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Abstract. We prove that every birational action of a group with Property
FW can be regularized.

1. Result and context

Fix a ground algebraically closed field k (see Remark 2.7 as regards arbitrary
ground fields). By prevariety we mean a scheme over k, locally of finite type
over k. That is, a prevariety is a topological space X, endowed with a sheaf
of k-algebras, that is locally isomorphic to an affine variety (namely Spec(A)
for A finitely generated k-algebra with its structural sheaf). A prevariety is
separated if the diagonal embedding X → X × X is a closed immersion (the
product× is over Spec(k)). A variety is a separated prevariety that is noetherian
(equivalently, has a finite cover by affine open subsets). We do not assume it to
be reduced.

For groups, Property FW is a combinatorial restriction on its actions. It
notably holds for groups with Kazhdan’s Property T such as SL3(Z) and its
finite index subgroups; see §4 for the definition. Here we prove the following,
which solves [CC, Question 10.1].

Theorem 1.1. Let X be an irreducible variety. Let G be a group with Property
FW and G→ Bir(X) a birational action. Then there exist an irreducible variety
Y , a bi-regular action G → Aut(Y ), and a G-equivariant birational transforma-
tion X 99K Y .

Remark 1.2. In [CC] in the case of (reduced) surfaces, a stronger assumption is
obtained, namely that Y can be chosen to be projective and smooth. However,
this fails in dimension ≥ 3: (at least) in characteristic zero the monomial copy
of SL3(Z) in Bir(P3) cannot be regularized in any projective model, according to
classification results of Cantat and Zeghib [CZ] in the smooth case, and therefore
in general, using equivariant resolution of singularities. On the other hand, if X
is a normal variety, then Y can be chosen to be quasi-projective, see Remark 2.6.

Using results about finitely generated subgroups of automorphism groups of
varieties [BL], this yields:
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Corollary 1.3. Let G be a finitely generated group with Property FW and X an
irreducible variety. The following two assertions hold.

(1) If G→ Bir(X) is an injective homomorphism, then G is residually finite;
if moreover k has characteristic zero, then G is virtually torsion-free.

(2) If G has no nontrivial finite quotient, then Hom(G,Bir(X)) is trivial. �

The assertions of the corollary (for X reduced in characteristic zero) are known
for groups with Kazhdan’s Property T [CX], using analytic methods. Neverthe-
less, Theorem 1.1 is new also in the case when G has Kazhdan’s Propery T, say
with X smooth over C.

In [CC] a weaker regularization result was established. Namely it was proved
(assuming X reduced) that one can find such Y with an action by “pseudo-
automorphisms”, i.e., for which the birational maps are defined as isomorphisms
between complements of closed subsets of codimension ≥ 2. In a sense, this
is the first step towards the above regularization theorem. Nevertheless, our
approach, even in this first step, is different and makes use of Exel’s notion of
partial action. It allows to embed every variety X as a dense open subset of a
prevariety X̂, so that Bir(X) naturally acts on X̂ in a bi-regular way restricting
to the given birational action on X (see Proposition 2.3). At this point we reach

a regularization result in a somewhat insane generality; the cost being that X̂ is
usually neither separated nor noetherian (it is obtained by gluing copies of X,
indexed by Bir(X), over open subsets). The work then consists in using Property

FW so as to find in X̂ a dense open invariant subvariety.
There are two parts in the proof. The first part consists in finding an open

noetherian G-invariant subset. The second part relies on a very general lemma:
inside this noetherian open subset, one produces a G-invariant separated subset.
The first part is where Property FW is used, and all the work is done inside a
prevariety that is not generally separated nor noetherian (although it has a dense
open affine subvariety).

Remark 1.4. When considering birational groups, it is usual to assume irreducible
varieties to be reduced, but this sounds often unnecessary. For X = Spec(A) for
some finitely generated k-algebra A and arbitrary field k, assuming that X is
irreducible means that the nilradical R of A is a prime ideal (the unique minimal
one), and Bir(X) is naturally isomorphic to Aut

k-alg(S−1A), for S = ArR; here

S−1A is the total ring of fractions. There is a canonical homomorphism Bir(X)→
Bir(Xred) which is usually not injective, for instance for A = k[x, y, z]/(z2) (in
which case it is surjective).

