ON THE HOMOTOPY THEORY OF
GROTHENDIECK co-GROUPOIDS

DIMITRI ARA

ABSTRACT. We present a slight variation on a notion of weak oo-groupoid intro-
duced by Grothendieck in Pursuing Stacks and we study the homotopy theory of
these oo-groupoids. We prove that the obvious definition for homotopy groups of
Grothendieck co-groupoids does not depend on any choice. This allows us to give equiv-
alent characterizations of weak equivalences of Grothendieck co-groupoids, generalizing
a well-known result for strict co-groupoids. On the other hand, given a model cate-
gory M in which every object is fibrant, we construct, following Grothendieck, a funda-
mental co-groupoid functor Il from M to the category of Grothendieck co-groupoids.
We show that if X is an object of M, then the homotopy groups of 1o (X) and of X are
canonically isomorphic. We deduce that the functor Il respects weak equivalences.

INTRODUCTION

The notion of Grothendieck co-groupoid has been introduced in 1983 by Grothendieck
in a famous letter to Quillen that became the starting point of the equally famous text
Pursuing Stacks ([11]). For more than twenty years, people thought that Grothendieck’s
definition was only informal. Maltsiniotis realized in 2006 that this definition is per-
fectly precise. This original definition is explained in [15]. Maltsiniotis also suggested
a simplification of the definition in [16]. All the texts written since then (namely [1]
and [17]) also use this simplification. In this article, we use a slight variation on this
simplification.

The main motivation of Grothendieck is to generalize to higher dimensions the classical
fact that the homotopy 1-type of a topological space is classified by its fundamental
groupoid up to equivalence. Given a space X, Grothendieck considers the oco-graph whose
objects are points of X, whose 1-arrows are paths, whose 2-arrows are relative homotopies
between paths, whose 3-arrows are relative homotopies between relative homotopies
between paths, and so on. This co-graph seems to bear an algebraic structure: for
instance, one can compose arrows, though in a non-canonical way; these compositions
are associative up to non-canonical higher arrows; these higher arrows satisfy higher
coherences, again in a non-canonical way; etc. Grothendieck suggests that this co-graph
should be equipped with the structure of an oco-groupoid (a notion to be defined) and
that this co-groupoid, up to equivalence, should classify the homotopy type of X. This
is an imprecise statement of Grothendieck’s conjecture.

2000 Mathematics Subject Classification. 18B40, 18C10, 18C30, 18D05, 18E35, 18G55, 55P10,
55P15, 55Q05, 55U35, 55U40.
Key words and phrases. oo-category, oo-groupoid, globular extension, homotopy groups, homotopy
type, model category.
1



2 DIMITRI ARA

The question now is how to define this structure of co-groupoid. There exist definitions
of m-groupoids for small n’s, obtained by giving explicit generators for coherences. But
even for n = 3, the standard definition (see [10]) is almost intractable. One has to find
another kind of definition.

Here is how Grothendieck proceeds. His idea is to define a category C' encoding the
algebraic structure of an co-groupoid. The category of co-groupoids will then be defined
as the full subcategory of the category of presheaves on C' satisfying some left exactness
condition (i.e., some higher Segal condition). This category C' will not be unique. This
reflects the fact that there is no canonical choice of generators for higher coherences. A
category C' encoding the theory of co-groupoids will be called a coherator. But how to
define a coherator?

Grothendieck’s main insight is that a very simple principle can be used to generate
inductively higher coherences, hence giving a definition for coherators. We will refer to
this principle as the “coherences generating principle”. Here is how it goes. Suppose G is
a (weak) oco-groupoid, whatever it means. Let X be a globular pasting scheme decorated
by arrows of GG. For instance, X might be

g
A
A%B/PC%D
W/r
Py

o

Suppose that from such an X, one can build, using operations of the algebraic structure of
oo-groupoids, two parallel n-arrows A and A’. Then the coherences generating principle
states that there should exist an operation, in the algebraic structure of co-groupoid,
producing from X an (n + 1)-arrow going from A to A’.

For instance, let X be as above and consider

A= ((e04) *((*yoﬁ)oa))*lf and A = ((5*7)0(5*(ﬂoa)))*1f,

where we have denoted by o the vertical composition of 2-arrows and by * the horizontal
composition of 2-arrows. These two arrows are parallel: their source is (kg)f and their
target is (myj)f. Hence, the coherences generating principle says that there should exist
an operation, in the algebraic structure of co-groupoid, producing a 3-arrow

(€od)x((veB)oa))x1p = ((exy)o(x(Boa))) 1y

from f, a, B, v, 0, ¢ fitting in a diagram as above.

If C is a category encoding an algebraic theory satisfying the coherences generating
principle, then C describes an algebraic structure where all operations of oco-groupoids
exist, but possibly in a too strict way. A coherator will be defined as a category encoding
an algebraic theory freely satisfying the coherences generating principle, that is, a theory
obtained by freely adding operations, using the principle, from the operations source and
target.

Now that we have given an idea of Grothendieck’s definition, let us come back to his
original motivation: the classification of homotopy types. Grothendieck shows that if X
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is a topological space, then the co-graph associated to X can be endowed with the struc-
ture of an co-groupoid. More precisely, he constructs a fundamental co-groupoid func-
tor 1l from the category of topological spaces to the category co-Gpd of Grothendieck
oo-groupoids. He conjectures that this functor induces an equivalence of categories be-
tween the homotopy category of topological spaces Hot and an appropriate localization
of co-Gpd. This conjecture is still not proved. At the end of this article, we give a more
precise statement of the conjecture.

A special feature of Grothendieck co-groupoids is that they are not defined as oo-cate-
gories satisfying some invertibility conditions. Nevertheless, Maltsiniotis realized that
a variation on Grothendieck’s definition gives rise to a new notion of weak oco-category.
This notion of co-category is closely related to the notion of weak co-category introduced
by Batanin in [6]. The precise relation between Grothendieck-Maltsiniotis co-categories
and Batanin oco-categories is studied in the PhD thesis [1] of the author.

This article is about the homotopy theory of Grothendieck co-groupoids. By homo-
topy theory of co-groupoids, we mean the study of the category of co-groupoids endowed
with weak equivalences of co-groupoids. Our contribution to the subject, in addition to
foundational aspects, is of three kinds.

First, we propose a slight modification of the definition of Grothendieck oco-groupoids,
whose purpose is to make canonical the inclusion functor from strict oo-groupoids to
Grothendieck co-groupoids. This modification takes the form of an additional condition
in the definition of an admissible pair. The importance of this modification will be made
clear in the forthcoming paper [3].

