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Rue Émile Argand 11, CH-2007 Neuchâtel - Switzerland

Abstract We exhibit rigid rotations of spheres as distortion elements in
groups of diffeomorphisms, thereby answering a question of J. Franks and
M. Handel. We also show that every homeomorphism of a sphere is, in a
suitable sense, as distorted as possible in the group Homeo(Sn) , thought
of as a discrete group.

An appendix by Y. de Cornulier shows that Homeo(Sn) has the strong
boundedness property, recently introduced by G. Bergman. This means that
every action of the discrete group Homeo(Sn) on a metric space by isome-
tries has bounded orbits.

AMS Classification 37C85; 37C05, 22F05, 57S25, 57M60

Keywords Distortion, transformation groups, Pixton action, Bergman prop-
erty

1 Introduction

The study of abstract groups as geometric objects has a long history, but has
been pursued especially vigorously since the work of Gromov (see [7],[8]).
Typically the focus is on finitely presented groups; however, interesting results
have also been obtained from this perspective in the theory of transformation
groups — i.e. groups of homeomorphisms of manifolds.

The topic of this paper is distortion in transformation groups, especially groups
of homeomorphisms of spheres. Informally, an element h in a finitely gener-
ated group G is distorted if the word length of hn grows sublinearly in n . One
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also sometimes says that the translation length of h vanishes. Geometrically,
this corresponds to the condition that the homomorphism from Z to G send-
ing n to hn is not a quasi-isometric embedding.

One can also make sense of the concept of distortion in infinitely generated
groups. An element h in a (not necessarily finitely generated) group G is dis-
torted if there is a finitely generated subgroup H of G containing h such that
h is distorted in H as above. To show that an element is undistorted, one typi-
cally tries to define an appropriate real-valued function on G which is (almost)
subadditive, and which grows linearly on hn . For example, quasi-morphisms
are useful in this respect, and highlight one point of contact between distor-
tion and the theory of bounded cohomology. On the other hand, exhibiting
distortion is typically done ad hoc, and there do not seem to be many very
general or flexible constructions known.

In this paper, we study distortion in groups of homeomorphisms of spheres,
especially groups consisting of transformations with a definite amount of an-
alytic regularity (i.e. C1 or C∞ ). By contrast with [20], [4] or [6], we do not
insist that our groups preserve a probability measure; the considerable addi-
tional flexibility this affords has the consequence that our results have more of
an existential character than those of the papers cited above, exhibiting distor-
tion rather than ruling it out.

1.1 Statement of results

Notation 1.1 The letters G, H will denote groups of some sort, and S a (sym-
metric) generating set, although Sn denotes the n-sphere. If G is a group, and
H is a subgroup, we write H < G . The group G will often be a transformation
group on some manifold, and a typical element h will be a homeomorphism or
diffeomorphism of some analytic quality. The letters i, j, n will denote integers,
r will denote a degree of smoothness, and g will denote a growth function (i.e.
a function g : N → N). c and k will usually denote (implicit) constants in
some inequality. We let R+ denote the non-negative real numbers. Other nota-
tion will be introduced as needed.

In §2 and §3 we summarize some basic definitions and study examples of dis-
torted and undistorted elements in various groups.

In §4 we exhibit rigid rotations of S2 as distortion elements in the group of C∞

diffeomorphisms of the sphere.

Our main result in this section is:
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Theorem A For any angle θ ∈ [0, 2π) the rigid rotation Rθ of S2 is a dis-
tortion element in a finitely generated subgroup of Diff∞(S2) . Moreover, the
distortion function of Rθ can be chosen to grow faster than any given function.

Here Rθ is a clockwise rotation about a fixed axis through angle θ . To say
that the distortion function grows faster than any given function means that
for any g : N → N we can find a finitely generated group G < Diff∞(S2)
for which there are words of length ∼ ni in the generating set which express
powers R f (ni)

θ of Rθ for some sequence ni → ∞ , where f (n) > g(n) for all
sufficiently large n ∈ N . In this case we say that the distortion function grows
faster than g .

This answers a question of John Franks and Michael Handel, motivated by
results in their paper [4].

In §5 we go down a dimension, and study rigid rotations of S1 . Our main
result here is:

Theorem B For any angle θ ∈ [0, 2π) the rigid rotation Rθ of S1 is a distortion
element in a finitely generated subgroup of Diff1(S1) . Moreover, the distortion
function of Rθ can be chosen to grow faster than any given function.

The proof of Theorem B makes use of Pixton’s results from [18], and the ar-
guments should be familiar to people working in the theory of foliations. It
should be remarked that our construction cannot be made C2 , and it appears
to be unknown whether a rigid rotation of S1 is distorted in Diff∞(S1) (or even
in Diff2(S1)).

Remark 1.2 The possibility of proving Theorem B was pointed out to the first
author by Franks and Handel, after reading an early version of this paper.

In §6 we relax our analytic conditions completely, and study distortion in the
full group of homeomorphisms of Sn . Here our main result is quite general:

Theorem C Fix n ≥ 1 . Let h1, h2, . . . be any countable subset of Homeo(Sn) ,
and g1, g2, · · · : N → N any countable collection of growth functions. Then
there is a finitely generated subgroup H of Homeo(Sn) (depending on {hi}
and {gi}) such that every hi is simultaneously distorted in H . Moreover, the
distortion function of hi grows faster than gi .
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The proof of Theorem C uses the full power of the Kirby–Siebenmann theory of
homeomorphisms of manifolds for a key factorization step. It is an interesting
question whether one can exhibit distortion in an arbitrary homeomorphism
of the sphere without recourse to such sophisticated technology.

Finally, in an appendix, Yves de Cornulier uses the proof of Theorem C to
show that the group Homeo(Sn) is strongly bounded. Here an abstract group
G is said to be strongly bounded if every symmetric subadditive non-negative
real-valued function on G is bounded. A countable group has this property if
and only if it is finite.

1.2 Acknowledgements

The first author would like to thank Michael Handel for suggesting the prob-
lem which motivated Theorem A, and to thank him and John Franks for read-
ing preliminary versions of this paper, and for making clarifications and cor-
rections. He would also like to thank Daniel Allcock for some useful com-
ments.

