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Abstract.

Earthquakes are generated because faults lose strength with increasing slip and slip

rate. Among the simplest representations of slip-dependent strength is the linear slip-weakening
model, characterised by a linear drop to a residual friction. However, healed fault rocks of-
ten exhibit some slip strengthening before the onset of weakening. Here we investigate the
effect of such a slip-hardening phase on the initial growth of a slip patch and on the nucle-
ation of rupture instabilities. We assume a piecewise linear strength vs. slip constitutive re-
lation. We compute stress and slip distributions for in-plane or anti-plane rupture configura-
tions in response to an increasing, locally peaked (parabolic with curvature x) stress profile.

In contrast with the strictly linear slip-weakening case, our calculations show that the curva-
ture of the loading profile and the level of background stress strongly influence the nucleation
size. Even for small amounts of slip hardening, we find that the critical nucleation size scales
with 1/4/k for kK — 0, i.e., crack growth remains stable up to very large crack sizes for suf-
ficiently smooth loading profiles. Likewise, when the background stress 7, is very close to the
initial strength 7., the critical crack size scales with 1/4/7. — 7. An eigenvalue analysis shows
that the nucleation length increases as the proportion of the crack undergoing slip-hardening
increases, irrespective of the details of the loading profile. Overall, our results indicate that
earthquake nucleation sizes can significantly increase due to slip hardening (e.g., in healed fault

rocks), especially when the background loading is smooth.

1. Introduction

Within the Earth’s brittle crust, deformation is localised along
narrow shear faults. Slip along faults can be slow and stable, but
is very sudden and dynamic during earthquakes. Laboratory ex-
periments [e.g., Ohnaka and Shen, 1999; Ohnaka, 2000] and theo-
retical analyses [e.g., Campillo and lonescu, 1997; Rubin and Am-
puero, 2005; Ampuero and Rubin, 2008] have shown that periods of
stable slip occur over some area along the fault immediately prior
to dynamic slip, showing the existence of a nucleation phase of
earthquake rupture. Of critical practical importance are the phys-
ical dimensions of the nucleation zone, and how they depend on
the constitutive friction law and the loading configuration. In this
paper, we focus our attention to earthquake nucleation along faults
which are initially healed and locked.

At the kilometre scale, faults can be viewed as interfaces across
which displacement discontinuities accumulate. However, faults
are not atomically sharp planes and have a finite thickness, which
may range from a few millimetres for the ultracataclasite core
[Chester and Chester, 1998; Chester et al., 2005], up to several
hundred metres for the damage zone surrounding the core [e.g. Sib-
son, 2003]. Hence, “slip” on a fault should in fact be viewed as an
integrated strain across the fault core.

Under subsurface conditions (typically 1 to 4 km depth), fault
cores generally consist of an incohesive, granular gouge; at greater
depths within the seismogenic zone (down to 10 to 15 km), fault
rocks tend to be cohesive and form cemented cataclasites and/or
mylonites [e.g. Sibson, 1977]. Along seismic faults, crack dam-
age, grain comminution and disaggregation are generated during
earthquakes, due to the very large strains and strain rate involved
in the fault core. During the interseismic phase, as well as dur-
ing periods when the fault is not active, the circulation of chemi-
cally active fluids, such as water, induces cementation of the fault
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core, especially under mid-crustal conditions where the ambient
temperature and pressures are relatively high (of the order of sev-
eral hundred degrees Celsius and tens to a hundred of megapas-
cals) [e.g. Tenthorey and Cox, 2002; Faulkner et al., 2008; Smith
et al., 2013]. The cementation of fault rocks corresponds to mi-
crocrack healing and mineralisation of pore space and open cracks
[e.g. Smith et al., 2013]; cemented fault rocks are thus expected
to have regained cohesion (in contrast with granular fault gouges),
and should have qualitatively similar mechanical properties to in-
tact rocks [e.g. Griffith et al., 2012]. Indeed, rock deformation ex-
periment show that precompacted and healed fractures or sliding
surfaces regain strength with time, and that they exhibit a similar
stress-strain behaviour to intact rocks, which includes elastic load-
ing, inelastic hardening, peak stress and subsequent strength drop
[e.g. Karner et al., 1997; Nakatani and Scholz, 2004; Tenthorey
and Cox, 2002, see Figure 1]. In cohesive brittle materials such as
rocks, the initial stage of inelastic strain-hardening originates from
the growth of a network of tensile microcracks that gradually be-
come connected to form a continuous shear fracture, whereas the
post-peak behaviour is generally understood as pure frictional slid-
ing on the fracture [Paterson and Wong, 2005].

Hence, slip on a cemented fault requires re-fracturing of the
fault core and the overall shear strength of the fault is expected to
initially increase with increasing slip (i.e., integrated strain across
the fault core) before reaching a peak, and then to decrease. The
apparent frictional behaviour is thus slip-hardening and then slip-
weakening.

The hardening which precedes the peak stress has often been ne-
glected in friction studies, and only the remaining post-peak slip-
weakening behaviour is generally accounted for in representations
of a rate-independent fault shear strength [e.g. Palmer and Rice,
1973; Uenishi and Rice, 2003]. As shown by Uenishi and Rice
[2003], a remarkable aspect of linear slip-weakening laws is that
the earthquake nucleation size, i.e., the critical size of the slip patch
beyond which slip becomes dynamic, is a sole function of the shear
modulus of the rock and the linear weakening rate of the shear
strength, and does not depend upon the loading configuration and
shape.

The purpose of the present work is to study earthquake nucle-
ation along healed faults, by investigating the effect of a nonnegli-
gible hardening phase prior to peak stress (as exemplified in Figure
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Figure 1. (a) Friction coefficient as a function of slip for quartz gouges deformed at 636°C. The healed gouge was
held at 636°C for 10* s prior to deformation. Note that the peak stress is always preceded by some inelastic harden-
ing. The red straight line corresponds to the elastic part of the slip displacement. Redrawn from Karner et al. [1997].
(b) Shear stress as a function of inelastic slip displacement for intact Tsukuba granite deformed at 392 MPa effective

pressure. Redrawn from Ohnaka et al. [1997].

1) within a slip-dependent constitutive friction law. Our rheolog-
ical model is qualitatively similar to that of Stuart [1979]; Stuart
and Mavko [1979]; Cao and Aki [1984], who studied earthquake
generation with a fault zone rheology that included an initial hard-
ening phase; however, these authors did not study explicitly earth-
quake nucleation size, and a systematic comparison between results
from pure slip-weakening and a rheology incorporating some slip-
hardening remains to be performed. Within the framework of slip-
hardening/weakening strength evolution, we investigate the effect
of the loading profile on the critical crack size corresponding to the
nucleation of a dynamic rupture instability.