Second, we prove several foundational results on homotopy groups and weak equiv-
alences of Grothendieck oco-groupoids. If G is an oco-groupoid and x is an object of G,
the n-th homotopy group 7, (G, x) is defined as the group of n-arrows, up to (n + 1)-
arrows, whose source and target are the iterated unit of x in dimension n — 1. This
definition depends a priori on several choices. We show that m, (G, z) does not depend
on these choices. The heart of the proof is the so-called division lemma. We also deduce
from this lemma that a l-arrow u :  — y of G induces an isomorphism from 7, (G, z)
to m,(G,y). Finally, we give four equivalent characterizations of weak equivalences of
Grothendieck oco-groupoids, generalizing a theorem of Simpson on strict n-categories
with weak inverses (see Theorem 2.1.IIT of [20] or Definition 2.2.3 of [21]).

Third, given a model category M in which every object is fibrant, we construct,
following Grothendieck, a fundamental co-groupoid functor Il : M — oo-Gpd, which
depends on liftings in M. If X is an object of M, we define a model categorical notion of
homotopy groups of X. We show that the homotopy groups of I, (X) are canonically
isomorphic to the homotopy groups of X. We deduce that the homotopy groups of
II(X) depend only on X and that the functor Il respects weak equivalences. In
particular, applying this result to the category of topological spaces, we give a precise
statement of Grothendieck’s conjecture.

Our paper is organized as follows. In the first section, we introduce the globular
language, in which the notion of Grothendieck oo-groupoid will be phrased, and in
particular the notion of globular extension. Section 2 is dedicated to the definition
of Grothendieck co-groupoids. We define in particular contractible globular extensions
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and coherators. In Section 3, we explain how to construct structural maps out of a
Grothendieck oo-groupoid. In particular, we construct enough structural maps to show
that a Grothendieck oo-groupoid can be truncated to a bigroupoid. In Section 4, we
study the notions of homotopy groups and weak equivalences of co-groupoids. We show
that the homotopy groups are well-defined and we give four equivalent characterizations
of weak equivalences. In Section 5, we explain Grothendieck’s construction of the funda-
mental co-groupoid functor Il : M — co-Gpd. We interpret this construction in terms
of Reedy model structures. In Section 6, we recall Quillen’s 71 theory introduced in [19].
We give an alternative formulation in terms of slice categories. In Section 7, we work in
a model category M in which every object is fibrant. We define a notion of based objects
of M and, using a loop space construction, we define a theory of homotopy groups for
these based objects. One difference with Quillen’s original theory is that our category
M has no zero object. We show that with our definitions, m1 (X, x) is canonically iso-
morphic to (€, X). Finally, in Section 8, we compare the homotopy groups of Il (X)
and the homotopy groups of X, where X is an object of a model category in which every
object is fibrant. We finish by a precise statement of Grothendieck’s conjecture.

If C' is a category, we will denote by C° the opposite category and by C the category
of presheaves on C'. If

X, X, . X,

AN e

1 2

Y, Yo - Y,
is a diagram in C, we will denote by
(X1, f1) Xv; (91, X2, f2) Xvy Xy, (gn—1, Xp)
its limit. Dually, we will denote by

(X1, f1) Oy, (91, X2, fo) Ly, --- Oy, (gn-1,Xn)

the colimit of the corresponding diagram in C°.

1. THE GLOBULAR LANGUAGE

1.1. The globe category. We will denote by G the globe category, that is, the category
generated by the graph

o P Ti-1 g Tit1

Do Dy e D;1 D;

1 P Ti—1 T Tit1

under the coglobular relations
0i+10i :Ti+10i and Ui+1Ti :Ti+17—i’ 7 2 1.

For i > j > 0, we will denote by a§ and T; the morphisms from D; to D; defined by

— . . [ .
b i 05420541 and Ty =T Ti4oTj41-
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1.2. Globular sets. The category of globular sets or co-graphs is the category G of
presheaves on G. The data of a globular set X amounts to the data of a diagram of sets
Si41 S; Si—1 S2 S1

1
T X T X X X,
tit1 t; ti—1 to t1

satisfying the globular relations
5iSi41 = Sitiy1  and  t;sip1 = titiya, i>1.
For i > j > 0, we will denote by 53 and té the maps from X; to X; defined by
sé- =5j41°--8-15 and t;- =tjp1- o1t

If X is a globular set, we will call Xy the set of objects of X and, for i > 0, X; the
set of i-arrows. If u is an i-arrow of X for i > 1, s;(u) (resp. t;(u)) will be called the
source (resp. the target) of u. We will often denote an arrow u of X whose source is z
and whose target is y by v : z — y.

1.3. Globular sums. Let n be a positive integer. A table of dimensions of width n is
the data of integers i1, ..., 4, 4,...,7,_; such that

ik>’i;€ and ik+1>i;€, 1<k<n-1.

We will denote such a table of dimensions by

i is in
i iy iy '

The dimension of such a table is the greatest integer appearing in the table.

Let (C,F) be a category under G, that is, a category C' endowed with a functor
F : G — C. We will denote in the same way the objects and morphisms of G and their
image by the functor F. Let

i is in
e ()
1 L2 ln—1

be a table of dimensions. The globular sum in C associated to T (if it exists) is the
iterated amalgamated sum

(Dil ) 02/11) HDi’l (7_;12> Di27 JZ) HD./ ce HDi/ (T;ib,l’Di")

2 n—1

in C, that is, the colimit of the diagram

Dy, D, D Di,_, D,
.y T g T [ T.r
5t Di/ i 5 Di/ if 111_1 Di/ i1
1 2 n—1

in C. We will denote it briefly by
Dil HDz’ Di2 HDL/ “ e HD
1 2
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1.4. Globular extensions. A category C' under G is said to be a globular extension if
for every table of dimensions T' (of any width), the globular sum associated to T exists
in C.

Let C and D be two globular extensions. A morphism of globular extensions from C
to D is a functor from C to D under G (that is, such that the triangle

G
N
c——D

commutes) which respects globular sums. We will also call such a functor a globular
functor.

Examples 1.5.

1. If C is a cocomplete category and F' : G — C is any functor, then (C,F) is a
globular extension.

2. Let Top be the category of topological spaces. We define a functor R : G — Top in
the following way. For ¢ > 0, the object D; is sent by R to the i-dimensional ball

D; = {z € Ri;|la]| < 1}.