2 Distortion elements

2.1 Conjugation notation

Notation 2.1 For a group G and elements a, b ∈ G , we abbreviate the conju-
gate b−1ab by

ab := b−1ab

Notice with this convention that

(ab)c = abc

2.2 Basic definitions

Definition 2.2 Let G be a finitely generated group, and let S be a finite gen-
erating set. By convention, we assume S = S−1 . Given h ∈ G , the length of h
with respect to S is the minimum integer n such that h can be expressed as a
product

h = s1s2 · · · sn
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where each si ∈ S . We write
`S(h) = n

By convention, we take `S(1) = 0.

Note that `S is a subadditive function; that is, for all h1, h2 ∈ G ,

`S(h1h2) ≤ `S(h1) + `S(h2)

Moreover, it is non-negative and symmetric; i.e. `(h) = `(h−1) . This motivates
the definition of a length function on a group G .

Definition 2.3 Let G be a group. A length function on G is a function L : G →
R+ satisfying L(1) = 0 which is symmetric and subadditive.

The function `S depends on the choice of generating set S , but only up to a
multiplicative constant:

Lemma 2.4 If S1, S2 are two finite generating sets for G , then there is a con-
stant c ≥ 1 such that

1
c
`S2(h) ≤ `S1(h) ≤ c`S2(h)

for all h ∈ G .

Proof Each s ∈ S1 can be expressed as a word of length n(s) in the elements
of S2 , and vice versa. Then take c to be the maximum of the n(s) over all
s ∈ S1 ∪ S2 .

Definition 2.5 Let G be a finitely generated group, and let S be a symmetric
finite generating set as above. The translation length of an element h ∈ G ,
denoted ‖h‖S , is the limit

‖h‖S := lim
n→∞

`S(hn)

n
An element h ∈ G is a distortion element if the translation length is 0.

Remark 2.6 Note that by the subadditivity property of `S , the limit exists.
Moreover, by Lemma 2.4, the property of being a distortion element is inde-
pendent of the choice of generating set S .

Remark 2.7 With this definition, torsion elements are distortion elements.
Some authors (including [4]) explicitly require distortion elements to be non-
torsion.
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Sometimes, we shall pay attention to the growth rate of `S(hn) as a function
of n to make qualitative distinctions between different kinds of distortion ele-
ments. If h is not torsion, we define the distortion function to be the function

DS,h : N → N

defined by the property

DS,h(n) = max{i | `S(hi) ≤ n}

We can remove the dependence of this function on S as follows. For two func-
tions

f , g : N → N

we write f - g if there is a constant k ≥ 1 such that

f (n) ≤ kg(kn + k) + k for all n ∈ N

and then write f ∼ g if f - g and g - f . It is straightforward to see that
- is transitive, and that ∼ is an equivalence relation. In case f ∼ g , we say
that f , g are quasi-equivalent. With this definition, the quasi-equivalence class
of DS,h is independent of S , and may be denoted Dh .

We are also interested in comparing growth rates in a cofinal sense:

Definition 2.8 Given g : N → N we say that the distortion function of h ∈ G
(with respect to a generating set S) grows faster than g if there is a sequence
ni → ∞ and a function f : N → N such that f (n) > g(n) for all sufficiently
large n , and such that

`S(h f (ni)) ≤ ni

We say for example that h has quadratic distortion if g(n) = n2 or exponential
distortion if g(n) = en as above.

Finally, we may define a distortion element in an arbitrary group:

Definition 2.9 Let G be a group. An element h ∈ G is a distortion element
if there is a finitely generated subgroup H < G with h ∈ H such that h is a
distortion element in H .

Note that for such an element h , the quasi-equivalence class of the distortion
function may certainly depend on H .
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2.3 Examples

Example 2.10 In Z only the identity element is distorted.

Example 2.11 If φ : G → H is a homomorphism, and φ(h) is not distorted in
H , then h is not distorted in G .

Example 2.12 If L : G → R+ is a length function, and

lim
n→∞

L(hn)

n
> 0

then h is not distorted. More generally, a length function gives a lower bound
for word length with respect to any finite generating set, and therefore and
upper bound on distortion. E.g. if L(hn) grows like log(n) then h is no more
than exponentially distorted.

The next few examples treat distortion in linear groups.

Example 2.13 Let G = GL(n, C) and define L : G → R+ by

L(A) = log of the max of the operator norms of A and A−1

Then L is a length function. It follows that if A has an eigenvalue with abso-
lute value 6= 1 then A is not distorted.

Example 2.14 Let σ ∈ Gal(C/Q) be a Galois automorphism of C . Then A is
distorted in GL(n, C) if and only if σ(A) is. It follows that if A is distorted,
then every eigenvalue must be algebraic, with all conjugates on the unit circle.

Example 2.15 Let G < GL(n, C) be a finitely generated subgroup with entries
in a number field K . We may construct length functions from valuations asso-
ciated to finite primes in the ring of integers of K . If x ∈ K then v(x) = 0 for
all discrete valuations v on K if and only if x is a unit. A unit in a number field
with absolute value 1 is a root of unity; c.f. [13]. Combined with Example 2.13
and Example 2.14, one can show that an arbitrary element A ∈ GL(n, C) is
distorted if and only if every eigenvalue of A is a root of unity. Note that the
distortion of a non-torsion element is at most exponential. See [14] for details.

Example 2.16 In the Baumslag-Solitar group 〈a, b | aba−1 = b2〉 the element b
has exponential distortion. Similarly, in the group

〈a, b, c | aba−1 = b2, bcb−1 = c2〉

the element c has doubly-exponential distortion. Note that as a corollary, we
deduce that this second group is not linear. This example and others are men-
tioned in [8], Chapter 3.
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Example 2.17 Let G be a group. A quasi-morphism is a map φ : G → R such
that there is a constant c > 0 for which

|φ(h1) + φ(h2)− φ(h1h2)| ≤ c
for all h1, h2 ∈ G . If |φ(h)| > c then h is not distorted.