2. Governing
growth

equations for quasistatic crack

2.1. Constitutive law for frictional slip

Experimental observations indicate that some slip-hardening of-
ten occurs prior to peak stress. In general the strength of the fault
(i.e., the integrated strength of the rocks composing the fault core;
see for instance Ohnaka et al. [1997]) should be described by the
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Figure 2. Constitutive relation for shear strength as a function
of slip. Slip starts at 7., followed by linear hardening up to 7p,
achieved at the critical slip distance 5p, and then the behaviour
is linear slip weakening down to a residual strength 7, associ-
ated with a weakening distance 6.

Table 1. Examples of parameter values for initially intact Tsukuba
granite; extracted from Ohnaka et al. [1997].

Effective Temp. Strain rate h w o./8 w/h
pressure
(MPa)  (°C) (/s) (MPa/mm) (MPa/mm)
471 456 15107 335.8 22.6 8.1 0.07
392 25 7107 964.5 169.8 3.7 0.18
470 450 103 292.0 56.9 57 0.19
451 305 103 486.8 98.3 28 020
180 25 105 989.5 167.1 51 0.17
180 450 1073 416.6 34.1 7.1  0.08
180 300 1073 329.0 119.8 82 0.36
180 25 1070 1130.4 157.5 3.1 0.14
180 25 1077 195.7 99.3 39 051
253 355 107° 470.0 42.1 3.8 0.09

functional form that best reflects the deformation processes leading
to the observed slip-hardening and the subsequent slip-weakening.
Here we want to (1) minimise the number of parameters required to
describe the strength evolution, and (2) use a functional form that
can easily be related to the widely used linear slip-weakening law.
Hence we adopt a phenomenological piecewise linear strength vs.
slip relation:

T.+ho for0 <6 < 6,
T(8)=4q Tp—w(0—5) ford <5< +6, , (1)
T for 8,4 6. < 6.

Where 7(8) is the slip-dependent shear strength, 7, is the peak
stress, Tc is the stress at the onset of slip (named after the classic
notation C’ defined by Brace et al. [1966] for the onset of inelastic
strain), 7, is the residual strength, & is the critical slip weakening
distance, and &, is the critical slip strengthening distance (i.e., the
slip at peak stress). The hardening (%) and weakening (w) slopes
are:

h=(t—1)/8&,and w=(1p—7)/&. 2)

The constitutive law is plotted in Figure 2. It reproduces the es-
sential features observed experimentally (hardening followed by
weakening), while minimising the number of additional parame-
ters. In addition, after the peak strength is reached, the weakening
is linear (with residual), and we retrieve the conventionally used
slip-weakening law for further increases in slip.
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A set of representative parameter values for the model can be
determined from experimental data obtained on intact rocks. Ex-
perimental data from Ohnaka et al. [1997] for the fracture of intact
granite under a range of physical conditions are summarised in Ta-
ble 1. We calculated representative values for the hardening rate &
and the weakening rate w from the data provided by Ohnaka et al.
[1997, (their Table 1)], by approximating the hardening and weak-
ening phases by linear variations from the onset of slip to the peak
and from the peak to residual strength, respectively. This proce-
dure yields values of the order of 0.1 for the slope ratio w/h. The
slip weakening distance is generally of the order of a few millime-
tres, and the ratio of weakening to hardening distances & /8, ranges
from 3 to 8.

2.2. Geometry and static equilibrium

We consider a finite crack embedded in an isotropic elastic
medium, which is progressively loaded as a function of time. The
shear stress 7T at a position x along the crack line is given by [Bilby
and Eshelby, 1968]

o) = gl + o [1 92108

2

where a_ and a are the left and right positions of the crack tips, re-
spectively, Ty is a uniform background stress, ¢(x,#) is an arbitrary
loading profile superimposed to Ty, 1* is equal to the shear modu-
lus p of the surrounding medium in mode III, and u* = u/(1—v)
(v being Poisson’s ratio) in modes I and II, and §(x) is the slip
along the crack. Equation 3 corresponds to the stress distribution
along a static crack at equilibrium.

dg, 3

-1 -0.5 0 0.5 1
position x/aw

Figure 3. (a) Initial stress state (at t = 0) as a function of po-
sition x. Dotted red lines indicate previous instant (r < 0). At
t = 0, the point x = 0 is just about to slip, as the imposed stress
has just reached the strength 7. (b) The thick black line indi-
cates the slipping region, which is here in the hardening phase.
(c) The central part of of the crack is now in the weakening
phase, while near the tips the fault remains hardening.

Throughout this paper we use the following particular loading
shape [similar to that used by Uenishi and Rice, 2003]:

q(x,1) = max{0, Rt — kx* /2}, @)

which provides a locally peaked profile parameterised by x, which
is a measure of the broadness of the loading, and a loading rate R
(¢ is the time). The loading profile is a rising parabola, symmetric
with respect to x = 0. Because of this symmetry, the crack will also
be symmetric with respect to x = 0, and we have a4 = —a_ =a.
The use of a locally peaked loading profile such as (4) allows us to
investigate the effect of stress heterogeneities on earthquake nucle-
ation with a simple parameterisation.

For convenience, we choose a reference time frame such that at
t = 0, the imposed stress has just reached the fault strength at the
point x =0, i.e., T, +¢(0,0) = 7. at + = 0. This initial stress state
is shown graphically in Figure 3a.

Hence we can rewrite the equation for elastic equilibrium as

95/9¢
5_

X

* a
7(2) - % = max{% — %, R — ko 2} + £ / dE. (5)
J—a

3. Nucleation for parabolic loading

The procedure used to determine dynamic nucleation crack sizes
follows that of Uenishi and Rice [2003]. The shear load is progres-
sively increased (¢ increases), and for each step in ¢ we calculate
the slip distribution along the crack, and the crack size a. The cal-
culation procedure is given in Appendix A. Initially, as ¢ increases,
the crack size increases as well: this corresponds to a stable sit-
uation, since new equilibrium configuration can be determined at
each step (see Figure 3b,c). However, we expect to reach values
of t and a above which any load increment produces an unbounded
crack growth: this is where dynamic crack growth occurs.

In the case of strictly linear slip-weakening before residual fric-
tion is engaged, Dascalu et al. [2000]; Uenishi and Rice [2003]
have demonstrated that the critical crack size at nucleation ac is

ac = a¥ ~0.579ay, (6)

where ay = u*/w. Remarkably, iV does not depend upon the
loading profile. Here we investigate how the introduction of a lin-
ear hardening regime preceding the linear slip weakening phase
modifies the value of a. and its dependence upon the shape of the
loading profile.