For ¢ > 1, the morphisms o; and 7; are sent by R respectively to o; and 7; defined by

oi(x) = (z,\/1—|z||?) and 7i(z) = (x,—/1— |z]|?), e D;_1.

These morphisms are the inclusions of the two hemispheres of D;. One instantly checks
that these maps satisfy the coglobular relations and our functor R is thus well-defined.
Note that this functor is faithful. The category Top being cocomplete, (Top, R) is a
globular extension. In what follows, Top will always be endowed with this globular
extension structure. R

3. Let h : G — G be the Yoneda functor. Then (G, h) is a globular extension. The
globular sums for this globular extension are the globular sets 7" (where T is a finite
planar rooted tree) introduced by Batanin in [6].

4. Let ©g be the full category of G whose objects consist of a choice of a globular
sum (which is only defined up to isomorphism) for every table of dimensions. The
category Og is obviously endowed with the structure of a globular extension. This
category is canonically isomorphic to the category ©¢ defined in terms of finite planar
rooted trees by Berger in [7].

We will see that the globular extension ©g is the initial globular extension in some
2-categorical sense (Proposition 1.6). See also Proposition 3.2 of [2] for a more abstract
point of view on ©y.

5. Let © be the full subcategory of the category of strict co-categories whose objects
are free strict oo-categories on objects of ©g. The category © is canonically endowed
with the structure of a globular extension. This category is canonically isomorphic to
the cell category introduced by Joyal in [13], as was proved independently by Makkai
and Zawadowski in [14] and by Berger in [7]. Alternative definitions of © are given in
[7] and [8]. See also Proposition 3.11 of [2] for a definition of © by universal property.

6. Let © be the full subcategory of the category of strict co-groupoids whose objects
are free strict oo-groupoids on objects of ©g. The category © is canonically endowed
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with the structure of a globular extension. The category O can be thought of as a
groupoidal analogue to Joyal’s cell category. See Proposition 3.18 of [2] for a definition
of © by universal property.

Proposition 1.6. The globular extension ©g has the following universal property: for
every globular extension (C, F), there exists a globular functor Fy : ©g — C, unique up
to a unique natural transformation, such that the triangle

O9

™,

commautes.

Proof. See Proposition 3.2 and the next paragraph of [2]. O

Remark 1.7. If (C, F) is a globular extension, a lifting Fj : ©g — C, as in the above
universal property, amounts to the choice of a globular sum in C' for every table of
dimensions.

1.8. Globular presheaves. Let C be a globular extension. A globular presheaf on C
or model of C' is a presheaf X : C° — Set on C such that the functor X° : C — Set®
respects globular sums, i.e., such that for every table of dimensions

i1 ia . in
T = < -/ L )7
41 9 bn—1
the canonical map

X'(DZ'1 HD./ c. HD./ Din) — Xi1 Xx, *XXx, Xi
Zl 1 7«1 1

n—1

is a bijection. We will denote by Mod(C') the full subcategory of the category C of
presheaves on C' whose objects are globular presheaves.

The canonical functor G — C induces a functor C — G which restricts to a functor
Mod(C) — G. If X is a globular presheaf on C, the image of X by this functor will be
called the underlying globular set of X. We will often implicitly apply the underlying
globular set functor to transfer notation and terminology from globular sets to globular
presheaves. For instance, we will denote X (D;) by X; and we will call this set the set of
i-arrows of X.

Examples 1.9.
1. The category of globular presheaves on Oy is canonically equivalent to the category
of globular sets. More precisely, the composition

Mod(8g) — Oy = G,

where ¢* denotes the restriction functor induced by the canonical functor i : G — Oy, is
an equivalence of categories. See Lemma 1.6 of [7] or Proposition 3.5 of [2].

2. The category of globular presheaves on © is canonically equivalent to the category
of strict co-categories. See Theorem 1.12 of [7] or Proposition 3.14 of [2].

3. The category of globular presheaves on © is canonically equivalent to the category
of strict co-groupoids. See Proposition 3.21 of [2].
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1.10. Globular extensions under ©g. A globular extension under ©g is a category C
endowed with a functor ©9 — C such that (C,G — ©¢ — C) is a globular extension. If C'
is a globular extension under @, the globular sum associated to a table of dimensions
is uniquely defined. A morphism of globular extensions under Oq is a functor under Oq
between globular extensions under ©qy. Such a functor automatically respects globular
sums.

Proposition 1.11. Let C be a category under ©g. There exists a globular extension C
under ©g, endowed with a functor C — C under ©q having the following universal
property: for every globular extension D under ©g, endowed with a functor C — D
under ©g, there exists a unique functor C — D such that the triangle

C
o= l
\ D
commutes.

Proof. This is a special case of a standard categorical construction (see Proposition 3 of
[5]). See also Section 2.6 of [1] and paragraph 3.10 of [17] for this particular case. [

1.12. Globular completion. If C is a category under O, the globular extension C
of the previous proposition (which is unique up to a unique isomorphism) will be called
the globular completion of C. Note that the functor C' — C is bijective on objects.

Remark 1.13. The theory of globular extensions is in some sense generated by the
category G and the diagrams in G describing globular sums. More precisely, starting
from a category I and a set D of small diagrams in I, there is an obvious generalization
of the theory of globular extensions to a theory of (I, D)-extensions. When I is the
terminal category and D is the set of diagrams describing finite sums, we obtain (up to
a variance issue) the theory of Lawvere theories. In this general setting, the category ©g
(resp. the globular extensions C' under O such that ©g — C is bijective on objects)
plays the same role as a skeleton of the category of finite sets (resp. as Lawvere theories).

2. GROTHENDIECK 00-GROUPOIDS

2.1. Globularly parallel arrows and liftings. Let C' be a globular extension. If
f :Dnp — X is a morphism of C' whose source is a D, n > 1, then the globular source
(resp. the globular target) of f is the morphism fo,, : D1 — X (resp. f7,, : Dp—1 — X).

If f,g : D, — X are two morphisms of C' whose source is a D,,, n > 0, we will say
that f and g are globularly parallel if, either n = 0, or n > 1 and f, g have the same
globular source and globular target.

Let now (f,g) : D,, = X be a pair of morphisms of C. A lifting of the pair (f,g) is
a morphism h : D,11 — X whose globular source is f and whose globular target is g,
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that is, such that the inner and the outer triangles of the diagram

Dn+1
h
Tn+1 Un+l f
D, ; X

commute. The existence of such a lifting obviously implies that f and g are globularly
parallel.

