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Abstract

Yanchevski�� had asked whether conic bundle surfaces over P1
k are unirational

when k is a �nite �eld. We give a partial answer to his question by showing that
for quasi-�nite �elds k (e.g. �nite �elds) a regular conic bundle X over P1

k is unira-
tional if all non-split �bres lie over rational points. For large �nite �elds k, this beats a
previous result of Mestre. Under the same assumption, we also prove that all rational
points of X are R-equivalent.

1 Introduction

Let k be a �eld. A k-variety is said to be rational (resp. unirational) if there exist
n ∈ Z≥0 and a rational map Pn

k 99K X that is birational (resp. dominant). In the case
of smooth geometrically rational projective surfaces, the classi�cation of their minimal
models by seminal works of Manin [Man66][Man67] and Iskovskikh [Isk79] splits the study
of unirationality into two families. The �rst family consists in del Pezzo surfaces X, that
is, smooth projective surfaces with ample anticanonical bundle KX . To X is associated
its degree d := (KX)2 ∈ {1, . . . , 9} and works of Segre, Manin and Kollár showed that X
is unirational whenever X(k) ̸= ∅ and d ≥ 3, over any �eld k. When d = 2, partial results
are given by Salgado, Testa and Várilly-Alvarado [STVA14] and the case of �nite �elds
has been fully tackled by Festi and van Luijk [FvL16]. The second family consists in conic
bundles over a smooth curve. To de�ne them, we recall that a conic over k is the vanishing
locus of a quadric in P2

k.

De�nition 1.1. For any scheme S, a conic bundle over S is a proper and �at morphism
f : X → S where X is integral, with a smooth generic �bre and such that all geometric
�bres of f are isomorphic to a conic. The conic bundle f is called regular if X is regular.

By Lüroth's theorem, if X → C is a conic bundle over a smooth, integral, projective
curve C, a necessary condition for the unirationality of X is that C ≃ P1

k, which lets us,
from now on, restrict our attention to that case. The following question was raised by
Iskovskikh in [Isk67, �4.5] (see also [Yan92, Problem]).

Question 1.2. If k is a �eld and X → P1
k is a conic bundle such that X(k) ̸= ∅, is X

unirational?

Although this question is still open, it is expected to have a negative answer in general.
Using the terminology of [Sko96, De�nition 0.1], we say that a conic is non-split if it is
singular and irreducible. For a conic bundle f : X → P1

k, we denote by δ ∈ Z≥0 the degree
of {t ∈ P1

k : Xt is non-split}, which may also be understood as the number of geometric
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singular �bres of a minimal model of the generic �bre of f . When k has characteristic
di�erent from 2, conic bundles with a k-point are k-unirational if δ ≤ 7, by works of
Segre, Iskovskikh, Manin, Kollár and Mella (see section 1 of [KM17] for a summary).
Iskovskikh [Isk67] gave a positive answer to Question 1.2 for k = R, or more generally
when k is a real closed �eld. Later, Yanchevski�� [Yan85] proved the case of Henselian �elds,
Voronovich that of pseudo-algebraically closed �elds [Vor86] and Yanchevski�� generalised
this result to pseudo-closed �elds, see [Yan92, Theorem 1]. Over �nite �elds, Yanchevski��
raised the following question (see the discussion preceding Problem 3 in [Yan90]).

Question 1.3 (Yanchevski��). Let F be a �nite �eld. For all conic bundles f : X → P1
F,

is X unirational?

The only result in this direction was given by Mestre in [Mes96] who proved that X
is unirational when F is �nite of characteristic di�erent from 2 and |F| ≥ δ2 × 2δ−3. Our
�rst result is a partial answer to Question 1.3 over the larger family of 2-quasi-�nite �elds
that we �rst de�ne, jointly with the classical notion of quasi-�nite �elds. We recall that
for a prime number p, the ring of p-adic integers is denoted by Zp.

De�nition 1.4. Let k be a �eld. We say that k is 2-quasi-�nite if it is perfect and if
there exists a set of prime numbers S such that 2 ∈ S and the absolute Galois group of k
is isomorphic to

∏
p∈S Zp. Furthermore, k is called quasi-�nite if S is the set of all prime

numbers.

By de�nition, quasi-�nite �elds are 2-quasi-�nite Three classical examples of quasi-�nite
�elds are that of �nite �elds, Laurent series over an algebraically closed �eld of characteris-
tic zero and non-principal ultraproducts of �nite �elds (see e.g. [Ax68, �7, Proposition 3]).
Our �rst result may then be stated as follows:

Theorem 1.5. Let k be a 2-quasi-�nite �eld of characteristic di�erent from 2 and f :
X → P1

k a regular conic bundle. Denote by B the reduced divisor of P1
k made of those

points whose �bre by f is non-split. Consider the following assertion:

(⋆) The set B is a union of rational points, one point of degree at most 2 and one point

whose degree is odd.

If condition (⋆) is veri�ed, then X is unirational.

The case where B = P1(k) is not encapsulated in the aforementioned result of Mestre,
whose bound is very restrictive for large |k|. The proof relies on a criterion of Enriques for
unirationality of conic bundles which consists in building a rational curve on X intersecting
a general �bre of f (see Proposition 3.2). For �elds k with cd(k) ≤ 1, we prove that this
amounts to constructing a �nite morphism φ : P1

k → P1
k such that for each t ∈ φ−1(B),

we have 2 | e(t/φ(t))× [κ(t) : κ(φ(t))], where e(t/φ(t)) denotes the rami�cation index of φ
at t (see Theorem 3.1). More precisely, we show that the unirationality of X is equivalent
to the existence of such a cover. When k is 2-quasi-�nite, the latter is achieved under
assumption (⋆) by taking φ as a tower of well chosen degree 2 covers (see Section 4.2).
Eventually, this gives a further insight into the limits of the method used by Mestre, whose
construction of φ is made of precisely one degree 2 cover of P1

k, and a degree 2 cover
satisfying the above property does not exist if B contains P1(k).

When studying rational points on varieties, another topic of interest is that of R-
equivalence introduced by Manin in [Man86, Chapter II, �14] and de�ned as follows.
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De�nition 1.6. Let k be a �eld and X a k-scheme. Two points x and y in X(k) are
called directly R-equivalent if there exists a rational map g : P1

k 99K X such that x and y
both belong to g(P1(k)). The equivalence relation spanned by this relation is called R-
equivalence. We further say that R-equivalence is trivial if X(k)/R has cardinality 1.

The R-equivalence relation on X(k) turns out to be interesting when, geometrically, X
contains many rational curves. This is the case in the setting of geometrically rational
surfaces and more generally of separably rationally connected varieties [Kol96, Chapter IV,
De�nition 3.2] which are de�ned as follows.

De�nition 1.7. A variety X over a �eld k is separably rationally connected if for any
algebraic closure k of k, there exists an integral k-variety T and a rational map e : P1

k
×k

T 99K Xk such that the map P1
k
×P1

k
×T 99K Xk×Xk de�ned by (z, z

′, t) 7→ (e(z, t), e(z′, t))
is dominant and smooth at the generic point.

Various authors have studied triviality and �niteness of X(k)/R for several classes
of separably rationally connected varieties. For instance, it is already known that regular
conic bundles overP1

k with at most 5 reducible geometric �bres have only one R-equivalence
class if k is an in�nite, perfect, C1 �eld of characteristic di�erent from 2 [CTS87][CT15].
We refer the reader to [Kol99], [Pir12] and [CT15] for further results on di�erent families
of varieties. Our second result in this paper is on the triviality of R-equivalence for conic
bundles X → P1

k over a 2-quasi-�nite �eld k.

Theorem 1.8. Let us use the same notations as in Theorem 1.5 and consider the following
assertion:

(⋆⋆) The set B is a union of rational points and one point which has either degree 2 or

odd degree.

If condition (⋆⋆) is veri�ed, then X(k)/R is trivial.

Eventually, in Corollary 5.3, we prove that for a �nite �eld F and a conic bundle
X → P1

F, the variety X is unirational and R-equivalence is trivial on it, if one assumes
that rational points of a smooth, geometrically integral and separably rationally connected
projective surface over F(t) are dense in its Brauer-Manin set (see Conjecture 5.1). This
is an analogue of a conjecture of Colliot-Thélène and Sansuc over number �elds [CTS80]
that has been studied by various authors. Combined to Theorems 1.5 and 1.8, this leads
to the following generalisation of Question 1.3 that we formulate over quasi-�nite �elds.

Question 1.9. Let k be a quasi-�nite �eld and X → P1
k a conic bundle. Is X unirational

and R-equivalence trivial on X?

Outline of the paper

In Section 2, we start by setting notations and de�nitions in �2.1. In �2.2, we state
properties of 2-quasi-�nite �elds that are used all along the article. The content of �2.3 is
known to the experts. We explain how one can detect split �bres of a regular conic bundle
through the residues of its generic �bre. Eventually, in �2.4 we recall the de�nitions of
weak approximation and the Brauer-Manin set over the function �eld of a curve over a
�nite �eld. We also recall the dictionary between rational points of a variety and sections
of its models.

Section 3 is dedicated to a unirationality criterion for conic bundles over �elds of co-
homological dimension at moste one, stated in Theorem 3.1. In �3.1, we recall a criterion
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of Enriques on unirationality of conic bundles and we restate it over �elds of cohomolog-
ical dimension at most one, in Corollary 3.4. Eventually, a proof of Theorem 3.1 is given
in �3.2. As a corollary, we also get in �3.3 a criterion for the triviality of R-equivalence.