3.1. Smallslip solutions, § < &, + &

We first focus on the situations where nucleation occurs before
a fully developed cohesive zone is established, i.e., for dmax <
Op + Oc. In such cases, the residual stress is not reached at any point
during the quasistatic fault growth, and hence it does not influence
the nucleation process. If we normalise slip by the hardening slip
distance &, and stress by (7, — %), the constitutive law becomes

(r—rc)/(rp—m:{ f/fgw/h)(a/gpfl) gg%< L

where we note that the only independent parameter is now the slope
ratio w/h. The elastostatic equilibrium equation (5) can be rewrit-
ten in terms of the normalised slip §/8,, stress (7 — 7¢)/(Tp — Tc)
and distance x/a as

T — T Th — T
W)t _ (o

R azlc(x/a)z}

Tp— T To— T Tp—T 2(Tp—Tc)
ap/a (1 9(8/8)/98
5 ) ) o ®
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Figure 4. Equilibrium crack size a/ay, and peak slip Smax /8 as a function of load Rt / (1, — 7. ) for various weakening
to hardening ratios (w/h = 0.01 to 10, panels (a) and (c)) and various curvatures of loading profile (K = 0.1 to 100,
panels (b) and (d)). The critical nucleation size ac/aw, achieved when there is a vertical tangent to the crack size vs.

load curves, is marked by a filled circle.

where
“*
ah === (w/h)ay ©)
is an alternative characteristic crack length. We define a normalised
curvature as )
K
K= (10)
Tp—Te

We first investigate the cases for which the background stress
is low enough so that (7, — %) /(7 — Tc) is always below the im-
posed parabolic loading profile (i.e., the background stress ). Fig-
ure 4 shows the solutions for load Rt /(7, — 7) and crack size a/ay
with increasing maximum slip dmax at the crack centre for various
slope ratios w/h and curvatures K. In all cases, there is a peak load
(marked by a filled circle) above which no static solution exists.
The corresponding crack size is the critical nucleation size a.

Keeping the curvature constant (K = 10), we observe (Figure
4(a)) that the nucleation size increases modestly with increasing
values of w/h, from around 0.64ay, ~ 1.10a3¥ at w/h = 0.01 up
to 1.50ay =~ 2.59a¢" at w/h = 10. Concomitantly, the maximum
slip (at the crack center) at the nucleation point increases from
Omax = 1.058, up to Smax = 111.45, (Figure 4(c)). Of course, the
critical size is reached for Spax > 6p, since the centermost part

of the fault needs to be in the weakening regime for the crack
to grow unstably. For w/h = 10, the value of the maximum slip
(8max ~ 111.48p) is much larger than the typical values beyond
which the residual strength is engaged (recalling that d. /3, ranges
from 3 to 9 for granite); the solution given here under the small slip
assumption (i.e., residual strength is never reached) serves only il-
lustrative purposes, and we refer the reader to Section 3.2 for a
discussion of the effect of residual frictional strength.

Holding the weakening to hardening ratio constant (w/h = 1),
we observe (Figure 4(b)) that the nucleation size increases with de-
creasing curvature. For a very large curvature (K = 100), i.e., for a
very peaked loading profile, the critical crack size is a. ~ 0.59ay, ~
1.03a%, but reaches ac ~ 5.17ay =~ 8.93a%" for a broad loading
profile (K = 0.1). The corresponding maximum slip (plotted in
Figure 4(d)) is correspondingly very large for peaked loading pro-
files (8max ~ 11.318, for K = 100) and decreases with decreasing
curvature (down to Omax ~ 1.01/5, for K =0.1).

A preliminary observation from Figure 4 is that both the consti-
tutive parameter w/h and the shape of the loading profile (through
its curvature K) influence the critical crack size. In particular, in-
creasing the value of w/h by one order of magnitude tends to in-
duce a moderate increase in a., while decreasing values of K tends
to induce much larger changes in the nucleation size. In order to



BRANTUT AND VIESCA: EARTHQUAKE NUCLEATION 5

10
(a)
2
SB 10"
Bl)
s
e 10'
5
3
5 10
ac=¢(2(rp—rc)/x)/ .
10_] 4 . 2 .() .; 4
107 10 10 10 10

. 2
normalised curvature K aw/(‘cp—rc)

(b)
10°

T
‘QD-

g
€ 10
=
=
=
=
o] —4
< L

107 107 0
normalised curvature K aw/ (‘cp—rc)

4

10° 10

Figure 5. Crack size (a) and maximum slip (b) at the nucleation point as a function of the curvature of the loading

profile K = ka2, /(T — Tc)-

understand the respective influence of the constitutive parameter
w/h and curvature K in a quantitative manner, we computed a. (as
well as the maximum slip) for a wide range of K (from 10~* up to
10%) and for w /h ranging from 0.1 up to 10. The results are plotted
in Figure 5. Figure 5(a) shows very clearly the increase in a. (well
above ay, ) with decreasing curvature. Concurrently, Figure 5(b) in-
dicates that the maximum slip (at the crack center) tends to the slip
hardening distance.

The behaviour at small K can be explained as follows. The con-
stitutive response is initially hardening, until the slip reaches the
hardening distance &,. Thus, as long as the accumulated slip along
the crack remains below J,, the crack will grow in a stable manner.
If the loading profile has a very small curvature, we expect stable
crack growth up to large crack sizes (as long as the maximum slip
remains less than ﬁp, i.e., before peak stress); then, unstable growth
is expected when the center of the crack (where the maximum slip
is achieved) starts weakening. This is illustrated in Figure 6, which
shows the stress and slip profiles along the crack at the nucleation
point for a case when K = 1073, The maximum slip is just above

K=10"
wih=1]
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shear stress

04
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the slip hardening distance, and only a very small portion of the
crack (around 0.8%) has started weakening.

The scaling of a. with K for K — 0 can be determined as fol-
lows. When the crack size a grows in a stable manner well beyond
the length scale ay, i.e., an/a < 1, which is allowed for small cur-
vatures as long as Spax < &p, then the integral term in (8) can be
neglected. In that case, when the peak stress is reached at the crack
center, we have Rt/(t, — 7.) ~ 1, and the condition of no slip at
x = ayields

Rt a*x

- ~ an
Hp—T 2T —T)
If we then assume that nucleation occurs for Spax ~ 8y, we have
the following asymptote for the critical crack size:

2(tp — %)
—

ac ~ (12)
The scaling given in (12) is shown as a dotted line in Figure 5a.

