(∂′3 + ∂′′3 )ι + (T ′ + T ′′)U for some operator
U : g⊗ g⊗ g→ g⊗ g respecting the grading in A.

Indeed, for all i, j, k ∈ A and all xi ∈ gi, yj ∈ gj, zk ∈ gk, we have, defining
c = xi ∧ yj ∧ zk (for convenience, we view φ as an inclusion)

3Φ∂′3(c) =3Φ(xi ⊗ [yj, zk] + yj ⊗ [zk, xi] + zk ⊗ [xi, yj])

=(j + k − i)3xi ⊗ [yj, zk]

+ (k + i− j)3yj ⊗ [zk, xi] + (i+ j − k)3zk ⊗ [xi, yj];

Ψ∂′3(c) =(i+ j + k)(xi ⊗ [yj, zk] + yj ⊗ [zk, xi] + zk ⊗ [xi, yj]);

(3Φ−Ψ)∂′3(c) =2
(
(j + k − 2i)xi ⊗ [yj, zk]

+ (k + i− 2j)yj ⊗ [zk, xi] + (i+ j − 2k)zk ⊗ [xi, yj]
)
;

writing yj⊗ [zk, xi] = xi⊗ [yj, zk]−T ′(xi⊗yj⊗zk) and zk⊗ [xi, yj] = xi⊗ [yj, zk]+
T ′(zk ⊗ xi ⊗ yj), we deduce

(3Φ−Ψ)∂′3(c) = −2(k + i− 2j)T ′(xi ⊗ yj ⊗ zk) + 2(i+ j − 2k)T ′(zk ⊗ xi ⊗ yj);
hence if we define U(xi⊗yj⊗zk) = −2(k+i−2j)xi⊗yj⊗zk+2(i+j−2k)zk⊗xi⊗yj,
we have proved that (3Φ∂′3 − Ψ∂′3)ι = T ′U . Note that sΦ = −Φs and sΨ = Ψs.
Hence

T ′′U = sT ′U = s(3Φ−Ψ)∂′3ι = −(3Φ + Ψ)s∂′3ι = −(3Φ + Ψ)∂′′3 ι;

thus (3Φ(∂′3 − ∂′′3 )−Ψ(∂′3 + ∂′′3 ))ι = (T ′ + T ′′)U , and the claim is proved.

Write ∂̂3 = ∂′3 − ∂′′3 and η̂ = ∂′3 + ∂′′3 . The previous equality can be rewritten

as (3Φ∂̂3 −Ψη̂)ι = (T ′ + T ′′)U . Consider the projections g⊗2 p→ S2g
π→ Kill(g).

Clearly πp vanishes on Im(T ′) + Im(T ′′), so we deduce πp(3Φ∂̂3 − Ψη̂)ι = 0.

Since ι is surjective, it follows that πp(3Φ∂̂3 −Ψη̂) = 0.
Denoting

η̌′(x ∧ y ∧ z) = x} [y, z] + y } [z, x] + z } [x, y],

we obviously have η̌′ = pη̂. Also note that we can view Ψ (unlike Φ) as a graded
self-operator on every graded module, given by scalar multiplication by φ(i) on
the i-th component. Thus defined, it commutes with all graded homomorphisms.
Thus πpΨη = Ψπη̌′; hence 3πpΦ∂̂3 = Ψπη̌′. Since πη̌′ = 3η, this can be rewritten
as

(4.1) 3πpΦ∂̂3 = 3Ψη.

Now let c be a 3-cycle. Denoting by p′ the projection g⊗2 → Λ2g, we have
p′∂̂3 = 2∂3, and since the projection p′ is injective on antisymmetric tensors and
hence on the image of ∂̂3, we deduce that ∂̂3(c) = 0. Using (4.1), it follows that
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3Ψη(c) = 0. If c is homogeneous of nonzero weight α, the latter is equal to
3φ(α)η(c). Since 3φ(α) is invertible in the ground ring, we deduce that η(c) =
0. �

Corollary 4.2. If the ground ring is a commutative Q-algebra and g admits a
grading in N∗, then the reduced Koszul map of g vanishes.

If p = 3m+1 ≥ 5 is prime, the ground ring is a commutative Z/pZ-algebra and
g admits a grading in {1, 2, . . . ,m}, then the reduced Koszul map of g vanishes.

Proof. In both cases, we obtain a grading in the ground ring, for which 0 is not
the sum of 2 weights; hence (S2g)0 = 0 and thus the only weight left by Theorem
4.1 is discarded. �

Remark 4.3. Let K be any field. Then sl2(K) admits a grading in Z/2Z for which
the reduced Koszul map is nonzero in degree 1, namely the grading induced by
the involution x 7→ −xᵀ. More generally (say for K = C), a cyclic permutation of
the factors in sl2(K)n provides a grading in Z/nZ for which the reduced Koszul
map is nonzero in every degree. Thus, in Theorem 4.1 when R is a Q-algebra,
the fact that the grading is in a torsion-free abelian group is essential.

Proof of Corollary 1.7. We follow the proof of Theorem 4.1, but we need to care-
fully redefine the involved maps, especially their domain of definition and target
space. For k ≥ 1, define g⊗k as the submodule of

∏
n∈Z(g⊗k)n consisting of se-

quences with support bounded below. Note that it naturally contains g⊗k (with
equality for k = 1). Then Φ,Ψ (as defined in the proof of Theorem 4.1) are well-

defined as self-operators of g⊗2, and U is well-defined as an operator from g⊗3 to
g⊗2. Also, since T, T ′′ are graded operators, they naturally extend to operators
from g⊗3 to g⊗2. Eventually, the formula 3πpΦ∂̂3 = 3Ψη is proved along the
same lines, and we also obtain the conclusion that η(c) = η(c0) for every 3-cycle
c =

∑
n∈Z cn with cn ∈ Z3(g)n. �

I do not know if Corollary 1.7 can directly follow from Theorem 4.1 (see the
closely related Remark 2.14).

5. A few families and small-dimensional nilpotent quadrable Lie
algebras

For the moment, we work over an algebraically closed field K of characteristic
6= 2.

5.1. The regular quadratic Lie algebras w(λ). We recall a general well-
known construction, appearing in [FS], which provides most of the small-dimen-
sional regular quadratic nilpotent Lie algebras: namely those double extensions
(see §2.4) of an orthogonal space (viewed as an abelian regular quadratic Lie
algebra).
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Since the ground field is algebraically closed, the orthogonal spaces are de-
termined, up to isomorphism, by their dimension n, while the nilpotent skew-
symmetric endomorphisms are classified, up to orthogonal conjugation, by parti-
tions of n in which every even number occurs with even multiplicity (see [CM]).
It is convenient here to rather consider the equivalent data of partitions of n in
which no number congruent to 2 modulo 4 occurs (gathering the even numbers
pairwise). Given such a partition of n, given as n = a1 + · · ·+ ap + b1 + · · ·+ bq,
with each ai odd and each bj multiple of 4, a representative for the pair (V,D) is
given by a space with basis

eij, fk`, 1 ≤ i ≤ p, 1 ≤ j ≤ ai, 1 ≤ k ≤ q, 1 ≤ ` ≤ bq,

and D defined by

Deij = (−1)iei,j+1, 1 ≤ j ≤ ai − 1; Dfk,` = (−1)kfk,`+2, 1 ≤ ` ≤ bk − 2,

and Dei,ai = Dfk,bk = Dfk,bk−1 = 0; and the nonzero scalar products on the basis
are

〈eij, ei,ai+1−j〉 = 〈fk`, fk,bk+1−`〉 = 1.

Thus the nonzero brackets are, denoting x = (1, 0, 0) and z = (0, 0, 1)

[x, eij] = (−1)iei,j+1, [x, fij] = (−1)ifi,j+2

[eij, ei,ai−j] = (−1)iz, 1 ≤ j ≤ ai−1; [fk`, fk,bk−1−`] = (−1)iz, 1 ≤ ` ≤ bk−2

We denote the corresponding Lie algebra as w(a1 ⊕ · · · ⊕ b`); its nilpotency
length is max(maxi ai,maxk bk/2); also we write [k]n for n⊕ · · · ⊕ n (k times).