Example 2.2. Let C = Top. Two maps f,g : D, — X are globularly parallel if their
restrictions to the boundary 0D,, of D,, coincide, i.e., if they induce a map

(fa g) : 8Dn—|-1 = Dn HaDn Dn — X.

A lifting of the pair (f,g) corresponds to a lifting of the induced map 9D, +1 — X to
D, 41, that is, to a map h : D, 41 — X such that the triangle

Dn+1

RN
0Dpy1 —— X
")
commutes. Note that when X is fixed, such an h exists for every n > 0 and every

(f,9) : D, — X globularly parallel if and only if X is weakly contractible.

2.3. Admissible pairs. Let C be a globular extension. A pair of morphisms
(f,9):Dn— S

of C whose source is a D, n > 0, is said to be (00, 0)-admissible, or briefly admissible, if

e the morphisms f and g are globularly parallel;
e the object S is a globular sum;
e the dimension of S is less than or equal to n 4 1.

An admissible pair is strictly admissible if it does not admit a lifting.

2.4. Contractible globular extensions. We will say that a globular extension C is
(00, 0)-contractible, or briefly contractible, if every admissible pair of C' admits a lifting.
Such a globular extension is called a pseudo-coherator in [17] and [1].

2.5. co-groupoids of type C. Let C be a contractible globular extension. The category
of oco-groupoids of type C is the category Mod(C) of globular presheaves on C. We will
denote it in a more suggestive way by co-Gpd.

Remark 2.6. It might be more reasonable to define co-groupoids of type C' only when
objects of C' are in bijection with tables of dimensions. We chose not to do so for technical
reasons (see for instance Proposition 5.5).

Examples 2.7.
1. The globular extension Top is contractible. Indeed, it is obvious that every globular
sum in Top is contractible in the topological sense (see Proposition 5.11 for a proof in a
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more general setting). The contractibility of Top then follows from the last assertion of
Example 2.2.

2. We will prove in [3] that the globular extension O is contractible. More precisely,
we will show that every admissible pair in O admits a unique lifting. This will allow us
to define a canonical inclusion functor of strict co-groupoids into co-groupoids of type C,
where C is a coherator endowed with a defining tower (see Remark 2.15).

3. The globular extension © is not (oo, 0)-contractible. Indeed, the admissible pair
(1,,,0,), n > 1, does not admit a lifting. This reflects the fact that globular presheaves
on O, i.e., strict oo-categories, do not have inverses. Nevertheless, the globular exten-
sion © is (00, 00)-contractible in some sense (admissible for a theory of co-categories in
the terminology of [17] and [1]). See Proposition 5.1.5 of [1].

Remarks 2.8.

1. The definition of admissible pairs differs from the one given in the previous texts
on Grothendieck oo-groupoids: a dimensional condition has been added. The purpose of
this condition is to make unique the lifting of an admissible pair in © and hence to make
canonical the inclusion functor of strict co-groupoids into Grothendieck oco-groupoids.

2. The category co-Gpd should not be thought of as a category of weak co-groupoids
unless C satisfies some freeness condition. Indeed, for C' = ©, the category oo-Gpde is
nothing but the category of strict co-groupoids. One way to define weak oo-groupoids
without defining this freeness condition would be to define the category of weak co-group-
oids as the “union” of all the co-Gpd,’s, where C' varies among contractible globular
extensions.

2.9. Adding liftings to globular extensions. Let C' be a globular extension and
let A be a set of admissible pairs of C. We will denote by C[h A}b the category obtained
from C' by formally adding a lifting h(y 4 to every pair (f,g) in A. More precisely, the
category C[h]” is the category, endowed with a functor C' — C[h]” such that the image
of every pair of A admits a lifting in C[h4]’, satisfying the following universal property:
for every category D, endowed with a functor C — D such that the image of every
pair of A admits a lifting in D, there exists a unique functor C[h4]” — D such that the
triangle

Clhal
o
\ D
commutes.
The category C[h A]b is naturally a category under G but it has no reason to be a

globular extension. Let us assume that the globular extension C' is a globular extension
under ©g. Then C[h4]’ is also a category under ©g and we can consider its globular

completion C[h4]’. We will denote this globular extension under ©g by C[ha]. The cate-
gory C[h4] has the following universal property: for every globular extension D over ©y,
endowed with a functor C' — D under ©¢ such that the image of every admissible pair of
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A admits a lifting in D, there exists a unique functor Clha] — D such that the triangle
Clhal

o |
\ D
commutes. Note that the functor C — C[h4] is bijective on objects.

2.10. Free globular extensions. A cellular tower of globular extensions is a tower of
globular extensions
Co=6g—-Ci—---—=Cp— ... ,
endowed, for each n > 0, with a set A,, of admissible pairs of C,, such that
Chni1 = Chplha,]

Such a tower is entirely defined by the A4,’s. We will say that a cellular tower (Cy, A;,)
defines a globular extension C' if C' is isomorphic to hﬂ C,,. In this case, we will also say
that (Cy, Ay) is a defining tower of C.

We will say that a globular extension C'is free if C' admits a defining tower. Note that
if C' is free, a defining tower of C gives a functor ©¢9 — C which is bijective on objects.

2.11. Coherators. An (oo, 0)-coherator, or briefly a coherator, is a globular extension
which is free and contractible.

Examples 2.12. Let (Cy, As) be a cellular tower. If the A,’s are such that every
admissible pair of C' = lim C,, comes from an A,, then C is a coherator. This remark
allows us to define three coherators:

e The canonical coherator: A, is the set of all admissible pairs of C,,.

e The reduced canonical coherator: A, is the set of all strictly admissible pairs
of C,.

e The Batanin-Leinster coherator: A, is the set of the admissible pairs that do
not come from an A,,, m < n, via the functor C,, — C,. The name of this
coherator comes from the relation it bears with Batanin-Leinster co-categories
(see Section 6.7 of [1]).

Remark 2.13. If C is a coherator, the category of co-groupoids of type C' can be
thought of as a category of weak oo-groupoids. The fact that this category depends on
a coherator reflects the non-uniqueness of the choice of generators for higher coherences.
Nevertheless, if C' and C” are two coherators, the category co-Gpd and co-Gpd should
be equivalent in some weak sense to be defined. Note that Grothendieck’s conjecture
(Conjecture 8.14) implies that their homotopy categories are equivalent.

Proposition 2.14. Let C be a free globular extension. For any contractible globular
extension D, there exists a globular functor C — D.