2. Discussion, main concepts, and restatement of the main result

Main convention: for a variety X, we insist that we use the schematic point of
view, for which all irreducible subvarieties are viewed as elements of X.
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It is useful to give a precise definition of a birational transformation, as we do
not want to define it as an equivalence class. Let X, Y be irreducible (possibly
not reduced) varieties. Namely, we define a birational transformation u :
X 99K Y as a closed irreducible subvariety f of X × Y , such that there exist
open dense subvarieties U ⊂ X, U ′ ⊂ Y , such that f ∩ (U × U ′) is the graph of
an isomorphism U → U ′. Then it is a standard verification that there exists a
unique maximal such pair (Uf , U

′
f ). Indeed, there exists a unique maximal open

subset Vf such that f ∩ (Vf × Y ) is the graph of a regular map Vf → Y , and
Uf = {x ∈ Vf : f(x) ∈ Vf−1}, where for x ∈ Vf , the unique y ∈ Y such that
(x, y) ∈ f is denoted by f(x).

A basic fact is the following: if X, Y, Z are irreducible varieties, with birational

transformations X
f
99K Y

g
99K Z, the composition g ◦ f can be defined as the

intersection over all dense open subsets f ′, g′ of f and g of the closure of g′f ′ =
{(x, z) ∈ X × Z : ∃y ∈ Y : (x, y) ∈ f, (y, z) ∈ g}. Then Ug◦f ⊃ Uf ∩ f−1(Ug ∩
Uf−1). This implies, for fixed X, that mapping f ∈ Bir(X) to the partial bijection
f : Uf → Uf−1 is a partial action in the sense of Exel [Ex]:

Definition 2.1. A partial action of a group G on a set X is a map α from G
to the set of partial bijections of X: α(g) : Dg → D′g, satisfying: α(1) = idX ,

α(g−1) = α(g)−1, and α(gh) ⊃ α(g)α(h) for all g, h ∈ G. We call X a partial
G-set.

Here Dg and D′g are called domain and codomain of g, and D′g = Dg−1 .
The last condition means, writing gx = α(g)x, that whenever hx and g(hx) are
defined, then (gh)x is defined and equals g(hx).

Given a partial action of G on X and a subset Y , one obtains by restriction
a partial action of G on Y (called restricted partial action on Y ), defined by
g 7→ α(g)∩(Y ×Y ). In particular, we can construct a partial action starting with
an action and restrict to a subset (the resulting partial action being an action
only when the subset is invariant under the action). This is actually the only
way to produce partial actions:

Proposition 2.2 (Abadie, Kellendonk-Lawson). For every partial action α of

a group G on a set X, there exists a G-set X̂ (also denoted Compl(G,X) or

Compl(G,α) if we need to emphasize G or α) and an injective map X → X̂,
such that X meets every G-orbit, and α is the restricted partial action. Such a
G-set is unique up to a G-equivariant bijection inducing the identity on X.

This G-set X̂ is called universal globalization of the partial G-set X. It is
defined by considering G ×X with G-action g · (h, x) = (gh, x), and identifying
(g, x) and (h, y) whenever there exists k ∈ G such that (kg)x and (kh)y are
defined and equal. The set X is embedded by mapping x to the class of (1, x).
Verifications are direct. From uniqueness, we deduce that if E is a G-set and X
a subset (thus viewed as partial G-set), then its universal globalization can be
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identified with the inclusion of X into GX, the smallest G-invariant subset of E
containing X.

At first glance, this seems to mean that the notion of partial action is pointless,
since it just consists in restricting actions to arbitrary subsets. But the point is
that we deal in practice with explicit partial actions (for instance, of a group
with a birational action on a variety) whose universal globalization is a quite
huge mysterious and complicated object.