The (kn + 2)-dimensional Lie algebra g = w([k]n) is Carnot with Carnot-
grading given as follows: all basis elements are homogeneous, x has degree 1,
and:

• if n is odd: eij has degree j, z has degree n;
• if n is even: eij has degree dj/2e, z has degree n/2.

For an arbitrary partition, the Lie algebra is not necessarily Carnot; still it
admits several gradings. The simplest one is in {0, 1, 2}, with x in degree 0, all
eij in degree 1, and z in degree 2.

There also exist gradings in N∗, given as follows: fix a large enough integer r
(namely ≥ ai − 1 and ≥ bk/2− 1 for all i, k):

• let x have degree 2 and z have degree 2r;
• let eij have degree r − ai + 2j;
• let fk` have degree r − bk/2 + 2d`/2e.

The regular quadratic Lie algebras w(λ), where λ is a partition of n as above
(with no integer congruent to 2 modulo 4), are characterized in [MPU] as the
nilpotent ones for which the “dup number” is nonzero: this number reflects a
degeneracy property of the alternating 3-form associated to the choice of bilinear
form (they show it is actually a property of the underlying Lie algebra).
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5.2. The regular quadratic Lie algebras X(3m−1) and Y(3m). The smallest
complex nilpotent quadrable Lie algebra not among the w(λ) (“deeper” in the
terms of [Pel], “ordinary” in the terms of [MPU]) has dimension 8.

We introduce, for convenience, the Lie algebra h with basis (Xn,i), where n
ranges over Z and i ranges over {0, 1,−1}; the law being given by the nonzero
brackets

[Xn,i, Xm,j] = (i− j)Xn+m,i+j, m, n ∈ Z, (i, j) ∈ {0, 1,−1}2 r {±(1, 1)}.

(The reader may recognize a current algebra of sl2.) Given r ∈ Z, define a
symmetric bilinear bracket by the nonzero scalar products

〈Xn,i, Xm,j〉r = (1− 3|i|)δn+m,rδi+j,0.

Then it is invariant: indeed, we have

〈Xn,i, [Xm,j, Xp,k]〉r = (j − k)(1− 3|i|)δn+m+p,rδi+j+k,0,

and we need to check that the right-hand term is invariant under cyclic permu-
tations of (i, j, k). If i + j + k 6= 0 this is clear. Otherwise, we have two possi-
bilities: either (i, j, k) = (0, 0, 0) and again this is clear, or {i, j, k} = {0, 1,−1}.
We see that if (i, j, k) is a cyclic permute of (0, 1,−1) (resp. of (0,−1, 1)), then
(j − k)(1 − 3|i|) is equal to 2 (resp. -2). Hence the scalar product is invariant.
Note that (n, i) provides a grading in Z2.

If we rewrite Xn,i = T3n+i, we see that (Tn) is a basis, and that [Tn, Tm] =
e(m,n)Tn+m, with e the skew-symmetric map factoring through (Z/3Z)2 char-
acterized by: e(1, 0) = 1, e(1,−1) = 2, e(−1, 0) = −1. Moreover, we have
〈Tn, Tm〉r = `(n)δn+m,3r, where `(n) = 1 if n ∈ 3Z and `(n) = 2 otherwise.

Note that if we consider the subalgebra h≥1 generated by the Tn for n ≥ 1,
the kernel of the scalar product 〈·, ·〉k is the ideal h≥3k with basis the Tn for
n ≥ 3k. In particular, if we define X (3k−1) as the (3k−1)-dimensional quotient
h≥1/h≥3k, it is a regular quadratic Lie algebra when endowed with 〈·, ·〉3k. It is
Carnot-graded of nilpotency length 2k − 1, with T3i−2 and T3i−1 of degree 2i− 1
and T3i of degree 2i.

Note that X(2) is abelian and X(5) ' w(3); this is the only exceptional iso-
morphism with this family, as it is easily checked that for 3k − 1 ≥ 8, the Lie
algebra X(3k − 1) admits no nontrivial grading in {0, 1, 2}.

(Up to an easy change of variables, the regular quadratic Lie algebra X(3k−1)
appears in [FS, §5.3], and reappears as A1,3k−1 in [Pel], where the solvable Lie
algebra h≥0/h≥3k+1 is studied as a regular quadratic Lie algebra under the bracket
〈·, ·〉k.)

Also, if we consider the subalgebra h≥2, the kernel of the scalar product 〈·, ·〉k
is the ideal h≥3k+1. Thus the quotient is a (3k)-dimensional regular quadratic
Lie algebra which we denote by Y(3k), with basis (T2, . . . , T3k+1), which is also
(Xm,i) for 1 ≤ m ≤ k and −1 ≤ i ≤ 1. The Lie algebra Y(3k) is Carnot-graded of
nilpotency length k, with Xni of degree n (thus every homogeneous component of
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the Carnot-grading has dimension 3). We see that Y(3) is abelian, Y(6) ' w(4);
again, there is no other isomorphism with the w(λ).

Note that unlike the family of w(λ) which are all solvable of length 3 (indeed
center-by-metabelian), the Lie algebras X(3k − 1) and Y(3k) have unbounded
solvability length.

5.3. Small-dimensional nilpotent quadrable Lie algebras. Let us now list
the nilpotent quadrable Lie algebras of dimension ≤ 9 over the complex numbers
(or any algebraically closed ground field of characteristic zero, by a standard
argument); we follow Kath [Kat]. (The classification in dimension ≤ 7 is due to
Favre and Santharoubane [FS].) However the classification in [Kat] is over the
real numbers and does not make the correspondence with the above Lie algebras
explicit, so the list we provide looks somewhat different; moreover I had to check
that Kath’s classification, which is made over real numbers, does not miss any
complex quadratic Lie algebra.

Recall that the class of quadrable Lie algebra is invariant under taking direct
products with abelian 1-dimensional Lie algebras, and hence we can stick to those
Lie algebras with no such direct product decomposition, or equivalently whose
center is contained in the derived subalgebra (we call such Lie algebras essential).

For the Lie algebras w(λ), the maximal abelian direct factors have dimension
the number of occurrences of 1 in the partition λ; thus essential means that 1
does not occur in λ.

Up to dimension 9, the essential Lie algebras among the w(λ) are:

• dimension 5: w(3);
• dimension 6: w(4);
• dimension 7: w(5);
• dimension 8: w(3⊕ 3);
• dimension 9: w(7) and w(3⊕ 4) (the latter is not Carnot).

Now let us describe the remaining essential quadrable Lie algebras, relying on
[Kat].

In dimension 8, the second one is X(8) (denoted 6(b) in [Kat], while w(3⊕ 3)
is 7(b) there). (Note that it follows from this description that all quadrable
nilpotent Lie algebras of dimension ≤ 8 are Carnot.)

In dimension 9, there are 5 isomorphism classes, including the two previous
ones (3(a) and 5(c) in [Kat]), and three more. One is Y(9) (denoted 7(c) in
[Kat]).

The second one (4(c) in [Kat]) is similar to the w(λ) in the sense that it also
admits a grading in {0, 1, 2} with abelian 0-component and central 2-component.

It has a basis (X1, . . . , X9) with grading given by the indices, with nonzero
brackets [Xi, Xj] = ai,jXi+j given by a1,2 = −1, a2,3 = 1, a1,3 = 1, a1,6 = −1,
a3,6 = 1, a2,5 = −1, a3,5 = 1, a2,7 = −1, a1,7 = 1, the scalar product being
given by 〈Xi, Xj〉 = 1 if i + j = 10 and 0 otherwise. Its nilpotency length is 5
and actually it has a grading in {1, . . . , 5} given (in self-explanatory notation) by
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12⊕3⊕456⊕7⊕89; another grading is given by the indices. The {0, 1, 2}-grading
is given by 26⊕ 13579⊕ 48. It is not Carnot because the associated Carnot Lie
algebra is not quadrable: indeed its derived subalgebra has codimension 3 while
its center has dimension 4 (indeed X6 becomes central, indeed generates a direct
factor, in the associated Carnot Lie algebra).