In Section 4, we apply the criteria given in Section 3 to prove the unirationality and
R-equivalence results for conic bundles over a 2-quasi-�nite �eld stated in Theorems 1.5
and 1.8. This amounts to constructing well-chosen rami�ed covers P1 → P1, for which we
give general recipes in �4.1. We prove Theorem 1.5 in �4.2 and Theorem 1.8 in �4.3.

Eventually, in Section 5, we prove in Corollary 5.3 that the unirationality of conic
bundle surfaces over �nite �elds is implied by Conjecture 5.1, which predicts the closure of
rational points in the adelic set of a geometrically integral, smooth and separably rationally
connected projective surface over F(t), for any �nite �eld F. The proof goes through
Theorem 5.2, where we show that if rational points are dense in the Brauer-Manin set of
a conic bundle surface, then it has weak weak approximation (resp. weak approximation
if |F| is odd) and we conclude by the dictionary of �2.4.

Appendix A is dedicated to the study of Brauer groups of separably rationally connected
surfaces. In �A.1 we supply, in Proposition A.1, a proof of the �niteness of the algebraic
Brauer group, up to constant classes, of a separably rationally connected variety. In �A.2,
we show, in Proposition A.3, that the Brauer group of a conic bundle surface, up to constant
classes, is a 2-torsion group.
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2 Preliminaries

2.1 Notations

If A is an abelian group and n ∈ Z≥0, we denote by A [n] the n-torsion part of A,
by A{p} the p-primary torsion part of A and A{p′} :=

⊕
l prime, l ̸=pA{l}.

If X is a scheme, we denote by Br(X) := H2
ét(X,Gm) the Brauer group of X and if R

is a commutative ring we set Br(R) := Br(Spec(R)). If k is a �eld, Br(k) is also the set of
central simple algebras over k up to Brauer equivalence, see [GS06, �2.4].

WhenR is a discrete valuation ring, with function �eldK and residue �eld κ whose char-
acteristic is di�erent from 2, then we have Serre's residue map [CTS21, De�nition 1.4.3.(ii)]
∂ : Br(K){2} −→ H1(κ,Q2/Z2) whose restriction to the 2-torsion of Br(K) gives rise to a
map

r : Br(K)[2] −→ H1(κ,Z/2Z). (1)

If k is a �eld, we denote by cd(k) its cohomological dimension (see e.g. [Ser94, I.�3.1]).
If G is the absolute Galois group of k and A an abelian group on which G acts trivially,
we denote by H1(k,A) the �rst Galois cohomology group of G with coe�cients in A (see
[Ser94, Chapitre I, �2]) which is canonically isomorphic to H1

ét(Spec(k), A).
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When Y → X is a morphism of schemes and A is an abelian group, we denote by
resY/X : H1

ét(X,A) → H1
ét(Y,A) the restriction morphism, see e.g. [CTS21, �2.2.4.(2.7)].

If F/E is an extension of �elds, the restriction map resSpec(F )/Spec(E) is also denoted
resF/E and we view it as a morphism H1(E,A) → H1(F,A) where the absolute Galois
groups of E and F act trivially on A. If F/E is �nite and separable, we denote by
coresF/E : H1(F,A) → H1(E,A) the corestriction map, see e.g. [Ser94, Chapitre I, �2.4]).

A k-variety is a separated k-scheme of �nite type and a nice curve over k is a proper,
smooth and geometrically integral k-variety of dimension one. When X is a scheme, its
set of codimension one points is denoted by X(1). Following [Sko96, De�nition 0.1], we
say that a k-variety X is split if it contains a geometrically integral open subscheme. If L
is a �eld extension of k, then we say that L is a splitting �eld of V if V ⊗k L is split. A
splitting �eld of V is minimal if it does not contain any proper sub�eld that splits V .

2.2 Generalities on 2-quasi-�nite �elds

Let us start by giving general properties of 2-quasi-�nite �elds.

Proposition 2.1. Let k be a 2-quasi-�nite �eld and l/k a �nite extension of k.

(a) The cohomological dimension of k is one.

(b) We have l×/(l×)2 ≃ Z/2Z.

(c) The extension l/k contains a unique extension of degree 2 of k.

Proof. Denote by G the absolute Galois group of k. First notice that assertions (b)
and (c) are immediate combinations of Galois correspondence and the fact that the 2-
Sylow of G is Z2. For (a), using that G is a closed subgroup of Ẑ, [Ser94, Chapitre I, �3.3,
Proposition 14] ensures that cd(G) ≤ cd(Ẑ). This proves that cd(G) ≤ 1 by [Ser94,
Chapitre I, �3.2, Exemple 1)], which is an equality since G ̸= 1.

The following proposition supplies a description of corestriction maps for �nite exten-
sions of a 2-quasi-�nite �eld.

Proposition 2.2. If the characteristic of k is di�erent from 2 and E/F/k are �nite
�eld extensions of k, then we have canonical isomorphisms H1(F,Z/2Z) ≃ Z/2Z and
H1(E,Z/2Z) ≃ Z/2Z under which the morphism coresE/F : H1(E,Z/2Z) → H1(F,Z/2Z)
is the identity morphism of Z/2Z.

Proof. For the �rst part of the statement, since k has characteristic di�erent from 2,
Kummer's exact sequence ensures that H1(E,Z/2Z) ≃ E×/(E×)2 and H1(F,Z/2Z) ≃
F×/(F×)2, and they are isomorphic to Z/2Z by (b) of Proposition 2.1. For the sec-
ond part of the statement, since k has cohomological dimension one, the map coresE/F :

H1(E,Z/2Z) → H1(F,Z/2Z) is an isomorphism by [NSW08, Proposition 3.3.11]. The only
automorphism of Z/2Z being the identity map, this proves the statement.

2.3 Residues and splitness

De�nition 2.3. Let S be a scheme. Two conic bundles f : X → S and g : Y → S are said
to be equivalent if there exists a dense open subset U of S such that f−1(U) and g−1(U)
are isomorphic over U .

We recall the following proposition, which is useful in the rest of the article.
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Proposition 2.4 ([CTS21, Lemma 11.3.2]). Let C be a smooth and geometrically integral
curve. If f : X → C is a conic bundle, then there exists a regular conic bundle g : Y → C
equivalent to f such that all �bres of g are integral.

The following proposition describes a minimal splitting �eld of the special �bre of a
regular conic bundle over a DVR, via the residue of the generic �bre.

Proposition 2.5. Let R be a discrete valuation ring, K its fraction �eld, κ its residue
�eld. Assume further that 2 is invertible in R and denote by r the associated residue map
de�ned as in (1). Let C be a smooth conic over K and X an integral R-proper scheme
such that X is regular, with generic �bre XK ≃ C. Let α ∈ κ× be a representative of the
class r([C]) ∈ H1(κ,Z/2Z) = κ×/(κ×)2. Then κ(

√
α) is a minimal splitting �eld of Xκ.

Before proving Proposition 2.5, we recall that geometrically, a conic is either isomorphic
to a projective line, or a union of two projective lines, or a double line, so that a conic is
split if and only if it is a union of two projective lines, or it is geometrically irreducible.

Proof. We �rst construct an explicit integral R-scheme C such that C is regular, with
generic �bre CK ≃ C and we prove that the statement holds for C . Then, for X as in
the statement, since XK ≃ CK the conclusion follows from [Sko15, Corollary 2.3], whose
statement is true without assuming that κ is perfect, the proof being given in the Remark
following it.

To construct C , denote by v the valuation on R, pick ϖ a uniformiser of R and
choose q ∈ K[x, y, z] a quadratic form such that C = V (q) ⊂ P2

K . Let us prove that q may
be chosen of the form ax2 + by2 − z2 where a ∈ R and b ∈ R×. Since κ is of characteristic
di�erent from 2, we may assume that q is diagonal and write it q = ax2 + by2 + cz2

where a, b, c further lie in K× as C is smooth. After multiplying q by a constant, we may
also assume that a, b, c ∈ R. Furthemore, after the change of variables x′ = ϖ⌊v(a)/2⌋x,
y′ = ϖ⌊v(b)/2⌋y and z′ = ϖ⌊v(c)/2⌋z we may assume that v(a), v(b), v(c) ∈ {0, 1}. Since
two among the integers v(a), v(b) and v(c) have same class in Z/2Z, we may rearrange
the variables of q in such a way that v(b) = v(c). If the latter is equal to 0, we may then
divide q by −c ∈ R× so that we may assume that q = ax2 + by2 − z2 with v(b) = 0.
Otherwise, we may divide q by c and make the change of variable x′ = ϖεx where ε = 0
if v(a) = 1, and ε = −1 is v(a) = 0, so that we may again assume that q = ax2 + by2 − z2

with v(b) = 0.
Let us now verify the statement for C = V (q) ⊂ P2

R, which is regular, and for which
we clearly have that CK ≃ C. By [CTS21, Equation (1.18)], we have that r([C]) = [bv(a)].
If v(a) = 1, then a = 0 ∈ κ. Thus, Cκ is the zero locus of the quadric by2 − z2 which may
be rewritten in κ(

√
b) as (y

√
b− z)(y

√
b+ z), so that κ(

√
b) splits Cκ. Moreover, if b is a

square in κ then κ(
√
b) is clearly minimal. Otherwise, by2−z2 is irreducible, so that κ(

√
b)

is again minimal. Now, if v(a) = 0, then Cκ is the zero locus of a non-degenerate, hence
geometrically irreducible conic, so that Cκ is split. This proves the statement for C .

The following proposition is also used thereafter.