Up to this point we have only looked at solutions for very low
background stress 7, < ¢, and hence the solutions were not sensi-
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Figure 6. Profiles of shear stress (solid black line), imposed load (solid red line) and slip (dotted black line) at the
nucleation point for the case K = 1073 and w/h = 1. Panel (b) is a close up view near the crack centre, where the

fault is weakening.
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tive to 7,. When 17, becomes comparable to 7., a significant portion
of the crack is under the influence of the background stress itself
and not only of the superimposed parabolic load profile.

Figure 7 reports the critical crack size as a function of the fault
“understress” (7. — T,)/(7 — ) for w/h ranging from 0.1 to 10.
The critical crack size increases with decreasing understress (i.e.,
as the background stress becomes closer and closer to the stress at
the onset of slip); simulation results show that a. /ay, tends to scale
with 1/4/(7c — %) /(% — ) when (7. — 7,) /(7 — %) = 0.

An example of slip and stress profile at the nucleation point for a
very low understress is given in Figure 8. The applied loading pro-
file is peaked only at the center, and most of the crack is under the
influence of the background stress. Unlike the case of small cur-
vatures (K < 1), the slip at the crack center is significantly larger
than the critical hardening distance &,. Despite the large crack size,
the shear stress change and slip along the crack is very small far

c
—_
o—

critical crack size a /a

10

-3 -2 -1 0

1 1
background stress (‘CC—‘Cb)/(‘CD—TC)

Figure 7. Critical crack size ac/ay, as a function of background
stress (or “understress”) (7. — 7,)/(Tp — %), for normalised
peak stresses ranging from O (grey curve) to 0.1, and normalised
slip hardening distances of 0.02 and 0.1. For nonzero harden-
ing, the critical crack size scales with the inverse square root of
the background stress (see slopes in the top right corner).

2 T .
103
(tc—'cb)/ ('cp—'cc)_ 10
wih=1
151 K=10/
% 0/0
. p
% applied load
=
05} ('l:—'cc)/('cp—'cc) ]
crack tip
ot - ; 2
10_3 10_2 ]0_l 100

position x/a

Figure 8. Shear stress, load and slip profile at nucleation
(a= ac) for a very small understress (7c — %) /(Tp — 7c) = 107>,
Note that a log scale is used for the x-axis.

from the crack center. In the example shown in Figure 8, § /8, and
(T —17)/(T — ) are less than 1072 for x/a > 0.285. Because
of this very small slip and stress at the crack edges, the crack tip is
barely identifiable when looking at the slip and stress profiles along
the crack line.

3.2. Large slip solutions, § > 0, + &, and small scale yielding

When the slip along the crack reaches &, + O, the shear strength
becomes equal to the residual value 7. In all the situations de-
scribed in the previous sections, the nucleation point occurs before
the residual strength is reached. However, the residual strength af-
fects the crack propagation beyond the small slip nucleation point,
and can sometimes suppress the existence of a small slip nucle-
ation point if it is reached early on during crack propagation: As
slip accumulates along the crack and residual strength is engaged,
we expect that new stable configurations can be reached, depending
on the background stress level [Viesca and Rice, 2012; Garagash
and Germanovich, 2012].

From a basic energetic consideration, we can first remark that if
the background stress is lower than the residual strength (7, < ),
the crack is expected to be ultimately stable, i.e., there exists a crack
size at which a quasistatic equilibrium solution is met. For back-
ground stresses larger than the residual strength, a range of scenar-
ios is possible.

In order to explore the behaviour of the system at large slip, it
is more natural to rescale stresses by the strength drop (7, — 7)
and slips by the slip weakening distance &.. For simplicity and
consistency, we keep the same nondimensional parameters K and
w/h for the description of the curvature and constitutive law, re-
spectively. Figure 9 shows equilibrium solutions computed up to
large slip Omax > Op + &, for a range of background stresses. For
illustrative purposes we set the slip weakening distance at ten times
the slip hardening distance (an upper bound of the & /8, values re-
ported in Table 1). For K = 10 (panels a and b), nucleation occurs
at small slip for dmax/8: = 0.183. Here, the background stress is
far enough from the stress at slip onset and it does not affect the
critical crack size. The crack starts propagating dynamically im-
mediately after the first nucleation point is reached, following the
red arrow (increasing crack size and slip at constant load). When
residual friction is engaged, we observe a strong effect of the back-
ground stress on crack propagation. For relatively low background
stresses ((Tc — T )/(Tp — 7) from 0.75 to 0.9), a new stable config-
uration is met and dynamic crack propagation is expected to stop
(if dynamic overshoot does not occur). If the imposed load is then
further increased, another nucleation point is reached at large slip.
An example of loading, slip and stress profiles along the crack at
this point is shown in Figure 10, where we note the fully developed
process zone near the crack tip. Conversely, for large enough back-
ground stresses ((Tc — ) /(T — %) = 0.6 or 0.7), no other stable
branch is reached since the nucleation point at large slip occurs for
a lower load than the initial, small slip nucleation point. In that
case, the crack grows dynamically without stopping [Viesca and
Rice, 2012; Garagash and Germanovich, 2012].

For a larger curvature of the loading profile (K = 100, Figure
9(c,d)), the situation is slightly different because the first nucleation
point occurs for a maximum slip dmax that is below but close to
Op + Oc. In those cases, the background stress has a small effect on
the nucleation point at small slip. More importantly, for low enough
background stresses (e.g., the cases (Tc —7,)/(%p — %) = 0.7 and
0.9), we note that the instability at small slip is almost suppressed
because residual strength is engaged (and a stable branch appears)
almost immediately beyond the first nucleation point. For large
enough background stresses (e.g., (Tc — ) /(T — %) = 0.3), we
do not expect any arrest of dynamic crack propagation since no
other stable branch is reached beyond the first nucleation point.

Large slip solutions for crack size can be approximated by func-
tions of the imposed load via a small scale yielding asymptotics
approach, where we assume that the crack tip process zone is fully
developed and small compared to the total crack size. The fracture
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Figure 9. Crack size (a,c) and maximum slip (b,d) as a function of imposed load for background “understress”
(tc — ) /(7 — 7) ranging from 0.3 to 0.9. Top panels (a,b): K = 10, bottom panels (c,d): K = 100. The small scale
yielding approximation (s.s.y.) is plotted in grey. The red arrow indicates the potential jump in crack size from the
small slip nucleation point to a new stable configuration at large slip.

energy for the slip hardening/weakening constitutive law is [Rice,
1968]:

Ge= | (2(8)~m)as = (=Wt ((rp )5 (%)) &
13)
During crack propagation, this fracture energy has to be balanced
by the energy release rate G at the crack tips. For a crack loaded
by a stress equal to max{,,Rf — kx?/2 + 7.} on which the shear
stress is equal to the residual strength 7, we can write the stress

intensity factor k at the crack tips as [Rice, 1968]

fa [* [%+AT(x,1)] — T
k=4/— / dx, 14
TTJ-a Va2 —x2 (19

where the local increase in background stress is
ATy (x,1) = max{0, T — T, + Rt — kx> /2}. (15)