The third example appears as a twisted version of w(7) (both appear as 3(a) in
[Kat]). To describe it, let us first describe again w(7) with convenient notation:
it admits the basis (Yi)i∈{1,...,11}r{2,10}, with scalar product 〈Yi, Yj〉 = 1 if i+ j =
12 and 0 otherwise, and the nonzero brackets being [Y1, Yi] = (−1)iYi+1 and
[Yi, Y11−i] = (−1)iY11 for 3 ≤ i ≤ 8.

The twisted version w(7)tw is defined on the same basis by “adding” the nonzero
brackets [Y3, Y4] = Y7, [Y3, Y5] = −Y8, and [Y4, Y5] = Y9. Then w(7)tw also
has nilpotency length 7, but is not isomorphic to w(7): a way to see this is by
observing that the second derived subalgebra of w(7)tw is 2-dimensional (equal to
the center, generated by Y9, Y11), while in w(7) it is reduced to the line generated
by Y11.

Theorem 5.1. For every nilpotent Lie algebra g over a field of characteristic 0,
of dimension ≤ 9, the reduced Koszul map vanishes.

Proof. Clearly, we can suppose that K = C (see Lemma 2.16). By Lemma 2.6,
we can suppose that g is quadrable. The way we introduced the above examples
shows that in all cases, g admits a positive grading. Hence we can apply Corollary
1.5. �

In dimension 10, a case-by-case verification based on the classification in [Kat]
seems to also yield the same conclusion: again, every 10-dimensional quadrable
Lie algebra admits a grading in the positive integers.

6. A nilpotent Lie algebra with nonzero reduced Koszul map

We construct here a nilpotent Lie algebra with a nonzero reduced Koszul map.
We fix a field R = K of characteristic not 2 (the same working over any

commutative ring in which 2 is invertible). We use the notion of double extension
recalled in §2.4.

We start from the 7-dimensional Lie algebra w(5) defined in §5, but rename
the basis as (Y1, Y4, Y5, Y6, Y7, Y8, Y11), so that the scalar product is defined by:
〈Yi, Yj〉 = 1 if i+ j = 12 and 0 otherwise, and the nonzero brackets are:

(6.1) [Y1, Yi] = (−1)iYi+1, 4 ≤ i ≤ 7; [Y4, Y7] = −[Y5, Y6] = Y11.

We define a 10-dimensional regular quadratic Lie algebra h as the orthogonal
direct product of w(5) with a 3-dimensional abelian quadratic Lie algebra with
basis (Z3, Z6, Z9) with nonzero scalar products given by 〈Z3, Z9〉 = 〈Z6, Z6〉 = 1.

We now define a skew-symmetric derivation of h by

DY1 = Y4, DY4 = Y7 + Z3, DY5 = −Y8, DY8 = −Y11
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DZ3 = Z6, DZ6 = −Z9, DZ9 = −Y8, DY6 = DY7 = DY11 = 0;

Finally, we define the 12-dimensional regular quadratic Lie algebra g as the
double extension of h by D, in which we write E3 = e, E9 = f .

Thus g has the basis (E3, E9, Y1, Y4, . . . , Y8, Y11, Z3, Z6, Z9) with the nonzero
scalar products

〈Ei, E12−i〉 = 〈Yi, Y12−i〉 = 〈Zi, Z12−i〉 = 1,

the nonzero brackets being those in (6.1) along with

[E3, Y1] = Y4, [E3, Y4] = Y7 + Z3, [E3, Y5] = −Y8, [E3, Y8] = −Y11,

[E3, Z3] = Z6, [E3, Z6] = −Z9, [E3, Z9] = −Y8

[Y1, Y8] = [Y4, Y5] = [Z3, Z6] = [Y4, Z9] = E9

We now consider the 3-chains

c1 = E3 ∧ Y1 ∧ Y8, c2 = E3 ∧ Y4 ∧ Y5, c3 = E3 ∧ Y4 ∧ Z9, c4 = Y1 ∧ Y4 ∧ Y7,

c5 = E3 ∧ Z3 ∧ Z6, c6 = Y1 ∧ Y6 ∧ Y5, c7 = Y1 ∧ Y4 ∧ Z3, c8 = E3 ∧ Z6 ∧ Y7,

c = 2c1 + 4c2 − 3c3 + c4 − 3c5 − 3c6 + 4c7 + 3c8.

If we define the 2-chains

e3 = E3 ∧ E9, y1 = Y1 ∧ Y11, y4 = Y4 ∧ Y8, y5 = Y5 ∧ Y7 , z3 = Z3 ∧ Z9

and consider the 7-dimensional subspace V of Λ2g with basis B = (e3, y1, y4, y5, z3, Z3∧
Y5, Z9 ∧ Y7), then a computation shows that ∂3(ci) ∈ V for all i = 1, . . . , 8, and
the matrix of ∂3 with respect to the bases (c1, . . . , c8) and B is given by

1 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
−1 1 1 1 0 0 0 0
0 1 0 −1 0 1 0 0
0 0 −1 0 1 0 0 0
0 −1 0 0 0 0 1 0
0 0 1 0 0 0 0 1


Computation shows that the vector (2, 4,−3, 1,−3,−3, 4, 3) belongs to the

kernel of this matrix. This means that ∂3(c) = 0.
On the other hand, we have J(ci) = 1 for i ≤ 6 and J(c7) = J(c8) = 0. Thus

J(c) = 2 + 4− 3 + 1− 3− 3 = −2 6= 0.
It follows that J does not vanish on 2-cycles, and thus the reduced Koszul

map g is nonzero: in homology, the 3-homology class c has a nonzero image; in
cohomology, the 3-cocycle J is not exact.

To summarize, let us state:

Theorem 6.1. The above 12-dimensional nilpotent Lie algebra g has a nonzero
reduced Koszul map. More precisely, the 3-form associated with the given scalar
product is not exact.
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Remark 6.2. It can easily be checked that Kill(g) is 5-dimensional. The dual
Sym2(g)g can be described as the direct sum W1 ⊕W2 ⊕W3, where W1 is the
3-dimensional subspace consisting of symmetric bilinear forms on S2(g/[g, g]), W2

is the line generated by a certain invariant scalar product on the 5-dimensional
quotient g/g(4) and W3 is the line generated by the scalar product. It is easy
to see that the elements not in the hyperplane W1 + W2 are precisely the non-
degenerate forms. Also, using that g/g(4) is graded in N∗ (or by a simple direct
computation), the elements of W1 + W2 have a zero image in H3(g): thus the
reduced Koszul map has rank 1 as a linear map.

Remark 6.3. The Lie algebra g has a grading in Z/4Z given by the indices,
namely for which g0 has basis {Y4, Y8}, g1 has basis {Y1, Y5, Z9, E9}, g−1 has
basis {E3, Z3, Y7, Y11} and g2 has basis {Y6, Z6}.

Remark 6.4. The above Lie algebra is center-by-metabelian: its second derived
subalgebra, namely the plane generated by X and X ′, is central.

It seems from [Kat] that all nilpotent complex Lie algebras of dimension ≤
10 are center-by-metabelian; however the 11-dimensional quadrable Lie algebra
X(11) is not center-by-metabelian.

Remark 6.5. In a computer verification, Louis Magnin checked the above com-
putation, and also computed the Betti numbers of g: (1, 2, 4, 9, 15, 22, 26, 22 . . . ).
Moreover, he checked that g is characteristically nilpotent in the sense that every
self-derivation is nilpotent; equivalently, g admits no nontrivial grading in Z.