Quasi-morphisms are intimately related to (second) bounded cohomology. See
e.g. [6] for a salient discussion.

3 Distortion in transformation groups

3.1 Transformation groups

Notation 3.1 For a compact C∞ manifold M , we denote the group of home-
omorphisms of M by Homeo(M) , and the group of Cr diffeomorphisms by
Diffr(M) , where r = ∞ is possible. Here a homeomorphism h is in Diffr(M)
if both it and its inverse are Cr . Note that this implies dh has full rank every-
where. If we wish to restrict to orientation-preserving subgroups, we denote
this by a + superscript.

3.2 Distortion in Diff1

Suppose M is a smooth compact Riemannian manifold, and h ∈ Diff1(M) . We
define the following norm:

‖dh‖ := log sup
v∈UTM

|dh(v)|

where |dh(v)| denotes the length of dh(v) , and the supremum is taken over all
vectors v in the unit tangent bundle of M .

Note that since h is a diffeomorphism and M is compact, dh cannot be strictly
contracting at every point, and therefore ‖dh‖ ≥ 0. If we define

‖dh‖+ = max(‖dh‖, ‖d(h−1 )‖)

then it is clear that ‖d · ‖+ is a length function on Diff1(M) . In general, there-
fore, the growth rate of ‖dhn‖+ as a function of n puts an upper bound on the
distortion function of h in any finitely generated subgroup of Diff1(M) .

Note if we choose two distinct Riemannian metrics on M , the length functions
‖d · ‖+ they define will be quasi-equivalent, by compactness. On the other
hand, if M is non-compact, different quasi-isometry classes of Riemannian
metrics may give rise to qualitatively different length functions.
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Example 3.2 Suppose h has a fixed point p and dh|TpM has an eigenvalue
with absolute value 6= 1. Then h is not distorted in Diff1(M) .

Example 3.3 Oseledec’s theorem (see [19], Chapter 2) says that for h ∈ Diff1(M)
where M is a compact manifold, and for µ an ergodic h-invariant probability
measure on M , there are real numbers λ1 > · · · > λk called Lyapunov expo-
nents, and a µ-measurable dh-invariant splitting TM = ⊕k

i=1Ei such that

lim
n→∞

1
n

log |dhn(v)| = λl

for almost every v ∈ ⊕k
i=lE

i but not in ⊕k
i=l+1Ei . In particular, if λ1 > 0, then

h is undistorted in Diff1(M) .

Example 3.4 Let M be a compact manifold, and suppose h ∈ Diff1(M) has
positive topological entropy. Then there is an ergodic h-invariant probability
measure µ for which h has positive µ-entropy. The Pesin–Ruelle inequality
(see [19], Chapter 3) says

∑
λi>0

λi ≥ µ-entropy of h

where the λi are the Lyapunov exponents for h with respect to the measure µ .
It follows that some Lyapunov exponent λ1 for µ is positive, and therefore, as
in Example 3.3, h is undistorted in Diff1(M) .

By contrast, if ‖dhn‖+ is bounded independently of n , then the group 〈h〉
is equicontinuous, and is precompact in the group of Lipschitz homeomor-
phisms of M , by the Arzela–Ascoli theorem. By [22] (i.e. the Hilbert–Smith
conjecture for Lipschitz actions), a compact group of Lipschitz homeomor-
phisms of a smooth manifold M is a Lie group. In our case, this group is
abelian, since it contains a dense abelian subgroup 〈h〉 , and is therefore (up
to finite index) a finite dimensional torus. Thus the uniformly equicontinuous
case reduces to that of torus actions.

A key case to understand in this context is when the torus in question is S1 ,
and the simplest example is that of a rigid rotation of a sphere. It is this exam-
ple which we study in the next few sections.
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4 Rotations of S2

4.1 The group G

We describe a particular explicit group G < Diff∞(S2) which will be important
in the sequel. By stereographic projection, we may identify S2 conformally
with C∪∞ .

Let T be the similarity
T : z → 2z

Then 〈T〉 acts discretely and properly discontinuously on C∗ with quotient
a (topological) torus. A fundamental domain for the action is the annulus A
defined by

A = {z ∈ C | 1 ≤ |z| ≤ 2}

We let ∂A+ and ∂A− denote the components |z| = 2 and |z| = 1 of ∂A re-
spectively. We define a disk D by

D = {z ∈ C | |z − 3/2| ≤ 1/4}

We let F be a C∞ diffeomorphism with the following properties:

• F is the identity outside the annulus 0.99 ≤ |z| ≤ 2.01
• F restricted to the annulus 1.01 ≤ |z| ≤ 1.99 agrees with the rotation

z → −z

We define G = 〈T, F〉 , and think of it as a subgroup of Diff∞(S2) fixing 0
and ∞ . Notice that for every h ∈ G either h(D) is disjoint from D , or else
h|D = Id|D . If GD denotes the stabilizer of D in G , then we may identify the
orbit GD with the product D × S where S is the set of (right) cosets of the
subgroup GD in G . Note that S is a set with a (left) G -action. This action
determines the action of G on D × S .

An explicit set of coset representatives for S is the set of elements of the form
Tn and FTn for all n ∈ Z .

4.2 Wreath products

Let G, S and D ⊂ S2 be as in §4.1. Let ζt, t ∈ R be a 1-parameter subgroup of
diffeomorphisms of the unit disk with support contained in the interior. After
conjugating by a diffeomorphism, we think of ζ t as a 1-parameter subgroup
of Diff∞(S2) with support contained in the interior of D .
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Definition 4.1 Let RS denote the set of functions from S to R , which can be
thought of as an abelian group with respect to addition. The wreath product
G oS R is the semi-direct product

0 → RS → G oS R → G → 0

where G acts on RS by
f h(s) = f (hs)

for h ∈ G, s ∈ S .