Proposition 2.6 ([Sko15, Corollary 2.3 and Remark]). Let C be a smooth geometrically
integral curve over a �eld k of characteristic di�erent from 2. If f : X → C and g : Y → C
are two equivalent regular conic bundles, then the non-split �bres of f and g lie over the
same points of C.
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2.4 Approximation over function �elds

Let C be a nice curve over a �nite �eld F, and K its function �eld, we denote by ΩK

the set of places of K, that is, closed points of C. If X is a proper K-variety and S ⊂ ΩK

is �nite, we set X(KS
Ω) =

∏
v∈ΩK\S X(Kv) which is endowed with the product topology.

When S = ∅, this set is also denoted by X(KΩ).

De�nition 2.7. LetX be a properK-variety. We say thatX has weak weak approximation

if there exists a �nite subset S ⊂ ΩK such that the diagonal embedding X(K) ↪−→ X(KS
Ω)

has a dense image. We further say that X has weak approximation if we can take S = ∅.

The Brauer-Manin pairing has been introduced by Manin [Man71] to study the defect
of weak approximation in the setting of number �elds (see also [Har07, �1.3] and [CTS21,
�13.3.1]), although the de�nition is the same over function �elds of curves over a �nite
�eld. If X is a proper K-variety, it is de�ned as:

⟨·, ·⟩BM : X(KΩ)× Br(X) Q/Z

((xv), α)
∑

v∈ΩK
invv (x

∗
v(α)) ,

where invv : Br(Kv) → Q/Z is the local invariant and x∗v stands for the specialisation
morphism of Brauer groups Br(xv) : Br(X) → Br(Kv). Elements of X(KΩ) orthogonal
to Br(X) form a closed subset X(KΩ)

Br(X) of X(KΩ) containing X(K) and which is called
the Brauer-Manin set of X.

De�nition 2.8. Let X be a proper K-variety. We say that the Brauer-Manin obstruc-

tion to weak approximation is the only one on X if X(K) is dense in X(KΩ)
Br(X). We

abbreviate this by saying that X veri�es (BM).

We need to recall how approximation of local points can be translated over function
�elds and we refer the reader to [Has10, Section 1] for further details.

We �x a proper K-variety X and a model of X, that is, a �at proper morphism
ρ : X → C whose generic �bre is isomorphic to X. Then, if v ∈ ΩK and Pv ∈ X(Kv),
the valuative criterion of properness ensures that Pv extends to a unique Ôv-morphism
P̂v : Spec(Ôv) → X ×C Spec(Ôv). If N is a positive integer, we set

JPv ,N := {Q ∈ X(Kv) : the restrictions of Q̂ and P̂v to Spec(Ôv/m
N
v ) are the same}.

Reminder 2.9 ([Has10, Section 1]). If S ⊂ ΩK is �nite and (Pv)v∈ΩK\S ∈ X(KS
Ω), then

a fundamental system of neighbourhoods of (Pv) is given by the sets

WT,N :=
∏
v∈T

JPv ,N ×
∏

v∈ΩK\(S∪T )

X(Kv)

where T ranges over �nite subsets of ΩK \S and N ranges over positive integers. Further-
more, the mapping P 7→ P̂ is a bijection between X(K) ∩WT,N and sections : C → X

of ρ such that for all v ∈ T , the pullbacks of j and P̂v to Spec(Ôv/m
N
v ) coincide.

3 A unirationality criterion

This section is dedicated to the proof of the following unirationality criterion. To state
it, let us recall that if φ : P1

k → P1
k is a dominant morphism and s, t ∈ P1

k are such
that φ(t) = s, then we denote by e(t/s) the rami�cation index of φ at t.
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Theorem 3.1. Let k be a �eld of characteristic di�erent from 2 with cd(k) ≤ 1, and
f : X → P1

k a regular conic bundle . Denote by B the set of points in P1
k over which the

�bre of f is non-split. Then the following assertions are equivalent:

1) The variety X is k-unirational.

2) There exists a dominant morphism φ : P1
k → P1

k such that for any s ∈ B and
any t ∈ φ−1(s) one has 2 | e(t/s)× [κ(t) : κ(s)].

3.1 A criterion of Enriques

Before proving Theorem 3.1, let us state Enriques criterion for the unirationality of
conic bundles [PS99, Proposition 10.1.1].

Proposition 3.2. Let k be a �eld and f : X → S a conic bundle between k-varieties.
Then the following assertions are equivalent:

(i) The variety X is unirational.

(ii) There exists a rational map g : PdimS
k 99K X such that f ◦ g is dominant.

(iii) There exists a dominant map h : PdimS
k 99K S such that the base change of f by h

has a rational section.

Proof of Proposition 3.2. The proof of (ii)⇒(iii)⇒(i) is given in [PS99, Proof of Proposi-
tion 10.1.1].

Since the proof of (i)⇒(ii) given in ibidem works implicitly for an in�nite �eld, let us
give a general proof. Let us assume (i), that is X is unirational, and let us prove (ii). First
choose a rational dominant map ψ : Pr 99K X. Note that the proof of [Kol02, Lemma 2.3]
ensures that, given a rational map φ : Pd

k 99K X with f ◦ φ dominant, if d > dimS then
there exists a rational hypersurface ι : Z ↪−→ Pd

k such that f ◦ φ ◦ ι is dominant, that is,
there exists a rational map θ : Pd−1

k 99K Pd
k such that f ◦φ◦ θ is dominant. When starting

with ψ, we may now apply this procedure iteratively, which proves (ii).

Remark 3.3. Note that if S is a projective curve, then the rational maps in (ii) and (iii) of
Proposition 3.2 may be assumed to be morphisms by the valuative criterion of properness.

When the base �eld has cohomological dimension at most one, we infer the following
unirationality criterion for conic bundles.

Corollary 3.4. Let k be a �eld of characteristic di�erent from 2 such that cd(k) ≤ 1. If
f : X → P1

k is a regular conic bundle, then X is unirational if and only if there exists a
dominant morphism φ : P1

k → P1
k such that the closed �bres of all regular conic bundles

equivalent to the base change of f by φ are split.

The proof of Corollary 3.4 requires the following characterisation of regular conic bun-
dles over P1

k having a section.

Lemma 3.5. Let k be a �eld of characteristic di�erent from 2, with Br(k) [2] = 0. If
f : X → P1

k is a regular conic bundle, then f has a section if and only if all �bres of f over
a closed point of P1

k are split.
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Proof. If we write the short exact of [GS06, Theorem 6.9.1] with i = m = 2 and j = 1, we
get the following short exact sequence

0 Br(P1
k)[2] Br(k(P1

k))[2]
⊕

P∈(P1
k)

(1)

H1(κ(P ),Z/2Z)
⊕rP (2)

where for each P ∈ (P1
k)

(1), the map rP denotes the residue map (1) associated to the
discrete valuation ring OP1

k,P
. Besides, Br(P1

k) [2] = Br(k) [2] = 0 where the �rst equality
is derived from [Sko01, Corollary 2.3.9] and the second one from our assumption on k.
Thus, if Xη denotes the generic �bre of f , then f has a section if and only if the smooth
conic Xη has a rational point, that is, if and only if [Xη] = 0 ∈ Br(k(P1

k))[2]. By the short
exact sequence (2), [Xη] = 0 if and only if for any closed point P of P1

k, rP ([Xη]) = 0.
Furthermore, Proposition 2.5 applied to the regular integral scheme X ×P1

k
Spec(OP1

k,P
)

ensures that rP ([Xη]) = 0 if and only if XP splits. This proves that f has a section if and
only if all its closed �bres are split.

Remark 3.6. Let k be a �eld of characteristic di�erent from 2. Then Br(k) [2] = 0 if k
veri�es one of the following conditions:

(a) the cohomological dimension of k is at most one;

(b) the absolute Galois group of k is a p-group for some prime number p ̸= 2.

Indeed, if k satis�es (a), this comes from the isomorphism Br(k) [2] = H2(k,Z/2Z) induced
by Kummer's exact sequence. If k satis�es (b), all central simple algebras A over k are
split by a �nite separable extension of k, whose degree is by assumption a power of the
odd prime p, that is, [A] ̸∈ Br(k){2} \ {0}.

We may now give a proof of Corollary 3.4:

Proof of Corollary 3.4. By Remark 3.3 applied to (iii) of Proposition 3.2, X is unirational
if and only if there exists a dominant map φ : P1

k → P1
k such that the conic bundle g :

X×P1
k,φ

P1
k → P1

k, de�ned as the base change of f by φ, has a section. By Proposition 2.4,
all conic bundles are equivalent to a regular conic bundle. In particular, g has a section if
and only if all regular conic bundles over P1

k equivalent to g have a section. Now, using
Lemma 3.5 and (a) of Remark 3.6, the latter is equivalent to saying that the closed �bres of
all regular conic bundle over P1

k equivalent to g are split, which proves the statement.

3.2 Proof of Theorem 3.1

Before we give a proof of Theorem 3.1, we recall that when R ⊂ S is an inclusion of
discrete valuation rings, with respective fraction �elds K ⊂ L and residue �elds κ ⊂ λ of
characteristic di�erent from 2, we denote by ResK/L : Br(K)[2] → Br(L)[2] the restriction
morphism de�ned contravariantly from the morphisms Spec(L) → Spec(K). If R contains
a �eld and e is the rami�cation index of S/R, the following diagram is commutative [CTS21,
Proposition 1.4.7]:

Br(K)[2] H1(κ,Z/2Z)

Br(L)[2] H1(λ,Z/2Z)

rK

ResK/L e×resκ/λ

rL

(3)

where the horizontal maps are the residue maps (1) associated to R and S.
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Proof of Theorem 3.1. Before starting the proof, using Propositions 2.4 and 2.6, we may
assume that all non-split �bres of f are integral. Thus, non-split �bres of f coincide with
its singular �bres.