Remark 6.6. The above verification does not indicate how I came up with this
Lie algebra. Actually, I originally obtained it not using double extensions, but
using another device due to Kath and Olbrich [KatO], allowing to directly pass
from some dimension smaller than n − 2 to dimension n. Given a Lie algebra
l and an orthogonal l-module a, and given a 2-cycle α ∈ Z2(l, a) and a 3-chain
γ ∈ C3(l) such that 2dγ = 〈α ∧ α〉, we can construct a certain regular quadratic
Lie algebra dα,γ(l, a) whose underlying space is l⊕ a⊕ l∗.

In the above example, l is a 5-dimensional Lie algebra with basis (E3, Y1, Y4, Z3, Y5)
(free 3-nilpotent on 2 generators E3, Y1) with nonzero brackets [E3, Y1] = Y4,
[E3, Y4] = Z3, [Y1, Y4] = Y5, a is a 2-dimensional trivial l-module with orthonor-
mal basis (Z6, Y6), γ = E∗3 ∧ Y ∗4 ∧ Y ∗5 , and α = (E∗3 ∧ Z∗3)⊗ Z6 − (Y ∗1 ∧ Y ∗5 )⊗ Y6

(here dγ = 0 = 〈α ∧ α〉). We refer to [KatO] (or [Kat]) for precise definitions,
which we avoided here by rather describing g as a double extension.

7. Solvable Lie algebras

7.1. A solvable Lie algebra with nonzero reduced Koszul map. Consider
the 9-dimensional regular quadratic Lie algebra defined on the basis (x, y, z, y′, x′,
u1, u−1, v1, v−1) with scalar product defined as

〈x, x′〉 = 〈y, y′〉 = 〈z, z〉 = 〈u1, u−1〉 = 〈v1, v−1〉 = 1
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(other scalar products being zero) and nonzero brackets

[x, y] = z, [z, x] = y′, [y, z] = x′,

[x, ue] = eue, [y, ve] = eve, e = ±1,

[u1, u−1] = x′, [v1, v−1] = y′;

it is convenient to endow it with the Cartan grading in Z2 for which ue has degree
(e, 0), ve has degree (0, e), and the other five generators have degree (0, 0). It is
center-by-metabelian, namely its second derived subalgebra is generated by the
central elements x′, y′.

Note that [h, ue] = e〈h, x′〉ue for all h ∈ g0 and e = ±1. The Jacobi identity
can be checked in total degree (1, 0) by

jac(h, h′, u1) =[h, [h′, u1]]− [h′, [h, u1]] + [u1, [h, h′]]

=〈h, x′〉〈h′, x′〉u1 − 〈h′, x′〉〈h, x′〉u1 + 0 = 0;

and by symmetry this also holds in every total degree (e, 0) or (0, e) for e = ±1.
In total degree zero, it holds when all three elements have degree zero because
we recognize the free 3-nilpotent Lie algebra on 2 generators, and otherwise by
symmetry it boils down to

jac(u−1, h, u1) =[u−1, [h, u1]]− [u1, [h, u−1]] + [h, [u1, u−1]]

=〈h, x′〉[u−1, u1] + 〈h, x′〉[u1, u−1] + [h, x′] = 0.

We also need to check that the scalar product is invariant. Note that it has
degree zero for the Cartan grading, so again we only need to check in total degree
zero. When all three elements have degree zero, this is a standard fact about the
5-dimensional regular quadratic Lie algebra g0. Otherwise, it boils down by
symmetry to

〈u1, [u−1, h]〉 = 〈u1, 〈h, x′〉u−1〉 = 〈x′, h〉 = 〈[u1, u−1], h〉.

So g is indeed a regular quadratic Lie algebra. It is 3-solvable (actually center-
by-metabelian).

Define the 3-chain

c = x ∧ y ∧ z − u1 ∧ u−1 ∧ x− v1 ∧ v−1 ∧ y.

Then c is a 3-cycle: indeed we have

∂2(x ∧ y ∧ z) = x ∧ x′ + y ∧ y′;

∂2(u1 ∧ u−1 ∧ x) = x ∧ x′, ∂2(v1 ∧ v−1 ∧ y) = y ∧ y′.
Again consider the alternating trilinear map J : (x, y, z) 7→ 〈[x, y], z〉. Then

J(c) = 〈z, z〉 − 〈x′, x〉 − 〈y′, y〉 = −1.

Thus κ(c) 6= 0 (and J is a non-exact 3-cocycle). To summarize:
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Theorem 7.1. The above 9-dimensional regular quadratic Lie algebra g is center-
by-metabelian, and its associated alternating 3-form is non-exact; in particular g
has a nonzero reduced Koszul map.

7.2. Smaller-dimensional solvable Lie algebras. We now check that the
above is optimal in dimension.

Theorem 7.2. Every solvable Lie algebra of dimension ≤ 8 over a field of char-
acteristic zero has a zero reduced Koszul map.

The proof does not rely on classification (except in the already settled nilpo-
tent case), although it roughly describes the possible structures; in all cases, we
produce a grading in N whose 0-component is abelian and apply Corollary 1.4.

First observe that this theorem immediately reduces to the case of an alge-
braically closed field K, as we now assume. Also, by Lemma 2.6, we can suppose
that g is a finite-dimensional regular quadratic Lie algebra.

To prove this theorem, we recall that for any finite-dimensional Lie algebra g
over K, a Cartan subalgebra is a nilpotent subalgebra equal to its normalizer; all
Cartan subalgebras are conjugate [Bou, VII.§2]. The Cartan grading (relative to a
Cartan subalgebra h) is a grading g =

⊕
gα, where the weights live in Hom(h, K)

(Lie algebra homomorphisms), characterized by the fact that for every h ∈ h, the
subspace gα is contained in the characteristic subspace of g for the operator ad(h)
and the eigenvalue α(h); we have g0 = h.

From now on, g is endowed with a Cartan grading. An easy observation is that
any invariant scalar product has degree 0 (i.e., 〈gα, gβ〉 = 0 whenever α+β 6= 0).
In particular, the given scalar product induces a duality between gα and g−α for
all α. In particular, the codimension of the Cartan subalgebra g0 is even. (See
Astrakhancev [Ast2] for a systematic study of regular quadratic Lie algebras
based on a Cartan grading.)

For each nonzero weight α (in the sense that gα 6= 0), define the coweight α∨

as the unique element in g0 such that α(h) = 〈α∨, h〉 for all h ∈ g0. Note that α
vanishes on [g0, g0], and thus α∨ is orthogonal to [g0, g0], which in turn implies
that all coweights belong to the center of g0.

Lemma 7.3. The nilpotent radical of g is contained in the intersection of all the
kernels of weights (each weight being viewed as a linear form on g vanishing on
gβ for every β 6= 0). In particular, if g is solvable, then [g, g] ∩ g0 ⊂ Kerα for
every weight α.

Proof. If α is a weight and x /∈ Ker(α), then the ideal I generated by x contains
gα and since [x, gα] = gα we deduce that I is not nilpotent. We deduce that the
nilpotent radical is contained in Ker(α) for every α. �

Remark 7.4. If g is solvable, then the nilpotent radical of g is actually equal to the
intersection i of all the kernels of weights: to show the other inclusion amounts
to showing the latter is nilpotent. Indeed, the quotient of g by its center z can
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be realized by the adjoint representation as an upper triangular Lie subalgebra
of gln for n = dim(g), and the weights are precisely the diagonal elements; thus
i/z is nilpotent, as a strictly upper triangular Lie algebra of matrices, and hence
i is nilpotent as well.

Lemma 7.5. Suppose that g is solvable. Also suppose that g0 has codimension
≤ 7 and is abelian. Then g has a zero reduced Koszul map.

Proof. Let i ⊂ g0 be the intersection of kernels of all weights. Let v0 be a
supplementary subspace of i in g0. Denote by g 6=0 the direct sum of all gα for
α 6= 0.