The choice of 1-parameter group ζ t determines a faithful homomorphism

ρ : G oS R → Homeo(S2)

as follows. For f ∈ RS , define

ρ( f ) = ∏
s∈S

ζs
f (s)

where s ∈ G is a coset representative of s ∈ S . Together with the action
of G on S2 (in its capacity as a transformation group) this defines a faithful
homomorphism ρ . For the sake of brevity, in the sequel we will omit ρ , and
think of G oS R itself as a subgroup of Homeo(S2) .

4.3 Analytic quality

Given f ∈ RS , thought of as an element of Homeo(S2) as in §4.2, the analytic
quality of f is a priori only C0 . However, if we can estimate the Cr norm of
f (Tn), f (FTn) as |n| → ∞ , we can improve this a priori estimate.

Notice that any f ∈ RS is C∞ away from 0, ∞ . In particular, any f with finite
support is C∞ on all of S2 . Furthermore, conjugation by T preserves the C1

norm, and blows up the Cr norm by 2r−1 , whereas conjugation by F preserves
the Cr norm for every r . It follows that if we have an estimate

| f (Tn)|, | f (FTn)| = o(2−|n|(r−1))

as |n| → ∞ , then f is Cr at 0 (here our notation | f (s)| just means the absolute
value of f (s) for s ∈ S , where we think of f as a function from S to R). By
the change of co-ordinates z → 1/z one sees that f is also Cr at ∞ under the
same hypothesis, and is therefore Cr on all of S2 .

We summarize this as a lemma:
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Lemma 4.2 Let f ∈ RS be thought of as an element of Homeo(S2) as in §4.2.
Then we have the following estimates:

• If | f (s)| is bounded independently of s ∈ S then f is Lipschitz
• If lims→∞ | f (s)| = 0 then f is C1

• If | f (Tn)|, | f (FTn)| → 0 faster than any exponential (as a function of n),
then f is C∞

4.4 Rotations of S2

For each θ ∈ [0, 2π) we let Rθ denote the rigid rotation of S2 with fixed points
equal to 0 and ∞ . In stereographic co-ordinates,

Rθ : z → eiθz

where z ∈ C∪ ∞ . Notice that Rπ is just multiplication by −1.

For θ ∈ πQ the element Rθ is torsion in Diff∞(S2) . We will show in this
section that Rθ is a distortion element in Diff∞(S2) for arbitrary θ . Moreover,
the distortion function can be taken to grow faster than any given function.

4.5 Factorizing rotations

We can factorize Rθ in a natural way as a product of two diffeomorphisms
whose support is contained in closed subdisks of S2 . This will be important
for some later applications.

Let B (for bump) be a smooth function B : R+ → [0, 1] which satisfies the
following properties:

• B(t) = 0 for t < 1/2 and B(t) = 1 for t > 2
• B(t) + B(1/t) = 1
• B is monotone decreasing and strictly positive on (1/2, 2)

• B is infinitely tangent to the constant function 1 at 2 and to the constant
function 0 at 1/2

For θ ∈ R , define R+
θ by

R+
θ : z → eiB(|z|)θz

and define R−
θ by the identity

R+
θ R−

θ = Rθ
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Notice that as θ varies over R , the set of transformations R−
θ and R+

θ form
smooth subgroups of Diff+(S2) . Moreover, the support of the group {R−

θ | θ ∈
R} is equal to the disk

E− = {z | |z| ≤ 2}

Similarly, the support of R+
θ is the disk (in S2 )

E+ = {z | |z| ≥ 1/2}

Notice the important fact that z → 1/z conjugates R+
−θ to R−

θ for any θ . The
reason for the sign change is that a 1-parameter family of rotations which has a
clockwise sense at one fixed point has an anticlockwise sense at the other fixed
point.

4.6 Construction of the group

Throughout the remainder of this section we assume that θ has been fixed.

We define a diffeomorphism Z which takes care of some bookkeeping for us.
Basically, the diffeomorphism Z lets us move back and forth between the 1-
parameter groups R±

t with support in E± and a 1-parameter group ζ t with
support in D , as in §4.1 and §4.2. The exact details of how this is done are
irrelevant, but we must make an explicit choice, which accounts for the (an-
noying) notational complexity below.

Let Z ∈ Diff∞(S2) satisfy the following properties:

• Z takes D to E− and conjugates R−
t to a 1-parameter subgroup ζ t :

ζt := (R−
t )Z

• Z takes FD to T3E+ (i.e. the image of the disk E+ under the similarity
z → 8z) and conjugates (R+

t )T−3 to ζF
−t :

ζF
−t = (R+

t )T−3Z

The existence of such a diffeomorphism Z follows from the disjointness of
the disks E−, T3E+ and the fact that the subgroups R−

t and R+
−t are abstractly

conjugate, by z → 1/z , as pointed out in §4.5.

Now form the group RS as in §4.2 by means of the subgroup ζ t = (R−
t )Z .

Let ti ∈ R be chosen for all non-negative integers i subject to the following
constraints:
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• ti = niθ mod 2π where ni → ∞ grow as fast as desired (i.e. faster than
some growth function g : N → N we are given in advance)

• ti → 0 faster than any exponential function

Define the element f ∈ RS by

f (Ti) = ti if i ≥ 0, f (Ti) = 0 if i < 0, f (FTi) = 0 for all i

By Lemma 4.2 the function f is in Diff∞(S2) with respect to the identification
of RS with a subgroup of Homeo(S2) .

Now, for any i , the element

fi := f Ti
( f TiF)−1

is contained in RS , and satisfies

fi(s) =





ti if s = Id
−ti if s = F
0 otherwise

We conjugate the fi back by Z−1 , and define

hi := f Z−1

i

Then hi agrees with R−
ti

on E− and agrees with (R+
ti
)T−3 on T3E+ .