Let us now make a remark that is useful all along the proof. If f : X → P1
k is a conic

bundle and φ : P1
k → P1

k is dominant, denote by f ′ : X ′ → P1
k the base change of f by φ

(so that X ′ may not be regular). For any closed point t of P1
k, if we set s = φ(t) and if

we denote by rt (resp. rs) the residue map (1) at t (resp. at s) and Xη (resp. X ′
η) the

generic �bre of f (resp. f ′) then if we apply the commutative diagram (3) to the inclusion
of discrete valuation rings OP1

k,s
⊂ OP1

k,t
induced by f , we get

rt(X
′
η) = e(t/s)× resκ(s)/κ(t)(rs(Xη)). (4)

As cd(k) ≤ 1, the map coresκ(t)/κ(s) is an isomorphism by [NSW08, Proposition 3.3.11].
Moreover, coresκ(t)/κ(s) ◦ resκ(s)/κ(t) = [κ(t) : κ(s)] [GS06, Proposition 4.2.10], so that (4)
may be rewritten as

rt(X
′
η) = e(t/s)× [κ(t) : κ(s)]× cores−1

κ(t)/κ(s) (rs(Xη)) ∈ H1(κ(t),Z/2Z). (5)

Now, if f ′′ : X ′′ → P1
k is a regular conic bundle equivalent to f ′, since its generic �bre X ′′

η

is isomorphic to X ′
η, we may rewrite (5) as

rt(X
′′
η ) = e(t/s)× [κ(t) : κ(s)]× cores−1

κ(t)/κ(s) (rs(Xη)) ∈ H1(κ(t),Z/2Z). (6)

Let us now assume 1), that is X is k-unirational. By Corollary 3.4, there exists a
dominant map φ : P1

k → P1
k such that if f ′′ : X ′′ → P1

k is a regular conic bundle
equivalent to the base change f ′ : X ′ → P1

k of f by φ, then all closed �bres of f ′′ are
split. For s ∈ B and t ∈ φ−1(s), since X ′′

t splits and Xs is non-split, Proposition 2.5
ensures that rt(X ′′

η ) = 0 and rs(Xη) ̸= 0. As H1(κ(t),Z/2Z) = κ(t)×/(κ(t)×)2 is a group
of exponent 2, by (6) we deduce that 2 | e(t/s)× [κ(t) : κ(s)], which proves 2).

Suppose that 2) holds true and let f ′ : X ′ → P1
k be the base change of f by φ and

f ′′ : X ′′ → P1
k a regular conic bundle such that f ′ and f ′′ are isomorphic over P1

k \ B. In
the beginning of the proof, X has been chosen such that f is smooth above P1

k \ B, so
that the morphism f ′ is also smooth above P1

k \ φ−1(B). In particular, the �bres of f ′′

above U are smooth, hence split. Furthermore, for s ∈ B and t ∈ φ−1(s), the assumption
on φ and equation (6) ensure that rt(X ′′

η ) = 0, as H1(κ(t),Z/2Z) is a group of exponent 2.
By Proposition 2.5, the �bre X ′′

t is then split. This shows that any closed �bre of f ′′ is
split, so that X is unirational by Corollary 3.4, which proves 1).

Remark 3.7. By Lemma 3.5, the last paragraph of the proof ensures that if φ veri�es the
condition of 2), then the base change of f by φ has a section.

3.3 A criterion for triviality of R-equivalence

Corollary 3.8. Let k be a �eld of characteristic di�erent from 2 with cd(k) ≤ 1, and
f : X → P1

k a regular conic bundle. Denote by B the set of points of P1
k over which the

�bre of f is non-split. Assume that for all s0, s1 ∈ P1(k) there exists a dominant morphism
φ : P1

k → P1
k verifying:

(a) for any s ∈ B and any t ∈ φ−1(s) one has 2 | e(t/s)× [κ(t) : κ(s)];

(b) the �bres φ−1(s0) and φ−1(s1) have a rational point.
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Then X is k-unirational and X(k)/R is trivial.

Let us recall the following elementary observation on conics.

Reminder 3.9. Let F be a �eld of characteristic di�erent from 2 and C a conic over F .

(i) If C(F ) ̸= ∅, then R-equivalence is trivial on C.

(ii) If cd(F ) ≤ 1, then C(F ) ̸= ∅.

Proof. For (i), if C(F ) ̸= ∅, then C is either a line, or a union of two distinct lines in P2
F or

a double line, so that R-equivalence is trivial on it. For (ii), if C is smooth, it has a class
in Br(k) [2]. But Br(k) [2] = H2(k,Z/2Z), and the latter is zero since cd(F ) ≤ 1. We thus
have that C ≃ P1

F from which the statement follows. If C is singular, all singular points
are rational.

We may now give a proof of Corollary 3.8.

Proof of Corollary 3.8. By Theorem 3.1, X is k-unirational. Let us prove that X(k)/R has
cardinality one. Since the conic X0 has a rational point, by (ii) of Reminder 3.9, X(k) ̸= ∅
so that it remains to prove that for all x0, x1 ∈ X(k), the points x0 and x1 are R-equivalent.

Set s0 = f(x0), s1 = f(x1) which are rational points of P1
k. Choose φ : P1

k → P1
k as in

the statement and denote by f ′ : X ′ → P1
k the base change of f by φ and by g : X ′ → X

the base change of φ by f . Using (b), let us choose t0 (resp. t1) a rational point of φ−1(s0)
(resp. φ−1(s1)). Since φ veri�es (a), Remark 3.7 ensures that f ′ has a section h : P1

k → X ′.
Set x′0 = h(t0) and x′1 = h(t1), so that x′0, x

′
1 ∈ X ′(k). As the rational points g(x′0)

and g(x′1) ofX lie in (g◦h)(P1(k)), they are R-equivalent. Moreover, x0 and g(x′0) (resp. x1
and g(x′1)) lie on the same �bre of f , which is a conic, hence they are R-equivalent by (i)
of Reminder 3.9. This proves that x0 and x1 are R-equivalent.

4 Proof of the main results

In this section, we assume that k is a 2-quasi-�nite �eld and we prove Theorems 1.5
and 1.8. We respectively make use of Theorem 3.1 and Corollary 3.8.

4.1 Some rami�ed covers of P1
k

This subsection encapsulates the construction of particular covers of the projective line
that are thoroughly used in the proofs of Theorems 1.5 and 1.8.

Lemma 4.1. Let m be a closed point of P1
k such that deg(m) = 2d, with d ∈ Z>0. Then

there exists a degree d morphism φ : P1
k → P1

k such that deg(φ(m)) = 2.

Proof of Lemma 4.1. Let l/k be a degree 2 extension. Note that l is unique up to isomor-
phism and κ(m)/k is Galois, since k is 2-quasi-�nite. All along the proof, we denote by σ
the nontrivial element of Gal(l/k), we �x α ∈ k× \ (k×)2 and set P ∈ A1

k corresponding
to the polynomial x2 − α, so that deg(P ) = 2. For h ∈ l(P1), we denote by σh the image
of h by the left action of σ on l(P1).

Since κ(m)/k is Galois and l is unique up to isomorphism, the extension l/k sits
in κ(m)/k. Thus, the �bre of m under the morphism P1

l → P1
k, which is the �bre product

of Spec(l) → Spec(k) with P1
k, is made of two degree 2d pointsm1,m2 ∈ P1

l , as κ(m)⊗k l =
κ(m)⊗l (l⊗k l) = κ(m)×κ(m). Since m1−m2 has degree zero, there exists f ∈ l(P1) such
that div(f) = m1−m2, so that the map f : P1

l → P1
l it induces veri�esm1 = f−1(0),m2 =
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f−1(∞). Let g be an automorphism of P1
l such that g(0) =

√
α and g(∞) = −

√
α

and (σg)(x) = g(1/σ(x)). We are going to prove that there exists u ∈ l× such that g ◦ (uf)
is σ-invariant as an element of l(P1). By Galois descent, g ◦ (uf) will then be the base
change of a morphism φ : P1

k → P1
k. Since (g ◦ (uf))−1{

√
α,−

√
α} = {m1,m2}, this

means that φ(m) = P and φ is of degree d, which will prove the statement.
Let us �rst note that div(σf) = m2 − m1 so that div(f × σf) = 0, that is, there

exists v ∈ l× such that f×σf = v. Furthermore, as v is σ-invariant, we have v ∈ k×. Since
the cohomological dimension of k is one, the corestriction map coresl/k : H1(l,Z/2Z) →
H1(k,Z/2Z) is surjective by [NSW08, Proposition 3.3.11]. Hence, the norm map Nl/k :
l× → k× is surjective. In particular, there exists u ∈ l× such that v = u × σ(u). After
replacing f by f/u, we may then assume that f × σf = 1. Thus:

σ(g ◦ f) = g ◦ (1/(σf)) = g ◦ f

from which we deduce that g ◦ f is σ-invariant.

Corollary 4.2. If P is a closed point of P1
k such that deg(P ) = 2, then there exists a

�nite morphism φ : P1
k → P1

k of degree 2 such that φ−1(P ) is a closed point of degree 4.

Proof. Let m be a point of P1
k of degree 4. By Lemma 4.1, there exists a �nite morphism

θ : P1
k → P1

k of degree 2 such that θ(m) is a point of degree 2. Since θ(m) and P are both
points of degree 2, there exists an automorphism ψ of P1

k mapping θ(m) to P . Thus, the
map φ := ψ ◦ θ is the sought cover.