Let us first assume that g0 has codimension at most 5. We first claim that
[g6=0, g 6=0] is contained in g0. Indeed, otherwise there are nonzero weights α, β
such that α + β 6= 0 and [gα, gβ] 6= 0. Thus α + β is a nonzero weight. If
α 6= β, then α, β, α+β are distinct and also distinct from their negatives, thus g0

has codimension at least 6, contradiction. Otherwise α = β; thus α and 2α are
weights, thus by the codimension assumption gα is at most 1-dimensional, which
implies that [gα, gα] = 0, contradiction again. (Note that this argument, which
does not use solvability, fails for sl3 in which g0 has codimension 6.)

By the above claim and Lemma 7.3, we get [g 6=0, g6=0] ⊂ i (we use the solvability
assumption here, invoking Lemma 7.3).

Then, since g0 is abelian, [v0, v0] = 0 and [v0, g 6=0] ⊂ g 6=0. Thus g admits a
grading in {0, 1, 2}, namely v0 ⊕ g 6=0 ⊕ i, with abelian 0-component (and central
2-component). It follows from Corollary 1.4 that g has a zero reduced Koszul
map.

Now suppose that g0 has codimension 6. If [g 6=0, g 6=0] ⊂ g0, the previous argu-
ment works. Otherwise, there exist nonzero weights α, β, γ such that α + β = γ
and [gα, gβ] 6= 0. We see that the nonzero weights are exactly, counting the
possible multiplicity (α and β may be equal), ±α, ±β, ±γ.

Pick a nonzero element xα ∈ gα and a non-collinear element xβ ∈ gβ; de-
fine xγ = [xα, xβ]. Consider the dual basis (x−α, x−β, x−γ) with respect to the
scalar product. Then writing 〈[xα, xβ], x−γ〉 = 1 and using invariance, we obtain
[xβ, x−γ] = x−α and [x−γ, xα] = x−β. We claim that [x−α, x−β] = 0: indeed, oth-
erwise it would be a multiple of x−γ, and this would contradict the nilpotency of
[g, g]. Hence, by invariance, we also have [x−β, xγ] = [xγ, x−α] = 0. Define v0 as
above; define v1 to have basis (xα, xβ, x−γ); define v2 to have basis (x−α, x−β, xγ)

and v3 = i. Then g =
⊕3

i=0 vi and [vi, vj] ⊂ vi+j for all i, j: this is clear when
ij = 0 or when max(i, j) = 3; this has just been checked for i = j ∈ {1, 2};
when {i, j} = {1, 2} this follows from Lemma 7.3. Accordingly g has a grading
in {0, 1, 2, 3} with abelian 0-component and again by Corollary 1.4, g has a zero
reduced Koszul map.

Recalling that g0 has even codimension, the proof is complete. �
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End of proof of Theorem 7.2. If g0 is abelian, Lemma 7.5 applies. Now we sup-
pose that g0 is not abelian; hence being quadrable, g0 has dimension ≥ 5. The
codimension of g0 being even, it is equal to 0 or 2.

If g0 = g, then g is nilpotent and Theorem 5.1 applies. Otherwise the codi-
mension of g0 is 2 and thus g0 has dimension 5 or 6. Denote by ±α the nonzero
weights. By the classification of nilpotent quadrable Lie algebras, g0 is isomor-
phic to either w(3), w(4), or w(3) × a, where a is a 1-dimensional abelian Lie
algebra. Since [g, g] is nilpotent, we see that [gα, g−α] is contained in Ker(α);
moreover from the Jacobi identity it follows that [gα, g−α] is the line generated
by α∨. In all 3 cases, we deduce that there exists a Lie algebra grading on g0,
denoted g0 = v0 ⊕ v1 ⊕ v2 ⊕ v3, such that Ker(α) = v1 ⊕ v2 ⊕ v3 and α∨ ∈ v3.
Thus if we extend this grading to g by requiring gα to have degree 1 and g−α to
have degree 2, we obtain a grading of g in {0, 1, 2, 3} with abelian 0-component,
and thus Corollary 1.4 applies once again. �

Appendix A. H2 of current Lie algebras: an example

Here we provide an example of computation ofH2 of current Lie algebras, which
corroborates the computation by Neeb and Wagemann [NW] but contradicts that
of Zusmanovich [Zus].

Let us consider the following complex 6-dimensional Lie algebra l defined as
the semidirect product of sl2 with its coadjoint representation. Namely, we con-
sider a basis (e1, e0, e−1) for sl2, with [e0, e±1] = ±e±1 and [e1, e−1] = e0. Then
denoting by (E−1, E0, E1) the dual basis of the dual, a basis for l is given by
(e1, e0, e1, E1, E0, E−1) and its Lie algebra law is described by the nonzero brack-
ets, for ε ∈ {±1}:

[e0, eε] = εeε, [e1, e−1] = e0, [e0, Eε] = εEε, [eε, E0] = −εEε, [eε, E−ε] = εE0.

Lemma A.1. H2(l) = 0.

Proof. This can be checked by a lengthy computation, but here is a short ar-
gument, only using that l = s n v where s is semisimple and v is a nontrivial
irreducible representation of s with a nonzero symmetric bilinear form. We have
to show that if l̃ is a central extension of l by a line z, then it is a direct product.
Indeed, let ṽ be the radical of l̃. Then ṽ is a central extension of v by z, and the
Lie bracket on ṽ provides a s-invariant alternating form v× v→ z. Since v is an
irreducible s-module (and the ground field is C), the space of s-invariant forms
is at most one-dimensional. Hence ṽ is abelian. As an s-module, it admits v as a
quotient. By semisimplicity, it follows that, as an s-module, ṽ = v⊕ z. Thus the
central extension is a direct product. �

As any semidirect product of a Lie algebra by its coadjoint representation,
there is a natural invariant scalar product B = 〈·, ·〉 on l, given by 〈ei, E−i〉 = 1
for i ∈ {1, 0,−1} and other scalar products zero.
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In the following proposition, the ground ring is C, and C[t] is the polynomial
ring on the indeterminate t.

Proposition A.2. We have H2(l ⊗ C[t]) 6= {0}; namely te1 ∧ E−1 − e1 ∧ tE−1

represents a nonzero element in homology.

This result can be proved using the general results of [NW]. On the other
hand, it is in contradiction with the main result of [Zus], see below. Therefore we
will provide an explicit, computational, proof. Also let us mention that although
it is not in contradiction with [Had], it does not follow from it. (See below.)

Proof. We are going to check the result by replacing C[t] with an arbitrary com-
mutative C-algebra A with a nonzero C-linear self-derivation denoted by x 7→ x′.

The following construction is inspired from Abels’ computation in [Abe, §5.7.4].
Define a C-linear map A ⊗ A → A by ρ(λ ⊗ µ) = λ′µ. A straightforward
computation shows that it satisfies:

ρ(λµ⊗ α) = ρ(λ⊗ µα + µ⊗ αλ), ∀λ, µ, α ∈ A.

Given an element of g = A⊗ l, we write it ax instead of a⊗ x. Note that the
linear decomposition l = s ⊕ v (which actually defines a Lie algebra grading in
{0, 1}) induces a C-linear isomorphism

Λ2(g) = Λ2(A⊗ s)⊕
(
(A⊗ s)⊗ (A⊗ v)

)
⊕ Λ2(A⊗ v).

Define a C-linear map c : Λ2(A⊗ l)→ A by

c(λei ∧ µE−i) = ρ(λ⊗ µ), i = 1, 0,−1, λ, µ ∈ A

and c is zero on other basis elements, that is, c vanishes on both Λ2(A⊗ s) and
Λ2(A⊗ v) and on elements of the form λei ∧ µEj for i 6= −j.

Now let t ∈ A be an element such that t′ 6= 0. For instance, in C[t] with the
standard derivation, t itself works. Then

c(te1 ∧ E−1 − e1 ∧ tE−1) = ρ(t⊗ 1− 1⊗ t) = t′1− 1′t = t′ 6= 0.