Notice that hi preserves the foliation of S2\{0, ∞} by circles of equal latitude,
and acts on each of these circles by a rotation. Let LAT < Diff∞(S2) denote the
group of diffeomorphisms with this property; i.e. informally, LAT preserves
latitude, and acts as a rotation on each circle with a fixed latitude. An element
of LAT can be thought of as a C∞ function

latitude → rotation angle

up to constant functions with values in 2πZ , and any element of LAT can be
recovered pictorially from the graph of this function. Notice that h i ∈ LAT. In
this way, we can abbreviate hi by a picture:

rotation angle

latitude

Figure 1: The element hi ∈ LAT represented pictorially by the graph of a function
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Let LONG < Diff∞(S2) denote the group of diffeomorphisms of the form

z → z · u(|z|)

where u : R+ → R+ is infinitely tangent to the identity at 0 and at ∞ . In-
formally, LONG is the group of diffeomorphisms which reparameterizes the
set of latitudes, without changing longitudes. Then LONG is contained in the
normalizer of the group LAT. The conjugation action of LONG on LAT is
given pictorially by reparameterizing the base of the graph.

We claim that there are elements M1, M2, M3 ∈ LONG such that for any hi we
have an identity

hi(hi)
M1(hi)

M2((hi)
M3)−1 = R2ti

The proof is given graphically by figure 2:

+ +

− =

Figure 2: These figures denote the conjugates of hi , and demonstrate how an appro-
priate algebraic product of these conjugates is equal to R2ti

Now, R2ti = R2ni
θ . Since the ni have been chosen to grow faster than any

function given in advance, we have proved the following theorem:

Theorem A For any angle θ ∈ [0, 2π) the rigid rotation Rθ of S2 is a dis-
tortion element in a finitely generated subgroup of Diff∞(S2) . Moreover, the
distortion function of Rθ can be chosen to grow faster than any given function.

5 Rotations of S1

In this section we show how to modify the construction of §4 to exhibit a rigid
rotation as a distortion element in the group Diff1(S1) . But first, we exhibit a
rotation as a distortion element in the group of Lipschitz homeomorphisms of
S1 .
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5.1 Rotations of S1

As in the previous section, we denote by Rθ the rotation of S1 through angle
θ ∈ [0, 2π) .

The first difference with §4 is that we cannot factorize a 1-parameter group of
rotations as the product of two 1-parameter groups with support contained in
an interval. (One way to see this is to use Poincaré’s rotation number; see e.g.
[25] for a definition and basic properties.)

Let θ be fixed, and we choose ti → 0, ni → ∞ as i ∈ Z goes from 0 to ∞ , with

ti = niθ mod 2π

as in §4.6.

Let I± be two intervals which form an open cover of S1 . Then for ti suffi-
ciently close to 0, we can factorize Rti as a product of two diffeomorphisms
ξi, ζi with support contained in I+, I− respectively. It is clear that we may
choose ξ i, ζi so that their support is exactly equal to an interval, and they are
both conjugate to translations on these intervals.

Let J be an open interval in S1 which we parameterize by arclength as [−1, 1] .
We let T be a diffeomorphism of S1 with support equal to J , and with no fixed
points in J . Then the restriction of T to J is conjugate to a translation, and we
let Ji for i ∈ Z be a tiling of J by fundamental domains for t .

Fix one such interval J0 ⊂ J and let F be a diffeomorphism of S1 with support
equal to J0 , and with no fixed points in J0 . We let J0i for i ∈ Z be a tiling of J0
by fundamental domains for F .

The group G = 〈T, F〉 acts as before on the set of translates of J00 , and for all
h ∈ G , either h(J00) is disjoint from J00 , or else h| J00 = Id|J00 . The interval J00 is
the analogue of the disk D from §4, and the elements T, F are the analogues of
the diffeomorphisms of the same names in that section. The difference is that
if GJ00 denotes the set of translates of J00 by G , then F|GJ00 has infinite order,
rather than order 2.

Now let Z± be diffeomorphisms of S1 taking I± respectively to the interval
J00 . The diffeomorphisms Z± are the analogue of the diffeomorphism Z from
§4; the reason we need two such diffeomorphisms rather than just one is that
the factorization of Rti into ξ iζi is no longer canonical.

We let f + ∈ Homeo(S1) have support contained in J , and define it to be the
product
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f + =
∞

∏
i=0

∞

∏
j=0

ξ
(Z+)−1F−jT−i

i

and similarly, define

f− =
∞

∏
i=0

∞

∏
j=0

ζ
(Z−)−1F−jT−i

i

Notice by Lemma 4.2 that f ± are Lipschitz (though not C1 ).

Then for each i , (
( f +)Ti

(( f +)TiF−1
)−1

)Z+

= ξi

and (
( f−)Ti

(( f +)TiF−1
)−1

)Z−

= ζi

and therefore Rniθ can be expressed as a word of length ∼ 8i in the group

〈 f +, f−, F, T, Z+, Z−〉

Notice that there is no analogue of the groups LAT and LONG, and conse-
quently no analogue of the elements M1, M2, M3 .

5.2 A C1 example

By a slight modification, using a trick of Pixton we can actually improve the
Lipschitz example of §5.1 to a C1 example.

We note that by suitable choice of factorization of Rti we can assume the fol-
lowing:

• The support of ξ i, ζi is exactly equal to I+, I− respectively

• On I+ , each ξ i is conjugate to a translation, and similarly for I−

Now, the elements ξ i for distinct i will not be contained in a fixed 1-parameter
subgroup of Diff∞(I+) , but they are all conjugate into a fixed 1-parameter sub-
group, and similarly for the ζ i . The final condition we insist on is:

• The conjugating maps can be taken to be C1 and converge in the C1

topology to the identity.
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To see that this is possible, observe that for two C∞ diffeomorphisms ε-close
to the identity in the C1 norm, the commutator is ε2 -close to the identity, also
in the C1 norm. So for diffeomorphisms φg defined by the property

φg : θ → θ + g(θ)

for g : S1 → R , we have that

φg1 φg2 ∼ φg1+g2

with error which is comparable in size in the C1 norm to the products of the
C1 norms of g1, g2 . Using this fact, one can readily produce a suitable factor-
ization.