Proof. Let (Cy, Ax) be a cellular tower defining C. By the universal property of O,
the functor G — D lifts to a globular functor Fy : Cy = ©g — D. Suppose now by
induction that we have a globular functor F,, : C,, — D. Every admissible pair of A, is
sent to an admissible pair of D. Since D is contractible, every such pair admits a lifting,
and, by the universal property of C,4+1 = Cyp[ha,], we can lift F), to a globular functor
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Fot1 0 Cpy1 — D. We hence get a functor F = thn : C — D which is obviously
globular. O

Remarks 2.15.

1. The globular functor C' — D of the previous proposition is not unique: it depends
on a cellular tower defining C' and on a choice of liftings. Nevertheless, if such a choice
is made, the globular functor C' — D becomes unique (up to a unique isomorphism).

2. In particular, if C' is a coherator endowed with a defining tower and D = (:), by
Example 2.7.2, there exists a unique functor F : C' — © under ©q. This functor induces
a functor from strict oo-groupoids to oco-groupoids of type C. This is the canonical
inclusion functor of strict co-groupoids into oo-groupoids of type C.

3. SOME STRUCTURAL MAPS OF GROTHENDIECK 00-GROUPOIDS

3.1. In this section, we fix a contractible globular extension C' and an co-groupoid G of
type C. The purpose of the section is to convince the reader that G deserves to be called
an oo-groupoid. For this purpose, we will explain how to construct structural maps (i.e.,
operations and coherences) for G out of C. More precisely, we will show that G can
be endowed with compositions, units and inverses, and that these operations satisfy the
axioms of strict co-groupoids up to coherences. We will also give examples of higher
coherences between these coherences.

3.2. First example: codimension 1 compositions. Let i > 1. We will explain how
to endow G with a composition of i-arrows in codimension 1, i.e., with a map
*2_1 : Gy Xa . G, — G;
sending i-arrows
r Sy 2
to an ¢-arrow
vEl w2

Let p1,p2 : G; XGi G; — G; denote the canonical projections. The conditions on the

source and the target of *;_; can be rewritten in the following way:

Si *271 =s;ps and t; *271 =t;p1-
The important fact that will allow us to construct our map *i 11 is that the maps s;po
and t;p; are induced by morphisms of C. Indeed, denote by €,,e5 : D; = D; Iy, | D;
the canonical morphisms. Since G is a globular presheaf, the canonical morphism

J:G(D;p, | D;) = Gi xg,_, G
is a bijection and we have

G(g;) =pig, 1=1,2.
It follows that
G(e90,)i = sipo and Gleyr)j ' = tip1.
Consider now the pair
(6904,€17;) : D1 — Dy I, | Dy
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of morphisms of C. We claim that this pair is admissible. For ¢ = 1, there is nothing to
check. For ¢ > 2, we have

€20i04—1 = €2T;0—1 = €10;0,1 = €1T;0,1
and

€20;Ti—1 = €aT;Ti—1 = €10;Tj—1 = €17 Tj—1-
Since C' is contractible, this pair admits a lifting in C. It follows that there exists a
morphism '

;-71 : Dz — Dz HDi—1 Dz
in C' such that
Vi 0, =e90;, and V' 7, =¢T;.

This morphism will also be denoted by V,. It induces a map

. —1 G(VZ_)
w11 Gy xg | Gi = GD; I D)) —5 G;

which has the desired source and target. Indeed, we have
sixi_y = G(0,)G(V)j ™ = G(V,0,)j" = Gleg0,)j " = sipa
and
tixi = G(r)G(V,)i ' =G(Vm)i~' =Glem)i™! = tipr.
Note that the composition *¢_; depends on the choice of the lifting V,. Nevertheless, it

is easy to show that this composition is unique up to (i + 1)-arrows. See Proposition 4.6
for details.

3.3. The general pattern. Let i > 1 and let

i1 io in
i iy v dpy

be a table of dimensions. Suppose we want to construct a structural map

m : Gil XGi’ XGi’ Gzn — Gz
1 n—1

such that
ssm=f and t;m=y,
where
f,g : Gil ><G%_,1 s XGi’ Gzn — Gz’_l

n—1

are two fixed maps. To do so, we first have to find morphisms
0,v:Dj—1 — Di1 HDi’ . HDZ" D
1

in C such that
Glp)j'=f and G()j =y,

where
j : CTY(D,L1 HDi’ . HDz" Dzn) — Gh xGi’l - XGi/ G
1

n—1

in
n—1
denote the canonical morphism. We must then check that the pair (¢, ) is admissible
(this will be the case if the structural map m is “reasonable”). Then, any lifting
'Ll 7

n—1

in
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in C of the pair (¢,~) will induce a map

(2
;! n
"n—1

—1
m: Gy, xg, " xa, Gi, == GD; Ip, ...y, D;
1 1 5t
with the desired source and target.

3.4. In the rest of this section, we will assume that our contractible globular extension C
is the canonical coherator. The canonical cellular tower defining C' will be denoted by
(Cy). It should be clear to the reader that all the structural morphisms that we will
define in C' exist in every contractible globular extension. Our exposition only uses the
canonical coherator to highlight the natural hierarchy between structural maps. For
instance, since the pair

(620’2‘,517—1‘) . D’L—l — DrL HD'L‘*I D’L
considered in paragraph 3.2 actually comes from Coy = Oy, it admits a lifting in C7. The
composition *;_; is hence in some sense a primary operation.
3.5. Examples of structural maps appearing in C.

e Codimension 1 compositions
See paragraph 3.2.

o Units
Let ¢ > 0. The pair
(1Di’ 1Di) :D; — Dy
of morphisms of Cj is obviously admissible. Hence there exists a lifting

R; . Di+1 — Dl

1

in C7 such that
Ki0;+1 = lp, and K7 = Ip,-
This morphism induces a structural map
ki Gi = Gita
of G for units. This map sends an i-arrow u to an (i + 1)-arrow
ki(u) : u — u.
We will see that k;(u) is a unit for the composition *;™ up to an (i + 2)-arrow.

e Codimension 1 inverses
Let 4 > 1. It follows from the coglobular identities that the pair

(1;,0;) : D1 — Dy
of morphisms of Cy is admissible. Hence there exists a lifting
‘iD= Dy
in C7 such that ' '
O _jo;, =7, and Q_ 7, =0,
This morphism will also be denoted by €2;. It induces a structural map

w%,l : Gz — Gz
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of G for codimension 1 inverses. This map sends an i-arrow u : x — y to an i-arrow
( .
wi_q(u) 1y — x.
We will see that w!_; (u) is an inverse of u for the composition *!_; up to an (i+1)-arrow.