Clearly te1∧E−1−e1∧ tE−1 is a 2-cycle (since the bracket is A-bilinear). So to
conclude that H2(g) 6= 0, it is enough to check that c vanishes on 2-boundaries.

To check this, we use a convenient grading of l in Z2: ei has degree (i, 0) and
Ei has degree (i, 1). This grading induces a grading on the exterior algebra and
on the homology, and also passes to the current algebra (defining gω = A ⊗ lω
for ω ∈ Z2) and its own exterior algebra. Note that c vanishes in every degree
6= (0, 1). Therefore all we need to check is that c vanishes on boundaries of
degree (0, 1). A basis of l(0,1) is (e1 ∧ e0 ∧E−1, e−1 ∧ e0 ∧E1, e1 ∧ e−1 ∧E0). Thus
g(0,1) is linearly generated by A-multiples of the same elements. We compute
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(λ, µ, α ∈ A):

λe1 ∧ µe0 ∧ αE−1
d7→ − λe1 ∧ µαE−1 − µe0 ∧ αλE0 + λµe1 ∧ αE−1

c7→ ρ(−λ⊗ µα− µ⊗ αλ+ λµ⊗ α) = 0;

λe−1 ∧ µe0 ∧ αE1
d7→ · · · c7→ 0 (similarly);

λe1 ∧ µe−1 ∧ αE0
d7→ λe1 ∧ µαE−1 + µe−1 ∧ αλE1 − λµe0 ∧ αE0

c7→ ρ(λ⊗ µα + µ⊗ αλ− λµ⊗ α) = 0,

hence c indeed vanishes on 2-boundaries. Accordingly, te1 ∧ E−1 − e1 ∧ tE−1

defines a nonzero element of H2(g). �

Now let us compare with the descriptions in [Had, Zus, NW]. All these papers,
given a complex Lie algebra h (all these papers work in a greater generality on the
ground field, but let us stick to C), address the problem of describing H2(A⊗ h)
when A is an arbitrary associative unital C-algebra.

The results in all these papers significantly simplify when we assume H1(h) =
H2(h) = 0, as we now assume.

The result in [Had] provides an exact sequence

(A.1) 0→ D(A, h)→ H2(A⊗ h)→ HC1(A)⊗Kill(h)→ 0;

the result in [Zus] asserts an isomorphism

(A.2) H2(A⊗ h) ' HC1(A)⊗Kill(h);

finally the result in [NW] describes H2(A⊗h) as the cokernel of a certain operator
A × h⊗3 → Λ2A ⊗ S2h ⊕ A ⊗ Z2(h). Above, HC1 is the first cyclic homology of
A, which can be described as the quotient of A ∧ A by the subspace generated
by elements of the form λ ∧ µα + µ ∧ αλ+ α ∧ λµ.

Note that the blatant difference between (A.1) and (A.2) is concealed by the
existence of several additional terms related to H1(h) and H2(h). Now let us
compare Proposition A.2 with the above description: when A = C[t], we actually
have HC1(A) = 0, which can be checked by hand, see also [Lod, Example 3.1.7].
In (A.1), the right-hand term vanishes, and this is in keeping with the fact that
the nontrivial homology class tx ∧X − x ∧ tX belongs to D(A, h), on the other
hand [Had] only provides generators of D(A, h) and in particular cannot predict
its non-vanishing.

The assertion (A.2) is contradictory, since it erroneously implies that H2(C[t]⊗
l) = 0 for the above 6-dimensional Lie algebra l. Actually, for a Lie algebra h with
H1(h) = H2(h) = 0, the vanishing of H2(C[t]⊗ l) only holds (as a consequence of
results of [NW]) when the reduced Koszul map is surjective (for instance, when
l is semisimple). We explain this in detail in Appendix B, coming back to this
example in Example B.17.
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Appendix B. The Neeb-Wagemann description of 2-homology,
revisited

The purpose of this appendix is to rewrite the results of [NW] in a more
convenient way, so as to decompose canonically the second homology of current
algebras into explicit spaces.

The setting here is the following: l is a Lie algebra over a fixed field K of char-
acteristic 6= 2; whenever we use language pertaining to linear algebra (linearity,
tensor products, homology etc.), the ground ring is K. Let us fix an associative,
unital, commutative K-algebra A.

Define two maps T, T0 : A⊗3 → Λ2(A) by

T (a⊗ b⊗ c) = ab ∧ c+ bc ∧ a+ ca ∧ b; T0(a⊗ b⊗ c) = T (a⊗ b⊗ c)− abc ∧ 1.

Define the first cyclic homology HC1(A) = coker(T ) and the first Hochschild ho-
mology HH1(A) = coker(T0) (see [NW, Section 2] for a comparison with more
standard definitions; these ones assume that A is commutative). A simple verifi-
cation shows that the image of T0 is contained in the image of T , and therefore
we have successive quotients

Λ2(A)� HH1(A)� HC1(A).

Let IA be the kernel of the multiplication map S2A → A. A simple but very
useful observation of [NW] is the following:

Proposition B.1. There is a canonical linear isomorphism

Λ2(A⊗ l)→ Λ2A⊗ S2l ⊕A⊗ Λ2l ⊕IA ⊗ Λ2l

ax ∧ by 7→ (a ∧ b)⊗ (x} y) +ab⊗ (x ∧ y) +(a} b− ab} 1)⊗ (x ∧ y);

it restricts to a linear isomorphism

Z2(A⊗ l) → Λ2A⊗ S2l ⊕ A⊗ Z2(l) ⊕ IA ⊗ Λ2l.

We henceforth use the above isomorphism as an identification.
If we write the above decomposition of Λ2(A⊗ l) as V1⊕ V2⊕ V3, in [NW], the

authors then study 2-boundaries and describe them as the sum of 4 subspaces,
the first two of which being contained in the first summand V1, the third (fourth
in [NW]) is contained in V4 and the fourth is contained in V1 ⊕ V2, showing
that in general the 2-homology does not split as a product with respect to this
decomposition. Still, it is convenient to restate things by first modding out by
the three “homogeneous terms” and then study the last one. Let us first state
the theorem in [NW]

Theorem B.2 (Neeb-Wagemann, [NW, Theorem 3.4]). Define the linear map

f : A⊗ l⊗3 → Λ2A⊗ S2l ⊕ A⊗B2(l) ⊂ Λ2(A⊗ l)

by f = (f1, f2), where

f1(a⊗ x⊗ y ⊗ z) = (a ∧ 1)⊗ ([x, y]} z), f2(a⊗ x⊗ y ⊗ z) = a⊗ ∂3(x ∧ y ∧ z).
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Then
B2(A⊗ l) = W1 +W ′

1 +W3 +W12,

where
W1 = Λ2A⊗ l.S2l ⊂ V1, W ′

1 = T0(A⊗3)⊗ (l} [l, l]) ⊂ V1,

W3 = IA ⊗ (l ∧ [l, l]) ⊂ V3, W12 = Im(f) ⊂ V1 ⊕ V2.

Here l.S2l is the kernel of the natural projection S2l→ Kill(l).
Neeb and Wagemann then give applications of this theorem to the existence

of “coupled cocycles”, in relation to the Koszul map; see Corollary B.11 for a
statement in terms of the Koszul map.

The quotient V3/W3 is IA ⊗Λ2(H1(l)). Thus the 2-homology can be described
as

H2(A⊗ l) =
(

(V1 ⊕ V2)/(W1 +W ′
1 + Im(f))

)
⊕
(
IA ⊗ Λ2(H1(l))

)
Define

E1 = V1/W1 = Λ2(A)⊗Kill(l), E2 = V2 = A⊗ Z2(l).

Note that f1 composed with the projection onto E1 factors through A⊗Λ3l, there
the component Λ3l → Kill(l) is nothing else than the Koszul map η = ηl of l;
note that f2 already factors through A⊗ Λ3l.