5.3 Pixton actions

Consider an interval I on which a diffeomorphism Y : I → I acts in a man-
ner smoothly conjugate to a translation, with fundamental domains Ii . Given
another diffeomorphism φ : I0 → I0 we form the suspension Φ : I → I by

Φ = ∏
i

φYi

Note that 〈Y, Φ〉 ∼= Z ⊕ Z . If φ restricted to I0 is smoothly conjugate to a
translation, then a priori the action of 〈Y, Φ〉 on I is Lipschitz. However, Pixton
showed that it is topologically conjugate (i.e. by a homeomorphism) to a C1

action.

For the convenience of the reader, we give an outline of the construction of a
Pixton action. One chooses co-ordinates on I so that the ratio |Ii|/|Ii+1| con-
verges to 1 as |i| → ∞ . For instance, near I , the endpoints of the In could
be the harmonic series 1/2, 1/3, . . . so that the ratio of successive lengths is
i/(i + 1) → 1. Then we require Y : Ii → Ii+1 to expand the linear structure
near the endpoints and contract it in the middle, so that the norm of the first
derivative of Φ|Ii+1 is smaller than that of Φ| Ii by a definite amount. Then both
Y and Φ are C1 tangent to the identity at the endpoints of I , and are therefore
C1 on the entire interval. See [18] for rigorous details of this construction. One
should remark that a lemma of Kopell [12] implies that one cannot make the
action C2 .

This construction has the following virtue: if φ is contained in a smooth 1-
parameter subgroup φt , and we form the associated 1-parameter subgroup Φt
so that

〈Y, Φt〉 ∼= Z⊕R

then we can form a Pixton action of this larger group which is C1 .
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5.4 T and X

Naively, one sees that by careful choice of F , one can arrange for the action of
f +|J0 to be C1 . However, to make f + C1 on all of J requires us to modify the
definition slightly.

We will construct X , a diffeomorphism of S1 with support equal to J , conju-
gate to a translation on J , and with fundamental domains Ji , just like T .

We let χt be a 1-parameter subgroup containing ξ0 . For each i , we require that

ξ
(Z+)−1T−iXi

i ∈ (χt)
(Z+)−1

which is possible, by the discussion at the end of §5.2. By choosing co-ordinates
on J suitably as above, we can insist that both X and T are C1 .

Now we choose co-ordinates on J0 so that F and (χt)
(Z+)−1 form a Pixton ac-

tion of Z⊕R there, as in §5.3.

We define

f + =
∞

∏
i=0

∞

∏
j=0

ξ
(Z+)−1T−iXiF−jX−i

i

Note that f + is actually C1 .

Moreover, we have the following formula
((

( f +)Xi
(( f +)Xi F−1

)−1
)X−iTi)Z+

= ξi

Relabelling X as X+ and defining X− similarly in terms of the ζ i , one can
define f− analogously. Putting this together, we have shown

Theorem B For any angle θ ∈ [0, 2π) the rigid rotation Rθ of S1 is a distortion
element in a finitely generated subgroup of Diff1(S1) . Moreover, the distortion
function of Rθ can be chosen to grow faster than any given function.

One should remark that for a rigid rotation R of Sn where n is arbitrary, either
R has fixed points, in which case the construction of §4 shows that R is a
distortion element in Diff∞(Sn) , or else the construction of this section can be
generalized to show that R is a distortion element in Diff1(Sn) , in either case
with distortion growing faster than any given function.
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Remark 5.1 Tsuboi showed in [26] that one can construct Pixton actions which
are C1+α for every α < 1. It is therefore likely that the construction above ex-
hibits a rigid rotation as an arbitrarily badly distorted element in Diff1+α(S1) .

By our discussion in §3.2, we make the following conjecture:

Conjecture 5.2 Let M be a compact smooth manifold, and let h ∈ Diff1(M) .
Then h is a distortion element in Diff1(M) whose distortion function can be
chosen to grow faster than any given function if and only if some finite power
of h is contained in a C1 action of a finite dimensional torus on M .

Note that the “only if” direction follows from §3.2.

6 Distortion in Homeo(Sn)

The group Homeo(M) for an arbitrary manifold M is considerably more com-
plicated than Diff∞(M) or even Diff1(M) . In this section, we first make a cou-
ple of comments about distortion in Homeo(M) in general, and then specialize
to the case of Homeo(Sn) .

6.1 Mapping class groups

For an arbitrary compact manifold M , there is a natural homomorphism

Homeo(M) → Homeo(M)/Homeo0(M) =: MCG(M)

where Homeo0(M) is the normal subgroup consisting of homeomorphisms
isotopic to the identity, and MCG(M) is the mapping class group of M . For
reasonable M , this group is finitely presented, and quite amenable to compu-
tation. Clearly for h ∈ Homeo(M) to be a distortion element, it is necessary
for the image [h] of h in MCG(M) to be a distortion element.

Example 6.1 A pseudo-Anosov homeomorphism of a closed surface Σ of
genus ≥ 2 is not a distortion element in Homeo(Σ) .
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6.2 Distortion in Homeo0(M)

For suitable manifolds M , it is easy to find undistorted elements in Homeo0(M) .

Example 6.2 Let T2 denote the 2-torus. Let h : T2 → T2 preserve the foliation
of T2 by meridians, and act as a rigid rotation on each meridian, where the an-
gle of rotation is not constant. This angle of rotation defines a map θ : S1 → S1 ,
where the first factor labels the meridian, and the second factor is the amount
of rotation. If θ is homotopically trivial, h is in Homeo0(T2) . In this case, we
claim h is undistorted in Homeo0(T2) . To see this, suppose to the contrary
that h is distorted in some finitely generated subgroup H . Without loss of
generality, we may expand H to a larger finitely generated group, where each
generator hi has support contained in a closed disk in T2 . If h̃i denotes a lift
of hi to the universal cover R2 , then there is a constant c such that

|dR2(h̃i(p), h̃i(q)) − dR2(p, q)| ≤ c

for any p, q ∈ R2 . Without loss of generality, we may assume that the same
constant c works for all i .

Now, if I is a small transversal to the foliation of T2 by meridians, intersecting
meridians where the function θ is nonconstant, it follows that if we denote
In := hn(I) , then a lift Ĩn of In has the property that the endpoints are distance
∼ kn apart for some positive constant k . By the discussion above, this implies
that any expression of hn in the generators hi and their inverses has word
length at least ∼ nk/c . This shows that h is undistorted, as claimed.