Lemma 4.3. Let φ : P1
k → P1

k be a degree 2 cover, U ⊂ P1
k be the complement of the

branch locus of φ. Then there exists a degree 2 cover ψ : P1
k → P1

k with branch locus P
1
k\U

such that for any closed point m ∈ U :

(i) if deg(m) is odd and φ−1(m) is a point of degree 2 over m, then ψ−1(m) is made of
two rational points over m;

(ii) if deg(m) is odd and φ−1(m) is made of two rational points over m, then ψ−1(m) is
a point of degree 2 over m;

(iii) if deg(m) is even, then φ−1(m) and ψ−1(m) are isomorphic over m.

Proof of Lemma 4.3. Let us �rst note that if u : U → Spec(k) is the structural morphism
of U , then the following diagram is commutative

Z/2Z Z/2Z

H1(k,Z/2Z) H1(U,Z/2Z) H1(κ(m),Z/2Z) H1(k,Z/2Z)

×[κ(m):k]

u∗

resκ(m)/k

m∗
coresκ(m)/k

where the vertical equalities come from Proposition 2.2, by 2-quasi-�niteness of k, and
the commutativity of the whole diagram is the restriction-corestriction formula [GS06,
Proposition 4.2.10].

Denote by α the nonzero class in H1(k,Z/2Z) and τ : φ−1(U) → U the restriction of φ
above U , which de�nes a class in H1(U,Z/2Z). Let τ ′ : V → U be a Z/2Z-torsor whose
class in H1(U,Z/2Z) is u∗(α) + [τ ], that is, a twist of τ by any element of k× \ (k×)2.
Denote by ψ : Y → P1

k the normalisation of P1
k in Spec(k(V )), so that Y is a smooth
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projective curve. Since Y ⊗k k is the normalisation of P1
k
in k(V ) = k(φ−1(U)), this means

that Y ⊗k k ≃ P1
k
. In particular, Y is a smooth geometrically connected projective curve

of genus 0, that is, Y is isomorphic to a smooth conic. As cd(k) = 1, we have Y (k) ̸= ∅ by
Reminder 3.9, so that Y ≃ P1

k and ψ : P1
k → P1

k.
Let us now prove that ψ is the sought cover. Indeed, in H1(κ(m),Z/2Z), we have:

[ψ−1(m)] = m∗([τ ′]) = m∗(u∗(α) + [τ ]) = resκ(m)/k(α) + [φ−1(m)] ∈ Z/2Z. (7)

Moreover, coresκ(m)/k is an isomorphism by Proposition 2.2. Besides, from the identity

coresκ(m)/k ◦ resκ(m)/k = [κ(m) : κ]

we may rewrite equation (7) as

[ψ−1(m)] = [κ(m) : k] + [φ−1(m)] ∈ H1(κ(m),Z/2Z) = Z/2Z

which is the statement we wanted to prove.

4.2 Proof of Theorem 1.5

Let us prove Theorem 1.5 using Theorem 3.1. For this purpose, we show that for any B
as in (⋆), there exists a cover φ : P1

k → P1
k such that for all s ∈ B and t ∈ φ−1(s) we have

2 | e(t/s)× [κ(t) : κ(s)]. (8)

In the following lemma, we start by tackling the case where B ⊂ P1(k).

Lemma 4.4. Let B ⊂ P1(k). Then, for any two points P,Q ∈ B, there exists a dominant
map φ : P1

k → P1
k whose degree is a power of 2, satisfying condition (8), with the further

assumption that φ is totally rami�ed above P and Q.

Proof. After adding rational points toB, we may assume that |B| is even. Setting |B| = 2n,
we prove the statement by induction on n. The case where n = 0 being trivial, we may
assume that n > 0 and such a φ exists for strictly lower n. Fix distinct points P and Q
in B and, after choosing an automorphism of P1

k, assume that P = 0 and Q = ∞. Then,
de�ne ψ : P1

k → P1
k by t 7→ t2, so that ψ is totally rami�ed above P and Q. We let Bin be

the set of those m ∈ B \ {P,Q} such that ψ−1(m) is a point of degree 2 over m, and Bts

those such that ψ−1(m) is made of two rational points, so that |Bin| + |Bts| = 2n − 2.
By (i) and (ii) of Lemma 4.3, we may assume that |Bts| ≤ n− 1. Then ψ−1(Bts) is made
of at most 2n − 2 rational points of P1

k. By induction, there exists θ : P1
k → P1

k such
that θ is totally rami�ed above ψ−1(P ), ψ−1(Q) and condition (8) is veri�ed for θ and
all s ∈ ψ−1(Bts) and t ∈ θ−1(s). Thus, if φ := ψ ◦ θ, the cover φ is totally rami�ed
above P and Q. Moreover, for all s ∈ Bts and t ∈ φ−1(s), condition (8) is veri�ed, and for
all s ∈ Bin and t ∈ φ−1(s) we have 2 | [κ(t) : κ(s)], so that φ is the sought cover.

We now tackle the general case of Theorem 1.5.

Proof of Theorem 1.5. Let us now choose B as in (⋆) and, up to enlarging B, we may
assume that it is made of rational points, one point P of degree 2 and one point Q of
odd degree. Corollary 4.2 supplies a 2-cover ψ : P1

k → P1
k such that ψ−1(P ) is a point of

degree 4. Using Lemma 4.3, we may further assume that ψ−1(Q) is a point of degree 2
over Q. Then, if Bts denotes those rational points m of B \ {P,Q} such that ψ−1(m) is
made of two rational points, by Bin those for which ψ−1(m) is a degree two point over m,
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condition (8) is satis�ed for s ∈ {P,Q}∪Bin and t ∈ ψ−1(s). Furthermore, since ψ−1(Bts)
is made of rational points of P1

k, Lemma 4.4 supplies a morphism θ : P1
k → P1

k such that
condition (8) is veri�ed for θ and all s ∈ ψ−1(Bts) and t ∈ θ−1(s). By construction, the
morphism φ := ψ ◦ θ then satis�es condition (8) for all s ∈ B and t ∈ φ−1(s), so that φ is
the sought cover.

4.3 Proof of Theorem 1.8

Let us now prove Theorem 1.8 using Corollary 3.8. If we �x distinct P,Q ∈ P1(k), we
then need to �nd φ : P1

k → P1
k such that

φ−1(P )(k) ̸= ∅ and φ−1(Q)(k) ̸= ∅ (9)

and for any s ∈ B and t ∈ φ−1(s), condition (8) holds.
We start proving the �rst case of (⋆⋆), that is, we assume that B is a union of rational

points and one point m of degree 2. Up to enlarging B, we may assume that P,Q ∈ B.
Using Corollary 4.2, there exists a degree 2 cover ψ : P1

k → P1
k such that ψ−1(m) is a

point of degree 4. After composing ψ with an automorphism of P1
k, we may also assume

that ψ is totally rami�ed above Q, and we let α := ψ−1(Q). Furthermore, we may assume
that ψ−1(P ) contains a rational point. Indeed, if ψ is totally rami�ed above P , then ψ−1(P )
is a rational point, and otherwise, by Lemma 4.3, we may assume that ψ−1(P ) is made of
two rational points. We thus denote by β a rational point of ψ−1(P ). Then, Lemma 4.4
supplies a cover θ : P1

k → P1
k that is totally rami�ed above α and β and such that

condition (8) is satis�ed for all s ∈ P1(k) ∩ ψ−1(B \ {P,Q,m}) and t ∈ θ−1(s). If we
set φ := ψ ◦ θ, by construction, it veri�es condition (8), and it is totally rami�ed above P
and Q, so that it also satis�es (9).

We now prove the second case of (⋆⋆) whereB is assumed to be a union of rational points
and one pointm of odd degree. Again, after enlarging B and using an automorphism of P1

k,
we may assume that B contains P and Q, that P = 0 and Q = ∞. We set ψ : P1

k → P1
k

the degree 2 cover de�ned by t 7→ t2, which is totally rami�ed above P and Q. In the
case where m ̸∈ {P,Q}, using Lemma 4.3 we make the additional assumption that ψ−1(m)
is a point of degree 2 over m. Now, Lemma 4.4 supplies a cover θ : P1

k → P1
k that is

totally rami�ed above ψ−1(P ) and ψ−1(Q), and such that condition (8) is satis�ed for all
s ∈ P1(k) ∩ ψ−1(B \ {P,Q,m}) and t ∈ θ−1(s). Then, ψ ◦ θ satis�es condition (8) and it
is totally rami�ed above P and Q, hence it satis�es condition (9).

5 Su�ciency of the Brauer-Manin obstruction

In this section, when F is a �nite �eld, we prove that the unirationality of conic bundles
over P1

F is implied by an analogue of a conjecture of Colliot-Thélène and Sansuc in positive
characteristic.

The following conjecture is an analogue of a conjecture of Colliot-Thélène and San-
suc, stated as an open question over number �elds in [CTS80] (see also Colliot-Thélène's
conjecture in [CTS21, Conjecture 14.1.2]).

Conjecture 5.1. Let C be a nice curve a �nite �eld F and K its function �eld. If X is a
proper, smooth, geometrically integral and separably rationally connected surface over K,
then X veri�es (BM).

This section is dedicated to the following theorem on the existence of curves passing
through a given set of rational points, for a conic bundle over P1

F.
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Theorem 5.2. Let F be a �nite �eld, f : X → P1
F a regular conic bundle. Let C be a nice

curve over F with function �eld K and assume that XK veri�es (BM). Then the following
assertions hold.