In addition, define M = (A⊕A⊗3)⊗Λ3l and a K-linear map u : M → E1⊕E2

by u = (u1, u2) = (v1 ⊕ v′1, u2 ⊕ 0) with

v1

(
a, (b⊗ c⊗ d))⊗ (x ∧ y ∧ z)

)
=(a ∧ 1)⊗ η(x ∧ y ∧ z);

v′1
(
a, (b⊗ c⊗ d))⊗ (x ∧ y ∧ z)

)
=T0(b⊗ c⊗ d)⊗ η(x ∧ y ∧ z);

u2

(
a, (b⊗ c⊗ d))⊗ (x ∧ y ∧ z)

)
=a⊗ ∂(x ∧ y ∧ z).

Theorem B.3 (Neeb-Wagemann, first restatement). There is a canonical linear
isomorphism

H2(A⊗ l) '
(
(E1 ⊕ E2)/Im(u)

)
⊕
(
IA ⊗ Λ2H1(l)

)
.

Note that since the kernels of (v1, u2) and (v′1, 0) generate M , clearly Im(u) =
Im(v1, u2) + Im(v′1); the first term being the projection of Im(f) and the second
being the projection of W ′

1. Therefore the above theorem indeed follows from
Theorem B.2.

Now to make the theorem more explicit, we have to describe coker(u). The
following general linear algebra lemma is immediate, but is useful to have in mind
to follow the argument.

Lemma B.4. Let u = (u1, u2) : M → E1 ⊕ E2 be a linear map between vector
spaces. Then there is a canonical exact sequence:

0→M/(Ker(u1) + Ker(u2))→ coker(u)→ coker(u1)⊕ coker(u2)→ 0.

Moreover, there are canonical isomorphisms

M/(Ker(u1) + Ker(u2)) ' Im(u1)/u1(Ker(u2)) ' Im(u2)/u2(Ker(u1)).
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Besides, the image of u splits according to the direct decomposition if and only
if the kernel vanishes, i.e. M = Ker(u1) + Ker(u2).

Proof. (Note that all this holds for modules over an arbitrary ring, and probably
can be adapted to make sense in an arbitrary abelian category.)

Consider the map (u1, 0) and view it after composition as a map u′ from M
to coker(u). Then u′ vanishes on both Ker(u1) and Ker(u2) and hence factors
through a map u′′ : M/(Ker(u1) + Ker(u2)) → coker(u). Obviously composing
with the projection onto coker(u1)⊕coker(u2) yields zero. Let us check exactness:
suppose that some element y = (y1, y2) ∈ E1⊕E2 has a trivial image in coker(u1)⊕
coker(u2). This means that we can write (y1, y2) = (u1(x1), u2(x2)) for some
x1, x2 ∈ M . Then y − u(x2) = (u1(x1 − x2), 0); thus the image of y in coker(u)
belongs to the image of u′′.

For the second statement, consider the map u1 and view it, after compo-
sition, as a map M → Im(u1)/u1(Ker(u2)). Then it obviously vanishes on

both Ker(u1) and Ker(u2) and thus induces a map M/(Ker(u1) + Ker(u2))
v→

Im(u1)/u1(Ker(u2)); this map is surjective by definition; if x ∈ M represents an
element in the kernel, it means that u1(x) = u1(y) for some y ∈ Ker(u2) and thus
x = (x− y) + y ∈ Ker(u1) + Ker(u1); thus v is an isomorphism.

As for the third assertion, the image splits by definition if and only if Im(u) =
(Im(u) ∩ E1) + (Im(u) ∩ E2). Since u−1(Im(u) ∩ Ei) = Ker(ui), and since the
inverse image map u−1 between power sets is injective on Im(u), this is equivalent
to the requirement M = Ker(u1) + Ker(u2). �

Therefore, turning back to the setting of Theorem B.3, we have to describe
all three subspaces given by Lemma B.4: the cokernel of u1 = v1 ⊕ v′1 and u2,
and the quotient M/(Ker(u1) + Ker(u2)). The easiest is coker(u2), which is just
A⊗H2(l). The cokernel of u1 can be described by either of the following natural

exact sequences: recall from §2.6 that Kill(3)(l) is defined as the image of l⊗ [l, l]
in Kill(l):

0→ HC1(A)⊗Kill(3)(l)→ coker(u1)→ Λ2A⊗ S2(H1(l))→ 0;

0→ T (A⊗3)⊗ S2(H1(l))→ coker(u1)→ HC1(A)⊗Kill(l)→ 0.

Actually coker(u1) is an iterated extension of the three modules T (A⊗3) ⊗
S2(H1(l)), HC1(A) ⊗ S2(H1(l)), and HC1(A) ⊗ Kill(3)(l), refining both of these
exact sequences. Note that if H1(l) = 0 then only one term remains, namely the

most interesting one: HC1(A)⊗Kill(3)(l).
Finally, we have to describe the kernel M/(Ker(u1) + Ker(u2)). Lemma B.4

provides 3 descriptions of this space. The first description is just by using the
definition. We have, in the decomposition M = A⊗ Λ3l⊕ A⊗3 ⊗ l

Ker(u2) = A⊗ Z3(l)⊕ A⊗3 ⊗ Λ3l,
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thus

M/Ker(u2) ' A⊗B2(l)⊕ {0}.
To describe the kernel of u1, we write w(a⊕(b⊗c⊗d)) = (a∧1)⊕T0(b⊗c⊗d),

so that u1 = w ⊗ η. Then, we have

Ker(u1) = Ker(w)⊗ Λ3l + (A⊕ A⊗3)⊗Ker(η);

thus

Ker(u1) + Ker(u2) = A⊗ (Z3(l) + Ker η) + (A⊗3 + Ker(w))⊗ Λ3l

To describe A⊗3 + Ker(w) ⊂ A⊕ A⊗3, it is enough to compute its projection on
A, which is precisely the kernel A0 of the map a 7→ [a ∧ 1] from A to HH1(A).
Thus

Ker(u1) + Ker(u2) = A⊗ (Z3(l) + Ker η) + (A0 ⊕ A⊗3)⊗ Λ3l;

and hence we have

M/(Ker(u1) + Ker(u2)) =
(
A/A0 ⊗

(
Λ3l/(Z3(l) + Ker η)

))
⊕ {0}.

In particular, using the isomorphisms of Lemma B.4, we have natural isomor-
phisms

M/(Ker(u1) + Ker(u2)) ' A/A0 ⊗B2(l)/∂3(Ker η) ' A/A0 ⊗Kill(3)(l)/Im(η̄).

Thus we have the following corollary

Corollary B.5. The space H2(A ⊗ l) is an iterated extension of the following
spaces:

• HC1(A)⊗Kill(3)(l);

• (A/A0)⊗Kill(3)(l)/Im(η̄);
• Λ2A⊗ S2(H1(l));
• IA ⊗ Λ2(H1(l));
• A⊗H2(l).

The natural projection H2(A ⊗ l) → A ⊗H2(l) is surjective and its kernel is an
iterated extension of the above terms except the last one.

Note that the surjectivity statement is immediate, although it may fail in
higher homology. The above statement significantly simplifies when H1 vanishes,
but since this is a quite strong restriction, let us fit it into the graded setting:
we assume that the Lie algebra l =

⊕
β∈B lβ is graded in an abelian group B.

(All what follows encompasses the non-graded setting just by picking a grading
concentrated in degree zero: l0 = l.) This induces a grading of A⊗ l =

⊕
β∈B A⊗

lβ, and on all exterior algebras and homology spaces; the natural maps (boundary,
Koszul map. . . ) preserving the grading. Note that the condition H1(l)β = {0}
means that lβ ⊂ [l, l].
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Corollary B.6. Fix a weight β ∈ B and assume that S2(H1(l))β = {0} (i.e.,
H1(l) has no opposite weights). Then the space H2(A⊗l)β is an iterated extension
of the following spaces:

• HC1(A)⊗Kill(l)β;
• (A/A0)⊗

(
Kill(l)/Im(η̄l)

)
β
;

• A⊗H2(l)β.