The universal globalization inherits local structures from X that are preserved
by the G-action. The first is the topology: if a partial action is topological, i.e., if
for every g ∈ G, the domain Dg is open and α(g) : Dg → D′g is a homeomorphism,

then there is a unique topology on X̂ for which X is open, the induced topology
on X is the original one, and the G-action on X is continuous (i.e., by self-
homeomorphisms – no topology is considered on G). Moreover, if Dg is dense for

every g, then X is dense in X̂. The verifications are straightforward and done in
both [Aba1, Aba2] and [KL].

Second, the structure of prevariety is inherited by X̂:

Proposition 2.3. Let X be an irreducible variety. Let G → Bir(X) be a ho-

momorphism. Then then there exists a unique structure of prevariety on X̂ =
Compl(G,X) for which X is a dense open subset and G acts by (bi-regular) au-
tomorphisms.

(Unique means the topology is unique, and the prevariety structure is unique
up to isomorphism of ringed space being the identity on the basis.)

Proof. Since the partial action of G is topological, there is a unique topology
on X̂ making the G-action continuous. We have a system of charts, indexed by
g ∈ G, given by the action of g−1 on gX, valued in X. This carries the variety
structure to gX, and the change of charts are by definition bi-regular. Whence
the result.

Since domains of definitions are dense, X is dense, as observed above. �

Of course this does not need to be a variety, i.e., does not have to be separated
or noetherian (otherwise all birational actions could be regularized). However,
this yields for free a regularization in the larger class of prevarieties, and Theorem
1.1 follows from the following:

Theorem 2.4. Let G be a group with Property FW and G→ Bir(X) a birational

action. Then there exists a dense G-invariant open subset of X̂ = Compl(G,X)
that is a variety.

Remark 2.5. Clearly every point in X̂ has an open neighborhood isomorphic to
an open subset of X. Hence every local property (e.g., reduced, normal, smooth)
is inherited by it, and also by the given open subvariety.
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Remark 2.6. If X is normal, then this G-invariant open subset U can be chosen to
be quasi-projective (and hence Y can be chosen to be quasi-projective in Theorem

1.1). Indeed then X̂ is normal (since this is a local condition), and so is U .
O. Benoist [B] proved that every normal variety has finitely many maximal open
quasi-projective subvarieties (obviously, it has at least one). Applied inside U , we
can then restrict to the intersection of those, which is a dense open G-invariant
subset.

In general, when the variety U is not normal, I do not know whether it always
holds that Aut(U) preserves a dense open quasi-projective subset.

Remark 2.7. That k is algebraically closed actually plays no role except for the
exposition, and Theorem 2.4 works with an arbitrary field k. Hence Theorem
1.1 holds in the category of k-varieties (separated schemes of finite type over
Spec(k)).

Remark 2.8. For reduced varieties and assuming the field perfect, Theorem 1.1
has independently been obtained by Lonjou and Urech [LU] using explicit con-
structions of CAT(0) cube complexes.

3. The second step: a general lemma

Recall that a topological space is noetherian if every nonempty set of closed
subsets has a minimal element for inclusion, or equivalently if there is no strictly
decreasing sequence of closed subsets.

Lemma 3.1. Let Y be a noetherian topological space. Let G be a group acting
continuously on Y . Let X be a dense open subset of Y . Then there exists a dense
G-invariant open subset U of Y such that for any x, y ∈ U there exists g ∈ G
such that (gx, gy) ∈ X2.

Proof. For x ∈ Y , define

Ux =
{
y ∈ Y : ∃g ∈ G : {gx, gy} ⊂ X

}
.

Note that y ∈ Ux if and only if x ∈ Uy. Also, Ux is the union over all g such that
gx ∈ X, of g−1X; hence Ux is open. Moreover, x 7→ Ux is G-equivariant:

Uhx =
{
y : ∃g : {ghx, gy} ⊂ X

}
=
{
y : ∃g : {gx, gh−1y

}
⊂ X} = hUx.