A closed-form expression for k is given in Appendix B1. The en-
ergy release rate is then simply G = k2/(2u*), and the small scale
yielding propagation criterion is [Rice, 1968]

Ge =k*/(2u"). (16)
Equation 16 is an approximation that presumes the details of the
slip-weakening process zone occur over negligibly small distances
relative to the crack length. However, we follow here the path
given by Garagash and Germanovich [2012] who provide a bet-
ter approximation by considering the finite size of process zone
of an equilibrium slip-weakening crack in the semi-infinite limit
[Dempsey et al., 2010]. The method essentially consists in estimat-
ing the stress intensity factor in (16) using an effective crack size
(instead of the total crack size a) accounting for the finite process
zone size. Some details of the method are recalled in Appendix
B2, but we refer the reader to the original works of Dempsey et al.
[2010] and their adaptation by Garagash and Germanovich [2012]
for further information. The resulting asymptotic behaviour is plot-
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ted as thin grey lines in Figure 9, and shows a very good agreement
with numerical simulations for large crack sizes.

4. General features of nucleation with piecewise
linear hardening/weakening friction law

In the previous section, we have examined in detail the critical
nucleation size and the associated slip profiles in the case of a lo-
cally parabolic loading. In two instances (small curvature and high
background stress), we have determined that the nucleation size in-
creases dramatically. Despite the differences in shape of the slip
and loading profiles at the nucleation point, the common feature in
both cases is that the weakening region is concentrated at the crack
centre at the onset of instability. Here, we perform an eigenvalue
analysis of the crack problem (3) and show that this feature of the
linear hardening/weakening law is universal and does not depend
on the specific choice of the loading shape.

Following the approach of Uenishi and Rice [2003], we differ-
entiate equation (3) with respect to time and use the linear strength
versus slip relation (1) to obtain

a gV /o
B(x)V(x,1) = R+f / édé, (17)
—a &—
where V (x,7) is the slip rate along the crack, and
_fh forxy, <|x[<a
B(x) = { —w for |x] < xp. s

The points =£x;, satisfy 6(x) = Jp. In other words, from the tips to
Xp, the fault is slip strengthenlng, and from x; to the crack centre,
the fault is slip weakening. Note that the derivation of equation (17)
relies on the nonsingularity condition for stress at the crack tips [see
Uenishi and Rice, 2003, for more details about the derivation].

The slip rate V can be normalised by its root mean square Vips.
At the onset of nucleation Vi becomes infinite, and the corre-
sponding normalised slip rate v can be rewritten as

/&
e s

(x/a)
where b(x/a) = B(x)/w (equal to —1 for |x| <X, and to h/w for
xp < |x| < a). Equation (19) is in the form of a generalised eigen-
value problem: we are looking for values of a/ay such that non-
trivial solution v(x/a) of (19) exist. The smallest positive value of

d§ (19)

(‘IZC—‘IZb)/ At=0.8

- wlh=1
r 4 /86 =101
c p

crack tip

shear stress, slip

position x/a

Figure 10. Shear stress, load and slip profile at nucleation for
large slip. The imposed load curvature is K = 10. Other pa-
rameter values are reported in the Figure. The crack tip process
zone is small compared to the total crack size.

a/ay gives us the nucleation length. By contrast with the prob-
lem analysed by Uenishi and Rice [2003] in the case of linear slip
weakening, equation (19) contains additional parameters, #/w and
Xp, which can be chosen arbitrarily.

The problem is solved following the methodology presented in
Appendix C. The nucleation length given by the smallest positive
eigenvalue of (19) is shown in Figure 11(a) as a function of xp/ac
(the relative position of the transition point from slip hardening to
slip weakening) for a range of values of w/h. For xp/ac = 1 we nat-
urally retrieve the expected value of a. = 0.579ay, since the crack
is entirely in the slip weakening regime. For decreasing values of
xp/ac, the critical crack size increases. As xp/ac approaches 0, the
critical crack size tends to infinity (i.e., nucleation will never oc-
cur, whatever the crack size, if the whole crack is in the hardening
regime). For a given value of x;,/ac, the critical crack size also in-
creases with decreasing w/h. These results based on the eigenvalue
analysis are consistent with the full numerical solutions presented
previously: the critical crack size becomes large when a large pro-
portion of the crack is in the hardening regime. Importantly, we
show here that this behaviour does not depend upon the particular
shape of the loading profile. The shape of the loading profile, and
the value of the understress, are only driving the system towards a
specific value of xp. In other words, the loading profile influences
the proportion of the crack that is undergoing hardening and weak-
ening.

The transition point x, gives the size of the weakened zone at
nucleation. Figure 11(b) shows this size, normalised as xp/ay, as
a function of the relative position of the transition point x,/ac. We
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Figure 11. Critical crack size (a) and weakened zone size (b) as
a function of the relative location of the peak strength along the
crack.
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observe that the weakened zone is systematically smaller than the
critical crack size in the pure linear slip weakening case. Hence,
approximating the fracture problem with slip hardening/weakening
friction by simply neglecting the fraction of the crack experienc-
ing slip hardening and only considering the slip weakening part of
the crack would lead to a significant overestimate of the nucleation
size.

5. Discussion
5.1. Choice and validity of the constitutive law

The slip-dependent constitutive law used here is merely a
macroscopic description of the complex microscopic processes oc-
curring during the brittle deformation of the fault core (e.g., as-
perity breakage, microcrack coalescence, sliding on grain bound-
aries...). Deformation across a fault occurs on a thin but finite-width
shear zone, which might be healed due to cementation of the inter-
granular space [e.g. Angevine et al., 1982]. The non-monotonic
slip-dependent strength, including the slip hardening portion at the
onset of slip, was chosen as a representative phenomenological de-
scription of the constitutive behaviour of intact rocks [e.g. Paterson
and Wong, 2005], and, by extension, of the healed rocks forming
the fault core (which can just be considered as “intact” regard-
ing their mechanical properties). In fact, similar phenomenolog-
ical laws have been used for the study of fault instability in the
crust [Stuart, 1979; Stuart and Mavko, 1979; Cao and Aki, 1984,
Ohnaka and Yamashita, 1989], and but the specificities arising from
the slip-hardening behaviour before the peak stress had not seemed
to be studied.