Remark 3.6. The list of structural maps appearing in C; we have given above is not
exhaustive: m-ary compositions or operations mixing compositions, units and inverses
are other examples.

3.7. Examples of structural maps appearing in Cs.

e Codimension 2 compositions
Let ¢ > 2. The pair

((6104,€90,)V,;_1,(€173,697) V1) : Dic1 — Dy HDZ-,2 D;

of morphisms of C, where €,,¢5 : D; = D; Il,. | D; denote the canonical morphisms, is
admissible. Indeed, we have

(6104,690;)V,;_10;_1 = (€104,620;)690;_1

€90;0;_1 = €2T;0;_1

(e17;,€27;)E20, 1
= (6173, €2m) V10,1
In the same way, we get
(€104,€203)Vi1Timy = 17T = (6173, €27) Vi1 Tyt

Hence there exists a lifting

Vio:Di = D; I, , D;
in C5 such that

i _ i _
Vig0; = (£104,6903)V;_1 and Vi o7 = (617, 69m) V1.

This morphism induces a structural map

*z72 : GZ XGF2 GZ — GZ
of G for codimension 2 composition. This map sends i-arrows

u

!

u
/N m

z_ aly Jolz

~ Y I~ VT~

v v

to an ¢-arrow

u! *Z:% u
/*i X 7
v’ *::é v

e Codimension 2 inverses
Let ¢ > 2. The pair
(031, 78_1) : Diz1 = Dy
of morphisms of C is admissible. Indeed, we have

o0, 1 =0T =TT = 7810,
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In the same way, we get
o T =005 = T8 1T g
Hence there exists a lifting
Q;_Q : Dz — ])Z
in C9 such that
Q%_Qai = UiQi—l and Q:LL'_QT,L' = T’iQi—l'
This morphism induces a structural map

of G for codimension 2 inverses. This map sends an i-arrow

to an i-arrow

w;~5(v)
We will see that w?_,(«) is an inverse of o for the composition *¢_, up to an (i+1)-arrow.

e Codimension 1 associativity constraints
Let ¢ > 1. The pair

((Villp,_, 1p,) Vi, (Ip, Up,_, V;)V;) : D; = D I, D Il _, D,
of morphism of C is admissible. Indeed, if
€1,€9,€3,: Dj = D; I, | DI, D; and gl e : D; — Dy Iy, , D
denote the canonical morphisms, then we have
(Vi lp,_, Di)Vio; = (V; Ip, D')féai = &30,

= (9, €3)e50; = (2, €3)V,0;

= (D; LIp, V;)eho;

= (D; I, V;) V0.
In the same way, we get

(Vilp,_, Di) V7 = ey7; = (D; p, V;) V,T;.
Hence there exists a lifting
a; :Diy1 — D; O, D; Op, | Dy
in C9 such that
ajopy = (Vi lp,  Di)V; and oy = (Dillp, | V)V,

This morphism induces a structural map

a; : Gi Xg,_, Gi Xg,_, Gi — Giq1
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of G for associativity constraints for the composition *;_;. This map sends i-arrows

u v w

to an (i + 1)-arrow
aw,v,u : (w *2:71 'l)) *271 u—w *271 (’U *?L:*l U)
This shows that the composition x!_; is associative up to (i + 1)-arrows.
e Codimension 1 unit constraints

Let i > 1. Consider the pair

((Ip,,04k;-1)V;, 1p,) : Di = Dy
of morphisms of C. (Note that the fact that the morphism

(1Dz" O-iK/ifl) : Dl HDi*l DrL — Dl

is well-defined requires a calculation. We will skip these calculations in this section.)
We claim that this pair is admissible. Indeed, if €;,e5 : D; = D; Iy, | Di denote the
canonical morphisms, then we have

(1Diaf7i"%—1)vz'0i = (1Dia0iﬁi—1)520i = 0iKi10; = 0;
and
(Ip,,04i-1) Vi = (Ip,, 0351 )e17; = 7

Hence there exists a lifting

pi : Diy1 = Dy
in Cy such that

PiCit1 = (1D¢7Ui’iifl)vi and  p;7y = 1p,.

This morphism induces a structural map

ri: Gy = Gigt
of G for right unit constraints for k;_;. This map sends an i-arrow u : £ — y to an
(i + 1)-arrow

Tyt uki_q ki—1(x) — u.
This shows that k;_1(x) is a right unit for the composition *¢_; up to an (i + 1)-arrow.
We get in a similar way a morphism

A :Dig1 — Dy
of C inducing a codimension 1 left unit constraint

li: Gi = Gig1.
We thus get an (i + 1)-arrow

L, kic1(y)*_yu — u.

u
showing that k;_1(y) is a left unit for the composition *¢_; up to an (i + 1)-arrow.

o Codimension 1 inverse constraints
Let ¢ > 1. The pair
((11)“ Q)V, 1) : Di = D;
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of morphism of C is admissible. Indeed, if 1,&, : D; = D; I, | D; denote the canonical
morphisms, then we have

(1D¢7Qi)vi0i = (1Di7Qi)520i =00y = T, = Tk _10;
and
(1DZ~7 ) V7, = (1D¢7 Qy)eT; =75 = Ty 4T
Hence there exists a lifting
0; : Dix1 = Dy
in C5 such that
;0341 = (Ip,, %)V, and &7y = Tk

This morphism induces a structural map
di : Gz — Gi+1

of G for right inverse constraints for w! ;. This map sends an i-arrow u : ¥ — y to an
(7 + 1)-arrow

dy : U*:::—l wf—1(“) = ki—1(y)-

This shows that w! ;(u) is a right inverse of u for the composition *i ; up to an
(7 + 1)-arrow.
We get in a similar way a morphism

i : Div1 — Ds
of Cy inducing a left inverse constraint. We thus get an (i + 1)-arrow
Gu Wiy () ¥i_y u = ki (x)

showing that w!_; (u) is a left inverse of u for the composition x!_; up to an (i + 1)-arrow.