(1) There exists a morphism g : C → X such that X(F) ⊂ g(C).

(2) If the characteristic of F is odd, then for all A ⊂ X(F) with |A| ≤ |C(F)|, there
exists g : C → X such that A ⊂ g(C(F)).

We split the proof of Theorem 5.2 into two parts. In �5.1 we give a proof of (1) of
Theorem 5.2 and in �5.2, we show (2) of Theorem 5.2. Let us now deduce the following
immediate corollary on unirationality and triviality of R-equivalence for conic bundles.

Corollary 5.3. Let F be a �nite �eld and f : X → P1
F a regular conic bundle. Assuming

that Conjecture 5.1 is true, the following assertions hold.

(a) The variety X is unirational.

(b) If the characteristic of F is odd, then all two points of X(F) are directly R-equivalent.

Proof. Let C := P1
F and K := (F )(C). Since Conjecture 5.1 is true, the variety XK

veri�es (BM).
Let us �rst prove (a). Since F is �nite, it has cohomological dimension one, so

that X0(F) and X1(F) are nonempty by Reminder 3.9. Choose x ∈ X0(F) and y ∈ X1(F).
We then apply (1) of Theorem 5.2 with C := P1

F to f . This supplies a morphism
g : P1

F → X such that x, y ∈ g(P1
F). Since x and y lie in distinct �bres of f , the

morphism f ◦ g is dominant, which implies that X is unirational by Proposition 3.2.
Let us now prove (b). If x, y ∈ X(F) are distinct, then (2) of Theorem 5.2 applied to f

and C := P1
F supplies g : P1

F → X such that x, y ∈ g(P1(F)). In other words, x and y are
directly R-equivalent.

5.1 Unirationality

Proposition 5.4. Let F be a �nite �eld, C a nice curve over F and K its function �eld.
Let also X → P1

F be a regular conic bundle. If XK veri�es (BM), then XK has weak weak
approximation.

Although the proof of Proposition 5.4 relies on classical arguments, it makes use of the
�niteness of Br(XK)/Br(K), for which we supply a proof in Appendix A.1.

Proof. First note that X(F) ̸= ∅ since all �bres over a point of P1(F) has a rational point
by (ii) of Reminder 3.9, so that X(K) ̸= ∅. By Corollary A.2, the group Br(XK)/Br(K)
is �nite, and we set B ⊂ Br(XK) a �nite set of representatives. Then X(KΩ)

Br(X) =⋂
b∈BX(KΩ)

b. Since each X(KΩ)
b is open in X(KΩ) by [Poo17, Corollary 8.2.11.(b)], so

is X(KΩ)
Br(X). As X(KΩ)

Br(X) ̸= ∅, this means that there exists a �nite S ⊂ ΩK such
that the projection map X(KΩ)

Br(X) →
∏

v∈ΩK\S X(Kv) is surjective. Since X(K) is
dense in X(KΩ)

Br(X), it is also dense in
∏

v∈ΩK\S X(Kv).

Let us now supply a proof of (1) of Theorem 5.2.

Proof of (1) of Theorem 5.2. Let us use the notations of the statement. We denote by
ρ : X × C → C the projection morphism and we �x x ∈ X(F). By Proposition 5.4, the
variety XK has weak weak approximation, so that we can �x a �nite set S ⊂ ΩK such
that X(K) is dense in X(KS

Ω). Let us now choose T ⊂ ΩK \ S satisfying |T | = |X(F)|,
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and we �x a bijection T → X(F) written as v 7→ xv. We set (Pv) ∈ X(KS
Ω) de�ned as

Pv := xv for v ∈ T and Pv := x for v ∈ ΩK \ (S ∪T ). Using the notations of Reminder 2.9,
we then consider the nonempty open subset WT,1 of X(KS

Ω) associated to the tuple (Pv)
and the model ρ of X. Since X(K) is dense in X(KS

Ω), we may pick P ∈ X(K) ∩WT,1.
Then, using notations of �2.4, the K-point P extends to a section j : C → X × C of ρ
that coincides with P̂v on Spec(κ(v)) for v ∈ T . In particular, if g : C → X is the �rst
coordinate of j, then for each v ∈ T we have an equality of set theoretical points g(v) = xv,
that is, the sets g(T ) and X(F) are the same.

5.2 Triviality of R-equivalence

Proposition 5.5. Let F be a �nite �eld of odd characteristic, C a nice curve over F
and K its function �eld. If f : X → P1

F is a regular conic bundle, then the Brauer-Manin
pairing ⟨·, ·⟩BM on XK is identically zero. In particular, if XK veri�es (BM), then XK has
weak approximation.

Before we give a proof, let us show how assertion (2) of Theorem 5.2 is inferred
from Proposition 5.5.

Proof of (2) of Theorem 5.2. Let us use the notations of the statement. We denote by
ρ : X × C → C the projection morphism and we �x x ∈ X(F) and A ⊂ X(F) with
|A| ≤ |C(F)|. By Proposition 5.5, the variety XK has weak approximation, so that X(K)
is dense in X(KΩ). Since |A| ≤ |C(F)|, let us choose T ⊂ C(F) satisfying |T | = |A|, and
we �x a bijection T → A written as v 7→ xv. We set (Pv) ∈ X(KΩ) de�ned as Pv := xv
for v ∈ T and Pv := x for v ∈ ΩK \ T . Using the notations of Reminder 2.9, we then
consider the nonempty open subset WT,1 of X(KS

Ω) associated to the tuple (Pv) and the
model ρ of X. Since X(K) is dense in X(KΩ), we may pick P ∈ X(K) ∩WT,1. Then,
using notations of �2.4, the K-point P extends to a section j : C → X × C of ρ that
coincides with P̂v on Spec(κ(v)) = Spec(F) for v ∈ T . In particular, if g : C → X is the
�rst coordinate of j, then for each v ∈ T , the restriction of g to Spec(κ(v)) = Spec(F)
is xv. Since A = {xv : v ∈ T}, this shows that A = g(T ) ⊂ g(C(F)).

The proof of Proposition 5.5 relies on the following lemma.

Lemma 5.6. Let F be a �eld of characteristic di�erent from 2 and C a nice curve over F
with function �eld K. Let f : X → P1

F be a regular conic bundle with X(F ) ̸= ∅. Then
the morphism Br(X ×F C) → Br(XK)/Br(K) is surjective.

Proof. To prove the statement, by Lemma A.3 we need to prove the surjectivity of the
map Br(X ×F C) [2] → (Br(XK)/Br(K)) [2]. Since X(K) ̸= ∅ and since the choice of
any element of X(K) gives rise to an isomorphism Br(XK) ≃ Br(K)⊕Br(X)/Br(K), we
have (Br(XK)/Br(K)) [2] ≃ Br(X) [2] /Br(F ) [2]. It is thus enough to show that the map
Br(X ×F C) [2] → Br(X) [2] /Br(F ) [2] is surjective.

We denote by π : X × C → C the projection morphism, by η the generic point of C
and πη the base change of π by η. We then have the following commutative diagram whose
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rows are exact

0 Br(X × C) [2] Br(XK) [2]
⊕

P∈C(1)

H1
ét(Xκ(P ),Z/2Z) H3

ét(X × C,Z/2Z)

0 Br(C) [2] Br(K) [2]
⊕

P∈C(1)

H1(κ(P ),Z/2Z) H3
ét(C,Z/2Z)

π∗ π∗
η ⊕ resXκ(P )/κ(P )

π∗

(10)
where the bottom row (resp. top row) is the limit, as U ranges over nonempty open subsets
of C, of the exact sequence [CTS21, (3.17)] with Z := C \ U (resp. Z := X \ π−1(U)),
l = 2 and n = 1. The commutativity of the left square is due to functoriality of Brauer
groups, that of the central square is due to functoriality of residues (see e.g. [CTS21,
Theorem 3.7.5]) and to the irreducibility of Xκ(P ), and the commutativity of the right
square is given by the functoriality of Gysin's spectral sequence [CTS21, Lemma 2.3.6].

Let us prove that π∗ : H3
ét(C,Z/2Z) → H3

ét(X × C,Z/2Z) is injective and that
⊕ resXκ(P )/κ(P ) is an isomorphism. By diagram chasing on (10), this will prove that
Br(X×F C) [2] → Br(X) [2] /Br(F ) [2] is surjective. Since X(F ) ̸= ∅, the morphism π has
a section, which proves that π∗ is injective. Furthermore, for each P ∈ C(1), we �x κ(P )
a separable closure of κ(P ), a geometric point x of X

κ(P )
and we still denote by x the

image of x in Xκ(P ) and Spec(κ(P )). Then, [Fu11, Proposition 5.7.20] supplies canon-
ical isomorphisms H1

ét(Xκ(P ),Z/2Z) ≃ Homcont(π1(X,x),Z/2Z) and H1(κ(P ),Z/2Z) ≃
Homcont(π1(Spec(κ(P )), x),Z/2Z) under which resXκ(P )/κ(P ) is identi�ed to the pullback
α∗ : Homcont(π1(Spec(κ(P )), x) → Homcont(π1(X,x),Z/2Z) of the continuous homomor-
phism α : π1(X,x) → π1(Spec(κ(P )), x), itself induced by the morphism XSpec(κ(P )) →
Spec(κ(P )). Moreover, α is surjective with kernel π1(Xκ(P )

, x), see e.g. [Fu11, Proposi-
tion 3.3.7]. But Corollary A.2 ensures that X

κ(P )
is rational, which, by purity of the étale

fundamental group [MR203, X.�3, Corollaire 3.3], implies that π1(Xκ(P )
, x) = 1. In other

words, α is an isomorphism, hence so is α∗, that is, resXκ(P )/κ(P ) is an isomorphism.