Slip-hardening followed by slip-weakening has been shown to
arise naturally in micromechanical friction models based on slip
across rough fault surfaces, as demonstrated by Matsu’ura et al.
[1992]. In such a framework, the phenomenological parameters
(stress at the onset of slip, peak stress, slip-hardening distance, etc)
are related to physical parameters such as the asperity strength and
statistical properties of the sliding surface topography (notably, the
cut-off wavelength of surface roughness). A link between the con-
stitutive friction parameters and the fault surface roughness implies
that the constitutive law would itself be scale-dependent. Conse-
quently, instabilities at small scales might occur, as observed for
instance by acoustic emissions during the slip-hardening portion of
the loading path during laboratory fiction experiments, while the
overall fault remains stable at large scales.

We have made use here of a rate-independent constitutive law;
however, we may have alternatively considered a law with both
a rate and state dependence (where state may be represented via
the history of slip rate —or slip— or some other internal variable),
the most widely used friction laws of this class stemming from the
work of Dietrich [1979]; Ruina [1983]. Here the strength at a point
on the fault is determined by both a direct response to changes in
slip velocity V and by the evolution of a state variable over a char-
acteristic slip D.. The relative importance of the two effects at
any point on a slipping fault is determined by the ratio of two lo-
cal time scales: the time scale associated with changes in veloc-
ity (V/dV /dt) and the time scale associated with state evolution
(D¢/V) at a point on the fault. In regions where the former time
scale is much shorter than the latter, slip-strengthening via the di-
rect effect occurs, and when the converse is true (or if the time
scales are comparable), then slip-weakening may be expected (pro-
vided the steady-state behavior is rate-weakening).

These laws apply for well developed slip surfaces in bare rock
samples, but their validity for slip across thick gouge layers is not
well understood, as the macroscopically observed constitutive pa-
rameters of the law vary with strain localisation, gouge thickness
and particle size within the gouge layer [Marone, 1998]. More-
over, rate-and-state friction laws are designed to capture variations
of frictional strength around a well defined steady-state sliding at
constant slip rate: hence, these laws are not expected to provide
a complete description of the early parts of slip across consoli-
dated interfaces. Indeed, the slip-hardening/weakening behaviour
does not seem to be a straightforward limiting case of any con-
ventional rate-and-state friction law (unlike, for instance, the linear

slip-weakening model which corresponds to the “no-healing” limit
of rate-and-state aging law [Uenishi and Rice, 2003; Rubin and Am-
puero, 2005]).

5.2. Implications for earthquake nucleation in nature

Based on laboratory data obtained in granite [Wong, 1986], Uen-
ishi and Rice [2003] provide numerical estimates of a$" of the or-
der of 0.5 to 0.9 m. As shown by our calculations, these values
are lower bounds for the nucleation size of dynamic rupture. As
observed in Section 3.1, the occurrence of even a moderate amount
of slip-hardening prior to slip-weakening profoundly modifies the
earthquake nucleation size, i.e., the size of the slipping region at
the onset of dynamic rupture. In two different instances, for either
broad loading profiles (small K) or background stresses close to
initial strength (7, near 7.), we observed that the nucleation size
can become much larger than the one expected from pure slip-
weakening friction.

For very broadly peaked loading profiles, we observed that the
nucleation size scales with /2(1, — 7)/k, that is to say, it scales
with the size (radius of curvature) of the loaded patch. Hence, for
very smoothly loaded faults, the earthquake nucleation size is dic-
tated by the shape of the imposed tectonic stresses (modulated by
the local pore pressures, when effective stresses are considered).
By contrast, sharp loading profiles tend to induce localised slip and
the hardening effects can be neglected. Natural fault surfaces are
intrinsically rough, and the geometric constraints imposed by the
fault roughness provide a source of inhomogeneity in the back-
ground stress. It is now well established that fault surface rough-
ness is self-affine [e.g. Candela et al., 2012], and hence there isn’t
a single dominant length scale that could be used to estimate a cur-
vature for the background stress profile along a fault. Rather, a
representative background stress profile would mimic the complex
shape of the fault surface roughness. Such situations are beyond
the scope of the present study, which was focused on a simple
geometry in order to highlight the basic properties of the harden-
ing/weakening constitutive law. It is clear that much work is needed
to understand how complex fault stress patterns affect earthquake
nucleation; Our simulations using a single length scale associated
with loading constitutes a first essential step for the understanding
of earthquake nucleation along such complex fault profiles.

The other situation where nucleation size becomes very large
compared to the conventional slip-weakening critical length a5V is
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Figure 12. Profile of slip rate (normalised by its maximum
value, located at the crack centre) at nucleation, computed nu-
merically (as a finite difference) using the slip vs. load history.
The parameter values chosen for this example are shown in the
graph. The slip-weakening region (x < xp) is where slip rate is
within a small factor of the peak slip rate, and where inertial
effects will first become important.
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when the background stress 7, becomes close to the initial strength
T.. Remarkably, in those situations, the slip on the crack is essen-
tially concentrated within a small portion near the crack centre: the
hardening portion is very wide and could easily be mistaken for
the stress concentration ahead of the crack tip (see Figure 8). The
crack extends well beyond the locally applied peak load. These
observations are of interest for the monitoring of fault deformation
by remote sensing techniques or field measurements, and raise the
issue of the identification of a crack tip using kinematic reconstruc-
tions. Indeed, in our simulations, the central weakening portion of
the crack at the nucleation point can well be smaller than the criti-
cal nucleation size a3 (as shown in Figure 11(b)) and yet the whole
crack (including the wide hardening portions) becomes unstable.

Using the results of our quasi-static simulations, we can estimate
the slip rate pattern along the crack immediately prior the onset of
unstable slip; an example in given in Figure 12, where slip rate is
computed as the finite difference between the slip patterns calcu-
lated for the last two load steps before the nucleation point. The
slip rate is concentrated near the weakening region at the centre of
the crack. In the moments immediately preceding dynamic rupture,
the slip rate on the fault is accelerating everywhere, but relatively
slowly in the area experiencing slip hardening as compared with
the portion of the crack experiencing slip weakening. As observed
previously (Figure 11), the portion of the crack experiencing slip
weakening can be much smaller than the total crack size. Hence,
such a phenomenon can help to rationalise experimental observa-
tions of rupture nucleation in rocks, in samples that may be smaller
than the nucleation size a$" [e.g. Thompson et al., 2006]: a rupture
may well appear to be quasistatic while the fault is slowly grow-
ing in the sample, but would start accelerating significantly within
a small interior region experiencing slip weakening.