Example 6.3 Let M be a closed hyperbolic 3-manifold. Let γ ⊂ M be a sim-
ple closed geodesic, and let N be an embedded tubular neighborhood. Let
h : M → M rotate γ some distance, and be fixed outside N . Then the argu-
ment of Example 6.2 shows that h is undistorted in Homeo0(M) . Since M is
hyperbolic of dimension at least 3, Mostow rigidity [15] implies that MCG(M)
is finite. It follows that h is undistorted in the full group Homeo(M) .

Question 6.4 Is h as in Example 6.2 undistorted in Homeo(T2)?

The method of construction in Example 6.2 produces an undistorted element
of Homeo0(M) whenever π1(M) contains an undistorted element. Moreover,
if MCG(M) is finite, the element is undistorted in Homeo(M) . This begs the
following obvious question:

21



Question 6.5 Is there an infinite, finitely presented group G in which every
element is distorted?

Remark 6.6 A finitely presented infinite torsion group would answer Ques-
tion 6.5 affirmatively.

Remark 6.7 It is worth observing that Ol’shanskii [17] has shown the exis-
tence of a torsion-free finitely generated group in which all elements are dis-
torted, thereby answering a question of Gromov.

The following construction gets around Question 6.5, at a mild cost.

Example 6.8 Let M be a closed manifold with π1(M) infinite. Then M̃ in-
herits a path metric pulled back from M with respect to which the diameter is
infinite. It follows that M̃ contains a ray r — that is, an isometrically embed-
ded copy of R+ which realizes the minimal distance between any two points
which it contains. The ray r projects to M where it might intersect itself. By
abuse of notation, we refer to the projection as r . If the dimension of M is
at least 3, then we can perturb r an arbitrarily small amount so that it is em-
bedded in M (though of course not properly embedded). In fact, we can even
ensure that there is an embedded tubular neighborhood N of r whose width
tapers off to zero as one escapes to infinity in r in its intrinsic path metric. Let
h be a homeomorphism of M , fixed outside N , which translates the core (i.e.
r ) by some function

r(t) → r(t + f (t))

where f (t) is positive, and goes to 0 as t → ∞ . Such a homeomorphism may
be constructed for instance by coning this translation of r out to ∂N with re-
spect to some radial co-ordinates. Then h might be distorted, but the distortion
function can be taken to increase as slowly as desired, by making f go to 0 as
slowly as desired. For example, we could ensure that the distortion function
grows slower than nα for all α > 1.

6.3 Homeomorphisms of spheres

We now specialize to Sn . We make use of the following seemingly innocuous
lemma:
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Lemma 6.9 (Kirby–Siebenmann, Quinn) Let h ∈ Homeo+(Sn) . Then h can
be factorized as a product

h = h1h2

where the support of h1 avoids the south pole, and the support of h2 avoids
the north pole.

For h sufficiently close to the identity in the compact-open topology, this can
be proved by the geometric torus trick. For an arbitrary homeomorphism, it
requires the full power of topological surgery theory. See [11] for details in the
case n 6= 4 and [21] for the case n = 4.

Using this lemma, we can produce another factorization:

Lemma 6.10 Let E1, E2 be two closed disks in Sn whose interiors cover Sn .
Then any h ∈ Homeo+(Sn) can be factorized as a product of at most 6 home-
omorphisms, each of which has support contained in either E1 or E2 .

Proof Without loss of generality, we can assume that E1 and E2 contain collar
neighborhoods of the northern and southern hemisphere respectively.

Given h ∈ Homeo+(Sn) , we factorize h as h1h2 as in Lemma 6.9. Let e2 be
a radial expansion centered at the south pole, with support contained in E2 ,
which takes supp(h1) ∩ E2 into E2 ∩ E1 . Then e2h1e−1

2 has support contained
in E1 . Similarly, we can find e1 with support contained in E1 such that e1h2e−1

1
has support contained in E2 . Then

h = e−1
2 (e2h1e−1

2 )e2e−1
1 (e1h2e−1

1 )e1

expresses h as the product of 6 homeomorphisms, each with support in either
E1 or E2 .

Remark 6.11 Notice in the factorization in Lemma 6.10 that the homeomor-
phisms e1, e2 definitely depend on h .

Theorem C Fix n ≥ 1 . Let h1, h2, . . . be any countable subset of Homeo(Sn) ,
and g1, g2, · · · : N → N any countable collection of growth functions. Then
there is a finitely generated subgroup H of Homeo(Sn) (depending on {hi}
and {gi}) such that every hi is simultaneously distorted in H . Moreover, the
distortion function of hi grows faster than gi .
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Proof The subgroup Homeo+(Sn) of Homeo(Sn) has index 2, so after re-
placing each hi by h2

i if necessary, we can assume each hi ∈ Homeo+(Sn) .

Fix a cover of Sn by disks E1, E2 as in Lemma 6.10. Let ni → ∞ grow suffi-
ciently quickly, and relabel the sequence

hn1
1 , hn2

1 , hn2
2 , hn3

1 , hn3
2 , hn3

3 , hn4
1 , . . . , hni

1 , . . . , hni
i , hni+1

1 . . .

as H0, H1, H2, . . . .

Applying Lemma 6.10, we write each Hi as a product

Hi = Hi,1Hi,2 . . . Hi,6

where each Hi,j has support contained in either E1 or E2 .

From now on, the construction proceeds as in §4 and §5, with the added sim-
plification that we do not need to worry about the analytic quality of the con-
struction.

We let Di,j be a family of disjoint balls in Sn for i, j ∈ Z such that there are
homeomorphisms T, F for which T takes Di,j to Di+1,j for all i, j , and F takes
D0,j to D0,j+1 , and is the identity on Di,j when i 6= 0.

Let Z1, Z2 be homeomorphisms taking D0,0 to E1 and E2 respectively.