3.8. Examples of morphisms appearing in Cj.

e Codimension 1 Mac Lane’s pentagon constraints
Let ¢ > 1. Denote by

€15--,64: D = Dy, D; Oy, DI, | Dy
the canonical morphisms. Let co : Djy1 — DiHDF1 DiHDF1 D; HDF1 D; be the morphism
((Di Iy, , Dy, Vy)a, (V; Op, , Dillp, | Di)ai)vi+1
and let c3 : Djp1 — Dy HDF1 D; HDF1 D, HDF1 D; be the morphism
((51'%7 (e2,€3,€4) ;) ﬁi (D; Up,_, V; Lp,_, Di)a,
((51752753)%:54’?1‘)V§ﬂ) (Vi—H Ip, DiJrl)v'H-l'

The pair
(63, 02) : Di—i—l — Dz HDz‘—l Dz HDFl Dz HDz‘—l Dz
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of morphisms of Cs is admissible. Indeed, if €),¢} : D41 — Diyq HDF1 D;+1 denote the
canonical morphisms, then we have
3041 = ((61, 69, 63) 0, €48 ')VZJ—F%U
(€1,82,3) 05, €4) (€10741,€20741) Vi
(€1,€2,€3) z+1754’%0¢+1)v
= ((e1,€2,€3)(V; p,_, Di)V;,e4)V;
 Up,_, DiIp,_, D;)(V; Lp,_, D)V,
and
2041 = (Vi lp,_ DiIlp,_ | Di)eyo 4
= (V;p, , Dy, D) (V, Oy,  D;)V,.
A similar calculation shows that
3741 = (Di p, , Dilp,_, Vi) (Di p,_, Vi) Vi = caTipy.
Hence there exists a lifting
7 Diyo — Dy, Dy, DI, | Dy
in C3 such that
0o =c3 and mT; 5= Co.

This morphism induces a structural map of G for Mac Lane’s pentagon constraints for

compositions *;_;, *ZH and *Hl This map sends i-arrows

to an (i + 2)-arrow

90*2—1 ((w* 1“) 1“) W 33* g (w *?—1 (v *2—1 U))
K3 i—1 Y%w,v,u

e Codimension 1 exchange constraints
Let @ > 2. Consider the pair

((VLQ HVH gfz)vw (Vi p, , Vz’)viﬁz) :Dy — D, | Dilp, , D; Up, | D;
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of morphisms of Cy. (Note that the left morphism is not a globular sum. Nevertheless,
it is not hard to prove by hand that this sum exists. Its existence also follows from the
fact that it is a generalized globular sum in the sense of Section 2.5 of [1]). We claim
that this pair is admissible. Indeed, if ¢;,...,¢4 : D; = D; O, Dy, , DOy, Dy

-1
and ,¢e5 : D; — D; HDi_2 D; denote the canonical morphisms, then we have

(Vi Iy Vi _2)Vi0; = ((e1,€3)Vi_a, (62,64) Vi_2) Vi0;
= (e9,84)V :f 205
= (£2,4)(€104,€50,) V4
= (£904,404) V4
and
(Vi p,_, Vz‘)viﬁﬂi = (V;Ip,_, Vi) (€104,630;) V4
= ((e1,€2) V03, (€3,64)V0,) V4
= (£207,€40,)V;_1.
A similar calculation shows that
( i Hvi_l Vﬁ_z)Vm = (e173,637)Vim1 = (V5 lp,_, vi)vé—ZTi'
Hence there exists a lifting
gi:Dip1 = Dy, D; Oy, D; Oy, | Dy
in C3 such that
€i0ijy1 = (Vé—z Hvi_l V§—2)Vz‘ and &7y = (V;p,_, Vi)W—z

This morphism induces a structural map of G for exchange constraints for compositions

1 1 i i . .
*;_o, *;_1 and *;_,. This map sends i-arrows

BT,
AN

to an (i + 1)-arrow

exb6.0 0 (059 B) ¥y (v¥i_ga) = (0%i_17) ¥i_p (B*i_1 a).
This shows that the pair of compositions (¥ ,,*¢ ;) satisfies the exchange law up to
(7 + 1)-arrows.

e Codimension 1 triangle constraints
Let © > 1. Denote by €;,69 : D; — D; HDZ‘_1 D; the canonical morphisms. Let ds :
Diy1 — Dy HDi_1 D; be the morphism

((51” €9\ )Vz 1 (€1,€10; "i171752)0‘i)vi+1
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and let d; : D;11 — Dy HDF1 D; be the morphism
(€1Pi’52’€i)vgﬂ-
The pair
(d2,d1) : Dip1 — D; Op, | Dy

of morphisms of (5 is admissible. Indeed, we have

da0iy1 = (€1,610:Ki_1,€2) 0,41
= (€1,6103K;-1,€2)(V; p, , Di )V
= ((e1,81044;-1) Vi, 62) V;
(e1( 1Diaai’€i71)vi)752)vi

and
d10;41 = (€1Pi011:€20i41)V;
(51(1D ,0ik;-1)V;,€2) V.
Similarly, we have
= (1K, €27 )VZ:J—AT'H
(51/117'1“, €9 NiTiv 1)V,
= (¢1,82)V;
=V,
and
diTip1 = (E10iTiv1, E2KiTir1) Vs
= (e1,82)V;
=V,.
Hence there exists a lifting

v;

: Di+2 — Dl HDi—l Dl
in C3 such that
v;0i.9=ds and v;7 o =dj.
This morphism induces a structural map of G for triangle constraints for compositions

*t 1, *’.“ and *”1 This map sends i-arrows
u v
rT—=y—z
to an (i + 2)-arrow
Qv ki1 (y)

(” *_y ki—l(y)) ¥ _ju

Tv,u
ﬁ .
Ty ¥ 1 k (u) kl(v) *;t} lu

v*l L u

One can show in a similar way that there exists in ('3 morphisms corresponding to
the following structural maps:

e codimension 3 compositions;
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codimension 3 inverses;

codimension 2 associativity constraints;
codimension 2 unit constraints;
codimension 2 inverse constraints.

Remark 3.9. The structural maps we have defined can be used to truncate G to a
bicategory in which every arrow is weakly invertible (see Remark 4.7 for more details).

3.10. Examples of morphisms appearing in higher C),’s. One can show that there
exists in Cy4 morphisms corresponding to the following structural maps:

codimension 4 compositions;

codimension 4 inverses;

codimension 3 associativity constraints;

codimension 3 unit constraints;

codimension 3 inverse constraints;

codimension 2 Mac Lane’s pentagon constraints;

codimension 2 exchange constraints;

codimension 2 triangle constraints;

codimension 1 constraints on constraints appearing in C3 (i.e., axioms for tricat-
egories).

In general, in C), we have

codimension n compositions;

codimension n inverses;

for every k such that 1 < k < n, codimension n — k constraints on constraints
appearing in Cy.