Proof of Proposition 5.5. Denote by h : X×Spec(K) → X×C the product of idX with the
generic point of C. Let us �x v ∈ ΩK and xv ∈ X(Kv). We write x∗v : Br(XKv) → Br(Kv)
(resp. h∗ : Br(X ×C) → Br(X × Spec(K))) for the pullback of xv (resp. h). Let us verify
that x∗v ◦ h∗ = 0. For this purpose, from now on, we use the notation of �2.4. Since the
projection morphism X×C → C is a model of X, by the valuative criterion of properness,
the Kv-point xv extends to a unique Ôv-morphism x̂v : Spec(Ôv) → (X×C)×C Spec(Ôv).
If we still denote by x̂v : Spec(Ôv) → X × C its projection to X × C, we thus have a
commutative diagram

Spec(Kv) XK

Spec(Ov) X × C

xv

h

x̂v

so that x∗v ◦ h∗ factors through x̂v
∗ : Br(X × C) → Spec(Ov). But Br(Ov) = 0 (see e.g.

[Poo17, Corollary 6.9.3]) which proves that x∗v ◦ h∗ = 0.
Now, for α ∈ Br(XK), Lemma 5.6 supplies β ∈ Im(h∗) and γ ∈ Br(K) such that

α = β + γ. If (xv) ∈ X(KΩ), we thus have ⟨(xv), α⟩BM = ⟨(xv), β⟩BM + ⟨(xv), γ⟩BM .
But ⟨(xv), β⟩BM =

∑
v∈ΩK

invv(x
∗
v(β)) = 0 since Im(h∗) ⊂ ker(x∗v) for all v ∈ ΩK , and
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⟨(xv), γ⟩BM = 0 by Albert-Brauer-Hasse-Noether exact sequence. Thus, ⟨(xv), α⟩BM = 0,
so that the Brauer-Manin pairing on XK is identically zero.

Appendix A Brauer groups of surfaces in positive character-

istic

A.1 Geometrically separably rationally connected surfaces

Needed in our proof of (1) of Theorem 5.2 is the following statement on Brauer groups
of separably rationally connected varieties. We recall that if X is a scheme over a �eld F
and F s is a separable closure of F , we denote the algebraic Brauer group of X by Br1(X) :=

ker
[
Br(X)

pr∗−−→ Br(X ⊗F F
s)
]
, where pr : X⊗F F

s → X is the �rst projection morphism.

Proposition A.1. Let F be a �eld and F s a separable closure of F . Let also X be
a smooth, proper and geometrically integral F -variety and set Xs := X ⊗F F s. If X
is separably rationally connected, then Br1(X)/Br(F ) is �nite. In particular, if Xs is
rational, then Br(X)/Br(F ) is �nite.

Proof. The statement is well known if the characteristic of F is zero (see e.g. [CTS21,
assertion (6) in p.347]), so we may assume that F has positive characteristic p. The
second part of the statement is inferred from the �rst part. Indeed, if Xs is rational, then
Br(Xs) ≃ Br(P

dim(X)
F s ) by purity of the Brauer group [�19], so that Br(Xs) = Br(F s) = 0,

hence Br(X) = Br1(X). Let us then assume that X is separably rationally connected and
prove the �rst part of the statement. We denote by F an algebraic closure of F and we
set X := X ⊗F F .

We extract from exact sequence (2.23) of [Sko01, Corollary 2.3.9] a short exact sequence:

Br(F ) Br1(X) H1(F,Pic(Xs))π∗

where π : X → Spec(F ) is the structural morphism of X. It is thus enough to prove
that Pic(Xs) is �nitely generated and torsion-free, from which we infer the �niteness
of H1(F,Pic(Xs)), hence that of Br1(X)/Br(F ). First, separably rational connected-
ness of X ensures that H1(X,OX) = 0 by (see [BDS13] and [Gou14]). This implies
that Pic(Xs) = Pic(X) = NS(X), the Néron-Severi group of X, which is �nitely gen-
erated (see e.g. [CTS21, Corollary 5.1.3.(i)]). Now, using Kummer's exact sequence, for
each prime number ℓ ̸= p and m ≥ 0 we have Pic(X)[ℓm] = H1

ét(X,Z/ℓ
mZ). But

since X is separably rationally connected, it is simply connected (see [Bis09, Theorem 2.1]),
so that H1

ét(X,Z/ℓ
mZ) = Pic(X)[ℓm] = 0. In particular, Pic(X){p′} = 0. Further-

more, Pic(X){p} = 0 by [GJ18, Theorem 1.4]. From this we deduce that Pic(X) is
torsion-free.

Corollary A.2. Let F be a �eld and f : X → P1
F a conic bundle. Then, for all �eld

extension K of F and separable closure Ks of K, the variety XKs is rational. In particular,
the group Br(XK)/Br(K) is �nite.

Proof. Let K be a �eld extension of F and η the generic point of P1
F . We let Ks (resp. F s)

be a separable closure of K (resp. the separable closure of F contained in Ks) and F an
algebraic closure of F containing F s.

Let us �rst prove that XF is rational. Indeed, since Xη is geometrically integral we
have an isomorphism F (X) ≃ F (P1)(Xη) over F . But Br(F (P1)) = 0 by Tsen's theorem
so that the class of the smooth conic Xη ⊗F (P1) F (P

1) in Br(F (P1)) is trivial, that is,
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there exists an isomorphism Xη ⊗F (P1) F (P
1) ≃ P1

F (P1)
of F (P1)-varieties. This proves

that the �eld F (P1)(Xη) is purely transcendental over F (P1), hence F (X) ≃ F (P1)(Xη)
is purely transcendental over F . In other words, XF is rational.

By [Coo88, Theorem 1], this implies that XF s is also rational, so that the Ks-variety
XKs = XF s ⊗F s Ks is rational. The last part of the statement is a consequence of the last
assertion of Proposition A.1.

A.2 Conic bundles over a curve

In characteristic zero, it is well known that up to constant classes, the Brauer group
of a conic bundle over P1 is a 2-torsion group, see e.g. [CTS21, Corollary 11.3.5]. In the
following proposition, we show that it still holds in odd characteristic.

Proposition A.3. Let F be a �eld of characteristic di�erent from 2 and X → P1
F a

regular conic bundle. If X(F ) ̸= ∅, then Br(X)/Br(F ) is a 2-torsion group.

Proof of Lemma A.3. Let us �rst prove that (Br(X)/Br(F )) {ℓ} = 0 for all prime numbers
ℓ ̸= 2. For this purpose, we �x a prime number ℓ ̸= 2, we denote by F s a separable closure
of F and we set E the �xed �eld of an ℓ-Sylow of Gal(F s/F ), so that Gal(F s/E) is a
pro-ℓ group. Using the commutativity of Br with limits [CTS21, �2.2.2] and [CTS21,
Proposition 3.8.4], it is enough to prove that (Br(XE)/Br(E)) {ℓ} = 0. Since Gal(Ks/E)
is a pro-ℓ group, E has no quadratic extension, so that all the closed �bres of the conic
bundle fE := f ⊗F E : XE → P1

E are split. By Lemma 3.5, and (b) of Remark 3.6,
there exists a section s of fE . If we denote by η the generic �bre of P1

E , we thus have a
commutative diagram

0 Br(XE) Br(XE,η)

0 Br(P1
E) Br(η)

s∗ s∗ηf∗ f∗
η

(11)

whose rows are exact since XE is regular, and where fη (resp. sη) is the base change
of f by η (resp. is the rational point of XE,η corresponding to s). Since the conic XE,η

has a rational point sη, it is isomorphic to P1
E(P1), so that the map f∗η is an isomorphism.

As s∗η◦f∗η = id, the map s∗η is also an isomorphism. In particular, the commutativity of (11)
ensures that s∗ is injective. But since s∗ ◦ f∗ = id, the morphism s∗ is also surjective, so
that s∗ is an isomorphism. This proves that Br(XE) ≃ Br(P1

E), that is, Br(XE) = Br(E),
so that (Br(XE)/Br(E)) {ℓ} = 0.

It remains to show that (Br(X)/Br(F )) {2} = (Br(X)/Br(F )) [2]. The choice of
an element in X(F ) supplies an isomorphism Br(X) ≃ Br(F ) ⊕ Br(X)/Br(F ), so that
(Br(X)/Br(F )) {2} ≃ Br(X){2}/Br(F ){2}. Furthermore, if we denote by η the generic
point of P1

F and fη the pullback of f by η, there is a commutative diagram with exact
rows

0 Br(X){2} Br(Xη){2}
⊕

P∈(P1
F )(1)

⊕
V⊂XP

H1(F (V ),Q2/Z2)

0 Br(F ){2} Br(F (P1)){2}
⊕

P∈(P1
F )(1)

H1(κ(P ),Q2/Z2)

f∗ f∗
η ⊕P⊕V resF (V )/κ(P ) .
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where the bottom row is the limit, as U ranges over nonempty subsets of P1
F , of the ex-

act sequences [CTS21, Theorem 3.7.2.(ii)] with Z := P1
F \ U and ℓ = 2, combined with

the isomorphism Br(P1
F ) ≃ Br(F ). As for the top row, V ⊂ XP ranges over the ir-

reducible components of XP which, by �atness of f , are precisely the codimension one
subschemes of X. The top row complex is then obtained as the limit, as U ranges over
nonempty subsets of P1

F of the short exact sequences [CTS21, Theorem 3.7.2.(3.19)] ap-
plied to Z := X \ f−1(U) and ℓ = 2. The whole diagram is commutative by the func-
toriality of residues (see e.g. [CTS21, Theorem 3.7.5]). Let us notice that since Xη is a
smooth conic, the middle vertical row is surjective by [CTS21, Proposition 7.2.1]. Also,
if κV denotes the algebraic closure of κ(P ) in F (V ), the kernel of the right vertical map
is

⊕
P∈(P1

F )(1)
⋂

V⊂XP
H1(Gal(κV /κ(P )),Q2/Z2). Since XP is a conic, this group is 2-

torsion as κV /κ(P ) is an extension of degree at most 2. By diagram chasing, we de-
duce that 2 (Br(X){2}) ⊂ Br(F ){2}, that is, Br(X){2}/Br(F ){2} is a 2-torsion group,
hence (Br(X)/Br(F )) {2} is 2-torsion.