Our results suggest that a limited amount of quasistatic slip is
likely to occur over large spatial scales prior to earthquake nucle-
ation along initially locked, healed faults, such as intraplate con-
tinental faults with long earthquake recurrence times [e.g. Scholz
et al., 1986]. Immediately before earthquake nucleation, slip rate
is accelerating nonuniformly along the fault, and the region expe-
riencing the largest acceleration (here given approximately by xp)
can be localised within a very small patch relative to the dimension
of the entire accelerating area. As a result, the inertial limitations
on slip rate are first reached in the fastest accelerating patch, from
which we expect the dynamic rupture to start propagating outward
with concomitant emission of seismic waves. Additionally, the
strong weakening mechanisms associated with these dynamic slip
rates [Di Toro et al., 2011] will also begin to operate here. One fea-
ture that sets our nucleation solutions apart from those using pure
slip weakening friction is that the slip rates ahead of the fastest
accelerating patch, although small, are also approaching rates at
which strong weakening can occur. Furthermore, as seen for in-
stance in Figures 6 and 8, the stress acting on the crack (beyond
the onset of slip) is high, between 7. and 7,. Such high stresses,
combined with the elevated slip rates at nucleation, are likely to
enhance dynamic weakening mechanisms driven by heat produc-
tion rate [see for example Di Toro et al., 2011]. Taken together,
these features could make the initial phases of dynamic rupture (ini-
tial rupture speed and starting phases) distinctly different between
cases when x, /ac =~ 1 (i.e., the entire crack is slip weakening) and
when xp /a. < 1 (i.e., the slip weakening zone is small).

6. Conclusions and perspectives

We have calculated earthquake nucleation sizes on faults obey-
ing a non-monotonic, slip-hardening and weakening strength. The
choice of the constitutive law was guided by laboratory observa-
tions of the fracture of intact and healed rocks. By contrast with
linearly slip-weakening faults [Uenishi and Rice, 2003], the shape
of the loading profile (here its curvature) has an influence on the
nucleation size. If the loading profile is broad enough, the criti-
cal nucleation size can become much larger than the characteristic

slip-weakening nucleation size ag" ~ 0.579u*6. /(7 — %), even
for small amounts of slip hardening prior to the peak stress. In ad-
dition, for background stresses close enough to the initial strength
of the fault, the crack size also becomes much larger than ag". Us-
ing an eigenvalue analysis, we have determined that a. is expected
to increase dramatically, independently form the specific form of
the loading profile, when the proportion of the crack undergoing
slip weakening is reduced.

In the situations when the nucleation size is very large, the slip
immediately behind the crack tip is very small (see Figures 6 and
8), and the identification of a “crack tip” might be impossible in
practice. The region of the crack where slip is large and where the
instability is expected to initiate (the weakening portion) is smaller
than a%.

One important implication of our results is that large scale, sta-
ble fault creep (albeit for limited amounts of cumulated slip) can
occur on a fault prior to the nucleation of a dynamic rupture event.
In contrast with nucleation simulations performed using rate-and-
state friction laws [e.g. Rubin and Ampuero, 2005; Ampuero and
Rubin, 2008], in our calculations the whole fault plane is not slid-
ing. Hence we model here the initiation of slip along a fault that is
initially perfectly locked, a situation arising in the context of reacti-
vation of ancient (healed) faults due to changes in tectonic stresses
or pore fluid pressures.

Despite the limitations of our assumed slip-dependent constitu-
tive law, our results raise the importance of the complexity in the
fault stress patterns in the nucleation of earthquakes. One natural
origin for the complex background stress field along faults is their
geometrical roughness. Further work combining complex fault
stress profiles, pore fluid pressure variations, and more complete
constitutive behaviour for intact or healed fault rocks is needed
to better understand earthquake nucleation along ancient, dormant
fault subjected to tectonic and/or anthropogenic loading (e.g., fluid
or CO; injection).

Appendix A: Numerical methods

The numerical method employed to solve equation 8 simulta-
neously with equation 1 is essentially the same as the one de-
scribed by Viesca and Rice [2012]. The idea is to use a Gauss-
Chebyshev quadrature rule for a singular integral transform [Er-
dogan and Gupta, 1972] to calculate the shear stress at discrete
collocation points using the values of the slip gradient at discrete
nodes along the crack. Then the equality between the shear strength
(given by the constitutive law) and the shear stress (given by the
slip distribution) yields an equation for the slip distribution, which
is solved by an iterative Newton-Raphson algorithm.

The nondimensional form of the equilibrium equation is

v )2 1 98
T_K(aX) 1/35 1 (A1)

0= > Y omal 9EE-X

where T = (T — 1.) /AT, d = a/ay and X = x/a. For simplicity in
the description of the method, we omitted the constant background
stress in equation A1l. Because stresses and slip are symmetric with
respect to X = 0, it is convenient to rewrite (A1) for the space vari-
ableY =2X —1:

d§7

~2 2 19§
) K@D 35[1

8 maloiog
where Y ranges from —1 at the crack centre to 1 at the crack tip.

The integral term is approximated by a Gauss-Chebyshev quadra-
ture, which approximates

& Y+§+Y+2 4,
(A2)

[ A= L), forgy=costaasyan)
(A3)
To obtain an integrand of the form given in (A3), we define
)
¢(&) = 1-¢&2, (A4)

9
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and hence equation A1 can be written as
Ka*(Y+1)2 1 & 1 1
—— =) 0(§)) +
8 nd J:Z:l Vg —Y Ei+Y+2
(AS5)

FY)=T-

where the §; (j=1,...,

2j—1
Ej=cos (n o )

The shear stress and slip are collocated at points ¥; = cos(7i/n)

n) are Chebyshev nodes

(A6)

(i=1,...,n—1). Equation A5 can then be rewritten in matrix form
as

L0 Ka*(Yi+1)* 1

7o) =T - LCRURR é L 7Eii%i, (A7)

where the dependency of 7 on 5 (arising from the constitutive slip-
dependent friction law) was made explicit, and

& =6(1), (A8)

¢;=9¢(§;), and (A9)
1 1 1

Ei=1 P P A (A10)

The discretised slip 5 is expressed as a function of ¢; as

8 = Sij0;. (Al1)
In order to compute the matrix S;;, we can first remark that, accord-
ing to the quadrature rule, ¢; can be expressed as a decomposition
along the n first Chebyshev polynomials of the first kind:

n—1

¢j = Z Tm(éj)Bm = ijBm:

m=0

(A12)

where Tp,(-) denotes the m-th Chebyshev polynomial of the first
kind, and B, are the corresponding coefficients. Note that Cj,, =
Tn(§j) = cos(mm(2j—1)/(2n)). Following Equation A4, the slip
at node i is then computed by direct integration of (A12), and is
expressed as

& = DimB, (A13)
where T it 0
—ir/n 1tm=0,

Dim —{ —(1/mysin(min/n) itm=1. AP

The combination of (A12) and (A13) leads to the following expres-
sion for S;;:

Si, = DinC,, - (A15)
In order to determine C'; | ! which is the inverse of Tn(€;), we make
use of the orthogonality of Chebyshev polynomials with respect to

the weight 1/4/1 —&2:

1 P mifj=m=0,
/ATJ(é)Tm(g)\/ﬁ: g/zels;f,j:m#a (A16)

Using the quadrature rule (A3), the orthogonality condition (A16)
implies that

n— n/2 if j=m=0,
Z 1) Tn(&) =3 n if j=m#0, (A17)
k= 0 else,
and hence we obtain
1 I/n ifm=0,
Cim —{ (2/n)cos (ma(2j—1)/@n)) itm>1.  A1Y

The relation A7 provides us with n — 1 independent equations.
There are n unknown values of ¢;, and the crack size 4 is also an
unknown. The relation between 7 and @ is non-monotonic, hence
it is not convenient to impose 7' and attempt to find a. For practical
purposes it is more efficient to let 7" be an additional unknown, and
to impose the maximum slip, denoted Omax, Which always occurs
at the crack centre (since the loading profile is symmetric). Hence
we have n+2 unknown: n— 1 values of ¢;, a and T. We need three
additional constraints to close the system.

The first additional constraint comes from the requirement that
there is no stress intensity factor at the crack tip (the crack is non
singular). This implies that there is no slip gradient at the tip, which
requires that ¢ (& = —1) = 0 (note that this condition is necessary
but, sensu stricto, not sufficient to impose zero slip gradient at the
tip; however, the numerical computations using this weak condi-
tion always lead to the expected nonsingular solutions). There is
no Chebyshev node at £ = 1, but ¢(§ = 1) can be accessed via
extrapolation of ¢;. The condition is then [Viesca and Rice, 2012]

Ony1—j- (A19)

~ Lyos "*1)(21*1)/(4'1))
0= n; sin(m(2j—1)/(4n))

A second additional constraint is that there must not be any slip
gradient at the crack centre, because the loading profile is symmet-
ric and the peak slip must occur at the centre. The condition is
equivalent to imposing ¢ (—1) = 0, and reads

Ly s nf1><2171>/<4n>>
;; sin(m(2j —1)/(4n)) ;. (A20)

Finally, we impose the peak slip Smax at the centre of the crack
(Y = —1), which yields the following constraint on ¢;:

- ﬂl'l
Snax = 5(—1) /ag dE ~ — ;;@.

Relations A7, A20, A19 and A21 form a nonlinear system of
equations for the unknowns ¢;, @ and T. This system is solved
using the Newton-Raphson algorithm.

(A21)

Appendix B: Small scale yielding

Here we develop some of the formulas used in the calculation of
the small scale yielding asymptotics.

B1. Stress intensity factor

We first give closed-form expressions for the stress intensity fac-

tor given in Equation 14. If we denote xg = 1/2(7. — T, + Rt ) / K the

point at which AT, (x) first reaches 0, we have

k= (% — %) v/Ta+ Ak(xp),

[a /mm{a 0} T — Ty + Rt — kx?/2
k(xo) dx.
min{a,xo } a? —x?
After some algebra, we find

1/garcsin<x—0) [2(TC+Rthb)fKa2/2}
T a
a K 2 .
+1/;§xm/a27xo if xg < a,

VTa [’L‘C +Rt — T, — Ka2/4] else.

B

where

(B2)

B2. Improved asymptotics
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We briefly recall here the method used to compute precise
small scale yielding asymptotic solutions. We used the results
from Garagash and Germanovich [2012], based on the works of
Dempsey et al. [2010]. The method consists in replacing the crack
size a by an effective crack size a.fs in the expression of the far field
stress intensity factor k(a) (in equation 14). For linear slip weak-
ening with residual strength in the crack tip process zone, Dempsey
et al. [2010] determined that the size of the process zone is

d =~ 0.4661 (B3)
for very large crack size (i.e. for a —d > A), where A =
(m/2)(k/(7p — 7:))? is a characteristic length scale. The ratio d/A
is expected to be shghtly different from 0.466 in the case studied
here because there is some slip hardening prior to the slip weak-
ening behaviour. Considering cases where the slip strengthening
distance is small compared to the slip weakening distance, we ne-
glect the hardening region and use the above value of d/A and find
that the approximation is of reasonable qzuahty (see Figure 9).

During crack propagation we have k= / = G, and hence
A can be estimated as A /ay = nG¢/ (A‘L‘5 ) Garagash and Ger-
manovich [2012] determined that an accurate estimate of the far-
field stress intensity factor could be calculated when using

aetf = a — 0.466d (B4)
instead of a in the estimation of £, i.e., by reducing the total crack
size by a fraction of the process zone size. Approximate solutions
for crack size a/ay, as a function of the imposed load Rt/AT can
then be calculated by using the crack propagation criterion (16)
with the modified far-field k(aeg) (computed using (B1) and(B3)).
Those solutions are plotted in Figure 9 in grey (labelled “s.s.y”).
Despite the approximation made that the ratio d/A would remain
equal to 0.466, we observe that the asymptotic solution does a very
good job for crack sizes a/ay above 2. As a note of caution, how-
ever, we wish to note that this overall good quality of the modified
small scale yielding asymptote might be deteriorated when choos-
ing very large hardening distance and/or very large peak stress. In
those cases, the ratio d/A might be altered and a better correction
could be desirable.

Appendix C: Eigenvalue problem

Using the nondimensional crack size @ = a/ay and coordinate
X = x/a, equation (19) reads

. 1 (1 ov déE
ab(X)v(X):E./ilxéfX.

We expect dv(€)/IE to behave as 1/4/1 — &2 near the tips & +1.

This follows from the inversion of (C1), which gives [e.g., Rice,
1968]:

(CH

) - / L emeas. @@

0X T \/ 1= ’

where the integral is finite. Hence, we define
dv

=-1/1-¢&2 C3
V&) =gz V1-¢% (€3)

and use the Gauss-Chebyshev quadrature rule to obtain
PN = 5 Y 5 W(E) ()

a n =1 éj X 4 ]/

where &; = cos(m(2j—1)/ (2n)) The slip rate v is collocated at
points X; = cos(mi/n) (i=1,...,n—1). The discretised equation
is rewritten in matrix form as

(C5)

aAijyj = Kijyj,

where y; = X;)), and

w(S));
A

Kij=(1/2n)(1/(&; -

ij =b(X;)S;; (nosumon i). (C6)
The eigenvalues and eigenvectors are then obtained numerically

using Matlab’s function eig, setting n = 801.
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