Let Fx = Y r Ux be its complement (so x 7→ Fx is also G-equivariant), and let
F = Y rX be the complement of X.

For x ∈ X, clearly X ⊂ Ux, that is, Fx ⊂ F . Let U be the set of dense open
subsets of Y ; define

K =
⋂
V ∈U

⋃
x∈V

Fx.

As an intersection of closed subsets, K is closed. Also K ⊂
⋃

x∈X Fx ⊂ F .
Moreover, K is G-invariant, since U is G-invariant and using equivariance of
x 7→ Fx.
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Since Y is noetherian, there exists V ∈ U such that
⋃

x∈V Fx = K. Let W be
the open complement of K; it is G-invariant. Then for every y ∈ W and every
x ∈ V , we have y ∈ Ux. So, for every y ∈ W and x ∈ V we have x ∈ Uy. In other
words, we have V ⊂

⋂
y∈W Uy. The latter intersection is G-invariant; let U ′ be

its interior, thus V ⊂ U ′, so that U ′ is dense and also G-invariant.
For all x ∈ U ′ and all y ∈ W , we have x ∈ Uy. Hence this also holds for all

x, y ∈ U := U ′ ∩W . �

4. Neumann’s lemma and partial actions

The following result plays a key role in the proof.

Theorem 4.1 (B.H. Neumann’s lemma [N]). Let G be a group and E a G-set.
Let F be a finite subset of E not meeting any finite G-orbit in E. Then there
exists g ∈ G such that F ∩ gF is empty.

Given a G-set E, a subset X ⊂ E is said to be G-commensurated if Xrg−1X
is finite for every X (or equivalently X4gX = (X r gX)t g(X r g−1X) is finite
for all g). It is said to be G-transfixed if there exists a G-invariant subset Y
such that Y4X is finite. We say that X is G-transfixed above if moreover
Y can be chosen to contain X. We have (transfixed above) ⇒ (transfixed) ⇒
(commensurated) and these are strict implications in general (for instance for the
left-action of Z on itself, N is commensurated but not transfixed, and a singleton
is not transfixed above but transfixed). We say that X is finely G-transfixed
above if it is G-transfixed above, and moreover every finite G-orbit meeting X is
contained in X. Thus if X is G-transfixed above, then there exists a finite subset
F such that X r F is finely G-transfixed above.

Let G partially act on a set X (so the universal globalization X̂ will play the
role of E). We say that X is G-cofinite if XrDg is finite for every g ∈ G. We say

that X is G-transfixed above if X̂rX is finite. We say that X is G-transfixed
if there exists a finite subset F of X such that X rF , with the restricted partial
action, is G-transfixed above. We say that X is finely G-transfixed above if
X̂ rX is finite and meets no finite orbit.

It is straightforward to check that X is G-cofinite if and only if X is com-
mensurated in E (because the complement X r Dg of the domain of g ∈ G on
X is precisely X r g−1X), and also the transfixing notions match. Therefore,
Neumann’s lemma (Theorem 4.1) can be translated as follows:

Corollary 4.2. Let G be a group and X a partial G-set, that is finely transfixed
above. Let X̂ = Compl(G,X) be the universal globalization. Then there exists

g ∈ G such that X̂ = X ∪ gX.

Proof. Write F = X̂ r X. By assumption, F is finite and intersects no finite
orbit. By Theorem 4.1 there exists g ∈ G such that F ∩ gF = ∅, which is exactly
the required conclusion. �
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Definition 4.3. A group G has Property FW if for every G-set E and com-
mensurated subset X, the subset X is G-transfixed.

Equivalently, G has Property FW if for every partial G-set X, if X is G-cofinite
then X is G-transfixed.

See [C] for a detailed discussion of Property FW; the acronym “FW” stands
for “Fixed point property on space with Walls”. Examples of groups with Prop-
erty FW are groups with Kazhdan’s Property T, and others such as the group
SL2(Z[

√
k]), for k ≥ 2 a positive non-square integer.