The natural projection H2(A ⊗ l)β → A ⊗ H2(l)β is surjective and its kernel
K(A, l)β in degree β lies in each of the following two exact sequences:

0→ (A/A0)⊗ coker(η̄l)β → K(A, l)β → HC1(A)⊗Kill(l)β → 0,

0→ HC1(A)⊗ Im(η̄l)β → K(A, l)β → HH1(A)⊗ coker(η̄l)β → 0,

Remark B.7. By the Pirashvili exact sequence ([Pir], see also the introduction),
the cokernel Kill(l)/Im(η̄l)β can be identified with the kernel of the projection
H1(l, l)β → H2(l)β. In particular, when H2(l)β = {0}, the surjectivity of η̄l in
degree β is equivalent to the vanishing of H1(l, l)β.

Remark B.8. We have A/A0 6= {0} if and only if HH1(A) 6= {0}. Indeed, A/A0 ⊂
HH1(A) so one direction is obvious. Conversely, if HH1(A) 6= {0}, then there
exists a nonzero derivation d on A [Lod, Proposition 1.1.10]; this implies that, for
x /∈ Ker(d), the element x /∈ A0 (use that the map a∧ b 7→ ad(b)− bd(a) vanishes
on T0(A⊗3) and maps x ∧ 1 to −d(x) 6= 0).

Corollary B.9. Suppose that the K-algebra A is not reduced to {0} or K. Fix a
weight β ∈ B. Then H2(A⊗ l)β = {0} if and only if S2(H1(l))β = H2(l)β = {0}
and

• HH1(A) = {0} or
• Kill(l)β = {0} or
• η̄l is surjective in degree β and HC1(A) = {0}.

Also, the kernel of Ker(H2(A ⊗ l)β → A ⊗ H2(l)β) is trivial exactly under the
same condition, except that we drop the condition of vanishing of H2(l)β.

Proof. If these spaces all vanish, observe that Λ2(H1(l))β vanishes as well, and
hence all subfactors in Corollary B.6 vanish and and therefore H2(A⊗ l) = {0},
and similarly if all but H2 vanish, then the kernel vanishes.

Conversely, suppose that one of the conditions fails:

• Suppose H2(l)β 6= {0}. Since H2(A ⊗ l)β → A ⊗ H2(l)β is surjective, it
follows that H2(A⊗ l)β 6= {0}.
• Suppose S2(H1(l))β 6= {0}. By the assumption on A, we have Λ2A 6= {0},

and hence the third term in Corollary B.5 is nonzero.
• Suppose that all three additional conditions fail and S2(H1(l))β = {0}.

We have two cases:
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– HH1(A) 6= {0}, Kill(l)β 6= {0}, and η̄l is not surjective in degree β.
Then by Remark B.8, A/A0 is nonzero. Hence the second subfactor
in Corollary B.5 is nonzero.

– HC1(A) 6= {0}, Kill(l)β 6= {0}. Then the first subfactor in Corollary
B.5 is nonzero.

�

Remark B.10. Under the assumptions of Corollary B.9, we have IA 6= {0},
which implies that the fourth term in Corollary B.5 is also nonzero in case
Λ2(H1(l))β 6= {0}. Indeed, pick x ∈ A r K1A, which exists by assumption.
If the K-algebra K ′ generated by x is finite-dimensional as a vector space over
K, then the multiplication map S2(K ′)→ K ′ cannot be injective by a dimension
argument. Otherwise, x is transcendent and then x2 } x2 − x } x3 is a nonzero
element in IA.

Also, using the last statement of Lemma B.4, we have:

Corollary B.11. The space of 2-boundaries B2(A ⊗ l)β splits according to the

decomposition of Proposition B.1 if and only if Im(η̄l)β = Kill(3)(l)β.

The above splitting property is called “to have no nonzero coupled 2-cocycles”
in [NW]. (Corollary B.11 is essentially equivalent to Theorem 4.7 in [NW].)

Notwithstanding the semisimple case, the condition that η̄ is zero is very fre-
quent (especially at a fixed weight of a given grading since, for K of characteristic
zero, it holds notably when β is not a torsion element in B, by Theorem 1.2).
Therefore let us make the corollaries explicit in this case:

We begin by Corollary B.5: then we can glue the first two terms.

Corollary B.12. Fix a weight β ∈ B and suppose that η̄ is zero in degree β.
Then the kernel K(A, l)β of the surjective map H2(A ⊗ l)β → A ⊗H2(l)β lies in
an exact sequence

0→ T0(A⊗3)⊗ S2(H1(l))β → K(A, l)β

→
(
HH1(A)⊗Kill(l)β

)
⊕
(
IA ⊗ Λ2(H1(l))β

)
→ 0;

Corollary B.13. Fix a weight β ∈ B and assume that S2(H1(l))β = {0} and
that η̄ is zero in degree β. Then the space H2(A⊗ l)β lies in an exact sequence

0→ HH1(A)⊗Kill(l)β → H2(A⊗ l)β → A⊗H2(l)β → 0.

Let us give a corollary of Theorem B.3 in an even more particular case (which
in a sense is the less interesting one, but ought to be written because it is often
applicable), namely when Kill(3)(l)β = {0}.

Corollary B.14. Suppose that Kill(3)(l)β = {0}. Then we have an isomorphism

H2(A⊗ l)β '
(
Λ2(A)⊗ S2(H1(l))β

)
⊕
(
A⊗H2(l)β

)
⊕
(
IA ⊗ Λ2(H1(l))β

)
.
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Proof. The assumption means that the Koszul map (not only the reduced one)
vanishes in degree β, and also means that Kill(l)β = S2(H1(l))β. The result
immediately follows. �

Example B.15. A simple example is the 2-dimensional non-abelian Lie algebra l.
This Lie algebra is convenient to be seen with a grading in {0, 1}. Then both
its 1-homology and its Killing module are concentrated in degree zero; its second
and third homology vanish. By Corollary B.9, it follows that H2(A⊗ l)n = 0 for
n = 1, 2 regardless of A. In degree zero, we just obtain the same as in the case
of an abelian Lie algebra, namely Λ2(A⊗ l0) ' Λ2(A). Hence

H2(A⊗ l) = H2(A⊗ l)0 ' Λ2(A),

where an isomorphism Λ2(A)→ H2(A⊗ l) is given by the map λ∧µ 7→ λx∧µx,
where x is a fixed nonzero element of l0.

Example B.16. Let l be a Carnot-graded Lie algebra. Then S2(H1(l)) is concen-
trated in degree 2. Thus for n ≥ 3, by Corollary B.12 (and Corollary 1.5), we
have an exact sequence

0→ HH1(A)⊗Kill(l)n → H2(A⊗ l)n → A⊗H2(l)n → 0,

the left hand homomorphism being induced by (λ∧µ)⊗(x}y) 7→ λx∧µy−µx∧λy.
(The vanishing of H2(l)n for all n ≥ 3 characterizes when l is quadratically
presented.) In degree 2, Corollary B.14 provides an isomorphism

H2(A⊗ l)2 '
(
Λ2(A)⊗ S2(l1)

)
⊕
(
A⊗H2(l)2

)
⊕
(
IA ⊗ Λ2(l1)

)
.

Example B.17. Let s be a simple complex Lie algebra and l = sns∗ the coadjoint
semidirect product. Then H1(l) = H2(l) = 0 (see the proof of Lemma A.1).
Consider the grading of l in {0, 1}, with s of degree 0 and the abelian ideal s∗

of degree 1. Then Kill(l) is 2-dimensional, namely 1-dimensional in both degree
0 and degree 1 (and zero in degree 2, by a straightforward argument), and η̄ is
surjective in degree 0, and is zero in degree 1 (the former by Koszul’s theorem,
and the latter by an easy instance of Theorem A.1). Therefore, by Corollary B.6,
we have

H2(A⊗ l)0 ' HC1(A),

and by Corollary B.13, we obtain

H2(A⊗ l)1 ' HH1(A), H2(A⊗ l)2 = 0.
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