References

[Ax68] J. Ax, The elementary theory of �nite �elds, Ann. of Math. (2) 88 (1968),
239�271. MR 229613 2

[BDS13] I. Biswas and J. P. Dos Santos, Triviality criteria for bundles over rationally

connected varieties, J. Ramanujan Math. Soc. 28 (2013), no. 4, 423�442. MR
3158990 18

[Bis09] I. Biswas, On the fundamental group-scheme, Bull. Sci. Math. 133 (2009), no. 5,
477�483. MR 2538008 18

[Coo88] K. R. Coombes, Every rational surface is separably split, Comment. Math. Helv.
63 (1988), no. 2, 305�311. MR 948785 19

[CT15] J.-L. Colliot-Thélène, Surfaces de del Pezzo de degré 4 sur un corps C1, Tai-
wanese J. Math. 19 (2015), no. 6, 1613�1618. MR 3434268 3

[CTS80] J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles,
Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry,
Angers, 1979, Sijtho� & Noordho�, Alphen aan den Rijn�Germantown, Md.,
1980, pp. 223�237. MR 605344 3, 14

[CTS87] J.-L. Colliot-Thélène and A. N. Skorobogatov, R-equivalence on conic bundles

of degree 4, Duke Math. J. 54 (1987), no. 2, 671�677. MR 899411 3

[CTS21] , The Brauer-Grothendieck group, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics], vol. 71, Springer, Cham, [2021] ©2021. MR 4304038 4, 5, 6, 7,
9, 14, 17, 18, 19, 20

[Fu11] L. Fu, Etale cohomology theory, Nankai Tracts in Mathematics, vol. 13, World
Scienti�c Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2791606 17

[FvL16] D. Festi and R. van Luijk, Unirationality of del Pezzo surfaces of degree 2 over

�nite �elds, Bull. Lond. Math. Soc. 48 (2016), no. 1, 135�140. MR 3455757 1



21 Conic bundles over quasi-finite fields

[GJ18] F. Gounelas and A. Javanpeykar, Invariants of Fano varieties in families, Mosc.
Math. J. 18 (2018), no. 2, 305�319. MR 3831010 18

[Gou14] F. Gounelas, The �rst cohomology of separably rationally connected varieties, C.
R. Math. Acad. Sci. Paris 352 (2014), no. 11, 871�873. MR 3268754 18

[GS06] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cam-
bridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press,
Cambridge, 2006. MR 2266528 4, 9, 10, 12

[Har07] D. Harari, Quelques propriétés d'approximation reliées à la cohomologie galoisi-

enne d'un groupe algébrique �ni, Bull. Soc. Math. France 135 (2007), no. 4,
549�564. MR 2439198 7

[Has10] B. Hassett, Weak approximation and rationally connected varieties over func-

tion �elds of curves, Variétés rationnellement connexes: aspects géométriques
et arithmétiques, Panor. Synthèses, vol. 31, Soc. Math. France, Paris, 2010,
pp. 115�153. MR 2931861 7

[Isk67] V. A. Iskovskih, Rational surfaces with a pencil of rational curves, Mat. Sb.
(N.S.) 74(116) (1967), 608�638. MR 220734 1, 2

[Isk79] , Minimal models of rational surfaces over arbitrary �elds, Izv. Akad.
Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19�43, 237. MR 525940 1

[KM17] J. Kollár and M. Mella, Quadratic families of elliptic curves and unirationality

of degree 1 conic bundles, Amer. J. Math. 139 (2017), no. 4, 915�936. MR
3689320 2

[Kol96] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics
[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 3

[Kol99] , Rationally connected varieties over local �elds, Ann. of Math. (2) 150
(1999), no. 1, 357�367. MR 1715330 3

[Kol02] , Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002),
no. 3, 467�476. MR 1956057 8

[Man66] Yu. I. Manin, Rational surfaces over perfect �elds, Inst. Hautes Études Sci. Publ.
Math. (1966), no. 30, 55�113. MR 225780 1

[Man67] , Rational surfaces over perfect �elds. II, Mat. Sb. (N.S.) 72(114) (1967),
161�192. MR 225781 1

[Man71] , Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes
du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-
Villars Éditeur, Paris, 1971, pp. 401�411. MR 427322 7

[Man86] , Cubic forms, second éd., North-Holland Mathematical Library, vol. 4,
North-Holland Publishing Co., Amsterdam, 1986, Algebra, geometry, arith-
metic, Translated from the Russian by M. Hazewinkel. MR 833513 2



Elyes Boughattas 22

[Mes96] J.-F. Mestre, Annulation, par changement de variable, d'éléments de Br2(k(x)),
où k est un corps �ni, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 5,
423�426. MR 1381777 2

[MR203] Revêtements étales et groupe fondamental (SGA 1), Documents Mathéma-
tiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathéma-
tique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie
1960�61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A.
Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint
of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651
(50 #7129)]. MR 2017446 17

[NSW08] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number �elds, second
éd., Grundlehren der mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026
5, 10, 12

[Pir12] A. Pirutka, R-equivalence on low degree complete intersections, J. Algebraic
Geom. 21 (2012), no. 4, 707�719. MR 2957693 3

[Poo17] B. Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol.
186, American Mathematical Society, Providence, RI, 2017. MR 3729254 15, 17

[PS99] A. N. Parshin and I. R. Shafarevich (eds.), Algebraic geometry. V, Encyclopaedia
of Mathematical Sciences, vol. 47, Springer-Verlag, Berlin, 1999, Fano varieties,
A translation of Algebraic geometry. 5 (Russian), Ross. Akad. Nauk, Vseross.
Inst. Nauchn. i Tekhn. Inform., Moscow. MR 1668575 8

[Ser94] J.-P. Serre, Cohomologie galoisienne, �fth éd., Lecture Notes in Mathematics,
vol. 5, Springer-Verlag, Berlin, 1994. MR 1324577 4, 5

[Sko96] A. N. Skorobogatov, Descent on �brations over the projective line, Amer. J.
Math. 118 (1996), no. 5, 905�923. MR 1408492 1, 5

[Sko01] , Torsors and rational points, Cambridge Tracts in Mathematics, vol.
144, Cambridge University Press, Cambridge, 2001. MR 1845760 9, 18

[Sko15] , Descent on toric �brations, Arithmetic and geometry, London Math.
Soc. Lecture Note Ser., vol. 420, Cambridge Univ. Press, Cambridge, 2015,
pp. 422�435. MR 3467133 6

[STVA14] C. Salgado, D. Testa, and A. Várilly-Alvarado, On the unirationality of del

Pezzo surfaces of degree 2, J. Lond. Math. Soc. (2) 90 (2014), no. 1, 121�139.
MR 3245139 1

[�19] K. �esnavi£ius, Purity for the Brauer group, Duke Math. J. 168 (2019), no. 8,
1461�1486. MR 3959863 18

[Vor86] I. I. Voronovich, Splitting �elds of central simple algebras over a �eld of rational

functions, Dokl. Akad. Nauk BSSR 30 (1986), no. 9, 773�775, 860. MR 867120
2

[Yan85] V. I. Yanchevski��, K-unirationality of conic bundles and splitting �elds of simple

central algebras, Dokl. Akad. Nauk BSSR 29 (1985), no. 12, 1061�1064, 1148.
MR 826395 2



23 Conic bundles over quasi-finite fields

[Yan90] , K-unirationality of conic bundles, the Kneser-Tits conjecture for spinor

groups and central simple algebras, Topics in algebra, Part 2 (Warsaw, 1988),
Banach Center Publ., vol. 26, Part 2, PWN, Warsaw, 1990, pp. 483�490. MR
1171295 2

[Yan92] , K-unirationality of conic bundles over large arithmetic �elds, no. 209,
1992, Journées Arithmétiques, 1991 (Geneva), pp. 16, 311�320. MR 1211025 1,
2

Department of Mathematical Sciences, University of Bath - Claverton Down, Bath,

BA2 7AY, United Kingdom

Email address: eb2751@bath.ac.uk


	Introduction
	Preliminaries
	Notations
	Generalities on 2-quasi-finite fields
	Residues and splitness
	Approximation over function fields

	A unirationality criterion
	A criterion of Enriques
	Proof of Theorem 3.1
	A criterion for triviality of R-equivalence

	Proof of the main results
	Some ramified covers of P1k
	Proof of Theorem 1.5
	Proof of Theorem 1.8

	Sufficiency of the Brauer-Manin obstruction
	Unirationality
	Triviality of R-equivalence

	Brauer groups of surfaces in positive characteristic
	Geometrically separably rationally connected surfaces
	Conic bundles over a curve