5. The proof

Lemma 5.1. Let X be a prevariety in which any two points belong to a common
separated open subset. Then X is separated.

Proof. This is well-known. By assumption, the U × U , for U open separated
subset, cover X ×X. Since being a closed immersion can be checked locally, we
deduce that X → X ×X is a closed immersion. �

For a prevariety X, write X =
⊔

i≥0Xi, where Xi is the set of points that locally
correspond to i-dimensional irreducible subvarieties. Thus X0 is the union of all
closed singletons. Write X≥i =

⋃
j≥iXj.

Proof of Theorem 2.4. By reverse induction, for each i ≤ d = dim(X), we prove
that there exists a finite subset J of G (of cardinal ≤ 2d−i), and a dense open

subset Z of X such that
(⋃

g∈J gZ
)
≥i

is a G-invariant subset of the universal

globalization X̂ = Compl(G,X).
This is clear for i = d, as X≥i = Xi is an invariant singleton. Now, for 0 ≤ i < d

suppose that the claim is proved for i+ 1: there exists J ⊂ G and a dense open
subset Z ⊂ X, such that, denoting Y =

⋃
g∈J gZ: the subset Y≥i+1 is G-invariant,

with |J | ≤ 2d−i−1.

Let K be the complement of Y in X̂. We claim that hKi∩Xi is finite for every
h ∈ G. Indeed, (hK ∩X)≥i+1 being empty, hK ∩X has dimension ≤ i and is a
closed subset of X, and hence (hK ∩X)i is indeed finite.

We next claim that Yi(=
⋃

g∈J gZi) is G-commensurated. Indeed, for g ∈ J ,

we have hKi ∩ gZi ⊂ hKi ∩ gXi = g(g−1hKi ∩ X) finite by the previous claim,
and since it holds for each g ∈ J , we deduce that hKi ∩ Yi is finite, so that Yi is
G-commensurated.

Since G has Property FW, Yi is G-transfixed. Hence there exists a finite subset
L of Yi such that YirL is finely transfixed above (as defined in §4). Thus, no finite

orbit in X̂i meets both L and Yi. Let L̇ be the closed subset of X̂ corresponding
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to L. Define Z ′ = Z r
⋃

g∈J g
−1L̇, and Y ′ =

⋃
g∈J gZ

′ ⊂ Y . Then

Y r Y ′ =
⋃
h∈J

hZ r

(⋃
h∈J

hZ r
(⋃

g∈J

hg−1L̇
))
⊂
⋃

h,g∈J

hg−1L̇,

so YirY ′i ⊂ GL. The inclusions Y ′i ⊂ Yi ⊃ YirL ⊂
⋃

g∈G g(YirL) are all cofinite,

and hence the inclusion Y ′i ⊂
⋃

g∈G g(Yi r L) is cofinite too, so Y ′i is transfixed
above. It is actually finely transfixed above, indeed, otherwise we find a finite
orbit in X̂i meeting Yi r Y ′i , and hence meeting both L and Yi, a contradiction.

By the corollary of Neumann’s lemma, there exists h ∈ G such that Y ′i ∪hY ′i =

Ŷ ′i . That is, Y ′i ∪ hY ′i is G-invariant. For j > i, Y ′j ∪ hY ′j = Y ′j is G-invariant. So
(Y ′ ∪ hY ′)≥i is G-invariant. Since Y ′ ∪ hY ′ =

⋃
g∈J ′ gZ

′ with J ′ = J ∪ hJ , the

induction step is proved (with |J ′| ≤ 2|J | ≤ 2d−i).
Therefore, by the i = 0 case of the claim, there exists a dense open subset

Z ⊂ X and a finite subset J ⊂ G such that Y =
⋃

g∈J gZ is G-invariant. So Y is
noetherian. Hence we can apply Lemma 3.1: Y has dense open subsets U ⊂ Y ′

with Y ′ G-invariant, U separated, and every pair in Y ′ can be G-translated into
U ; by Lemma 5.1 it follows that Y ′ is separated. �
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