For each ` ∈ {1, . . . , 6} we define f` with support contained in the closure of
the union of the Di,j by the formula

f` =
∞

∏
i=0

∞

∏
j=0

HZk F−jT−i

i,`

where k = 1 if Hi,` has support in E1 , and k = 2 if Hi,` has support in E2 .

Then as before, we can write Hi,` as a word of length ∼ 4i in f1, . . . , f6, T, F, Z1, Z2
and their inverses. In detail:

Hi,` = Zkyi,`Z−1
k

where
yi,` = wi,`Fw−1

i,` F−1

and
wi,` = T−i f`Ti.

Since we can do this for each i, ` , we can exhibit each h i as a distortion element,
whose distortion function grows as fast as desired. Note that by choosing
the ni to all be mutually coprime, we can ensure that the h i are all actually
contained in the group in question.
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Appendix: Strong boundedness of Homeo(Sn)

by Yves de Cornulier

Definition A.1 A group G is strongly bounded1 if is satisfies one of the fol-
lowing equivalent conditions:

(i) Every length function on G , i.e. function L : G → R+ satisfying L(1) =
0, L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for all g, h ∈ G , is bounded.

(ii) Every action of G by isometries on a metric space has bounded orbits.

(iii) • G is Cayley bounded: for every symmetric generating subset S of
G , there exists n such that G ⊂ Sn = {s1 . . . sn | s1, . . . , sn ∈ S} , and

• G has uncountable cofinality, i.e. G cannot be expressed as the
union of an increasing sequence of proper subgroups.

The definition of groups with uncountable cofinality appeared in the charac-
terization by Serre [24, §6.1] of groups with Property (FA), meaning that every
isometric action on a simplicial tree has a fixed point. For instance, a countable
group has uncountable cofinality if and only if it is finitely generated.

Much later, the concept of strong boundedness was introduced by Bergman
[1], where it is proved that the permutation group of any set is strongly
bounded. Subsequently, intensive research on the subject has been carried on
(see, among others [2, 3, 9, 10], and the references in [1]). It is worth noting
that a countable group is strongly bounded if and only if it is finite, so that
the definition is of interest only for uncountable groups. In Definition A.1, the
equivalence between (i) and (ii) is easy and standard; the equivalence between
Conditions (i) and (iii) is established in [2] but already apparent in [1].

Fix an integer n ≥ 1. The purpose of this appendix is to point out the following
consequence of the proof of Theorem C in the paper above.

Theorem A.2 The group Homeo(Sn) is strongly bounded.

A weaker version of Theorem A.2 was recently proved in [23, Theorem
1.7]; namely, Homeo(Sn) is strongly bounded as a topological group (for the
uniform convergence); this means that every continuous length function is

1The following terminologies for the same concept also exist in the literature: G
has the Bergman Property; G has the strong Bergman Property; G has uncountable
strong cofinality.
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bounded. In [23, Theorem 5.4], it was also proved that Homeo(S1) is strongly
bounded. In contrast, when r > 3/2, the group Diffr(S1) is not strongly
bounded, as it has an unbounded isometric action on a Hilbert space [16].

Proof Clearly, it suffices to show that the subgroup of index two Homeo+(Sn)
is strongly bounded. By contradiction, we suppose the existence of an un-
bounded length function L on G . Let us pick a sequence (h i) in G satisfying
L(hi) ≥ i2 for all i .

Using the notation in the proof of Theorem C, Set S = { f1, . . . , f6, T, F, Z1, Z2} .
Then each hi can be expressed by a word of length ∼ 24i in S± . But, on the
subgroup of Homeo+(Sn) generated by the finite set S , the length function L
must be dominated by the word length with respect to S . This contradicts the
assumption L(hi) ≥ i2 for all i .

Remark A.3 A similar argument to that of the proof of Theorem A.2 was used
in [2] to prove that ω1 -existentially closed groups are strongly bounded. This
reasoning is made systematic by Khelif [10]. Let us say that a group is strongly
distorted (introduced as “Property P” in [10]) if there exists an integer m and an
integer-valued sequence (wn) with the following property: for every sequence
(hn) in G , there exist g1, . . . , gm ∈ G such that, for every n , one can express hn
as an element of length wn in the gi ’s. Following the proof of Theorem A.2, we
get that a strongly distorted group is strongly bounded, and that Homeo(Sn)
is strongly distorted.

The symmetric group on any set is strongly distorted: a proof can be found
in [5], although a weaker result is stated there. In [10], it is claimed that the
automorphism group of any 2-transitive chain is strongly distorted; strong
boundedness was previously proved in [3]. On the other hand, if F is a non-
trivial finite perfect group, then the infinite (unrestricted) direct product FN

is strongly bounded [2]; however it is clearly not strongly distorted since it is
infinite and locally finite.

Remark A.4 It follows from Theorem A.2 that Homeo(Sn) is Cayley bounded
(see Definition A.1); that is, the Cayley graph with respect to any generating
subset has bounded diameter. It is natural to ask whether there is a uniform
bound on those diameters: the answer is negative. Indeed, endow Sn with
its Euclidean metric, and, for r > 0, set Wr = {g ∈ Homeo(Sn) | ∀x ∈
Sn, d(x, g(x)) < r} and W+

r = Wr ∩ Homeo+(Sn) . Then W+
r is open in

Homeo+(Sn) . The group Homeo+(Sn) , endowed with the topology of uni-
form convergence, is connected: this is well-known, and can be deduced, for
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instance, from Lemma 6.9 above. It follows that W+
r generates Homeo+(Sn) .

Clearly, for every k ≥ 1, we have (W+
r )k ⊂ W+

kr . It follows that if we have
chosen r ≤ 2/k , then (W+

r )k 6= Homeo+(Sn) . Thus Homeo+(Sn) has Cayley
graphs of arbitrary large diameter. A similar argument works for Homeo(Sn)
as follows: fix a reflection T ∈ O(n + 1) of Sn , and take W ′

r = Wr ∪ TWr . Then
it is easy to check that (W ′

r)
k ⊂ W ′

kr for all k ≥ 1, so that (W ′
r)

k 6= Homeo(Sn)
if we have chosen r ≤ 2/k .
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