3.11. Existence of pregroupoidal structures. Let C' be a contractible globular
extension. From our previous analysis, one easily obtains that C' can be endowed (in a
non-canonical way) with the structure of a pregroupoidal globular extension in the sense
of [2], that is, with morphisms

B

V@DrﬁDﬂbﬂl, i>7>0,
Kyt Di+1 — Di, 1> O,

Q) :D; — Dy, i>7>0,

such that

(1)

(2)

for every i, j such that ¢ > j > 0, we have

, €90, J=1—1,
VZ.O'. = 2 L .
and
, €1T;, j=1—1,
Vir — i .
where €,&5 : D; = D; LI, | D; denote the canonical morphisms;
for every i > 0, we have

Ki0iy1 = 1p, and KTy = 1Ip;;
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(3) for every 14, j such that i > j > 0, we have
. . =1
0, = { A
o, 8Y; Jj<i—1,
and
=9 qi-1 .
7;42; j<i—1.

Given a pregroupoidal globular extension structure on C', any oo-groupoid G of type C
is endowed with the structure of an oco-pregroupoids in the sense of [2], that is, with maps
*;:GiXGjGi%Gi, ’i>j20,

ki:Gi%Giﬂ-lu Z207
wh Gy — G, i>j>0,
such that
(1) for every (v,u) in G; xg; G; with i > j > 0, we have

si(v*i.u) = {Si(u)’ - =i—L

Si(u)7 j<Z—17

S

and

ti(v*hu) = {ti(v)’ J=i-1

7 ti(v)« i), j<i—1;
(2) for every w in G; with ¢ > 0, we have
3i+1ki(u) =Uu= ti+1ki(u);

(3) for every w in Gj; for i > 1 and j such that i > j > 0, we have

and

For i > j > 0, we will denote by k:f the map from X; — X; defined by
K =kiq- kjik;.

(2

4. WEAK EQUIVALENCES OF 0o-GROUPOIDS

4.1. In this section, we fix a contractible globular extension C and an oo-groupoid G of
type C. Moreover, we choose once and for all a pregroupoidal globular extension struc-
ture on C. The oco-groupoid G is thus endowed with the structure of an co-pregroupoid.
We will use the same notation for the pregroupoidal structure on C' and the structure
of co-pregroupoid on G as in paragraph 3.11.
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4.2. Homotopy relation between n-arrows. Let v and v be two n-arrows, n > 0,
of G. A homotopy from u to v is an (n + 1)-arrow from u to v. If such a homotopy
exists, we will say that u is homotopic to v and we will write u ~,, v. Note that if u is
homotopic to v, then u and v are parallel.

Lemma 4.3. For every n > 0, the relation ~, is an equivalence relation. Moreover, if

n > 1, this relation is compatible with the composition *'_;.

Proof. Let u be an n-arrow of G. The (n + 1)-arrow k,(u) is a homotopy from u to w.
The relation ~,, is hence reflexive.

Let now v be a second n-arrow of G and let h : u — v be a homotopy. The (n+1)-arrow
w,,;1(h) is a homotopy from v to u. The relation ~,, is hence symmetric.

Suppose now w is a third n-arrow of G and k : v — w is a second homotopy. Then the
(n + 1)-arrow k*"*1 h is a homotopy from u to w. The relation ~,, is hence transitive.

Finally, suppose we have a diagram

I e

u’ v’

in G, where single arrows are n-arrows with n > 1, and double arrows are (n+ 1)-arrows.
The (n + 1)-arrow k+"*1 h is a homotopy from v+t to v/ *2F1u/. The relation ~,

is hence compatible with the composition *!_;. g

4.4. The groupoid @,(G). For n > 0, we will denote by G, the quotient of G, by the
equivalence relation ~,,.
Let us now fix n > 1. The maps

Spytn : G = Gpo1, ko1 0 Gt — G,
induce maps
Snytn - Gn — Gn—la kin_l : Gn—l — Gn
Moreover, by the previous lemma, the map
xn_1:Gp xa, , Gn = Gy,

induces a map

G, — G,.

n

w1 :Gp Xa
We will denote by w,(G) the graph

n—1

P Sn
Gn t4> Gn—b

endowed with the maps
*_ 1 Gpxg,_ , Gn— Gy and kp_q1:Gpo1 — Gy
Proposition 4.5. For every n > 1, w,(G) is a groupoid.

Proof. Let u, v and w be three (n + 1)-arrows of G, composable in codimension 1.
Choose, as in paragraph 3.7, a morphism

a,, - Dn+1 — Dn Hanl Dn HDn71 Dn

n
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of C' such that
a,0,.1 = (V, Oy, D,)V, and «,7,,1 = (Dn Oy, Vo) V.
This morphism induces an (n + 1)-arrow
Gy (Wog 1 V) g u = wogy (Vg u),
thereby proving the associativity of the composition *'_; up to homotopy.
Let now u : © — y be an n-arrow. Choose, as in paragraph 3.7, morphisms

Ap :Dnt1 =Dy and p, :Dpy1 — Dy,
of C such that
MOps1 = (Tpbp_1,1p, )V, and A\,7,, =1p ,
PnOni1 = (Ip, 0k, 1)V, and p,7,.1 =1p .
These morphisms induce (n + 1)-arrows

l

thereby proving that k,_1(x) is a unit up to homotopy.
Let us now prove that w, (u) : y — x is an inverse of u up to homotopy. Choose, as
in paragraph 3.7, morphisms

wikno1(W)xr_ju—u and ry,ux_; kp_1(x) — u,

Y i Dny1 — D, and 6, : Dpyr — Dy
of C such that
MnOpt1 = (Qn,1p,) Ve, and 3,700 = 0y _y,
0,0ni1 = (Ip,,2,)V,, and 0,7, = Tk, 1-

These morphisms induce (n + 1)-arrows

Gy Wy (u)*_ju—x and d,: f*_jw,(u) =y,

thus ending the proof. O

Proposition 4.6. The groupoid w,(G) does not depend on the choice of a pregroupoidal
globular structure on C.

Proof. The groupoid w, (G) depends a priori of the choice of
V,:Dp— D,y Dy and k, 4 :Dyp— Dyg.

Let us show it does not.
Let
V!, :D, =D, Op, , Dn
be a morphism of C' with same globular source and target as V,,. Denote by

'n

*n—1

: Gn XGn-1 Gn — Gn

the induced composition. Since the pair (V,,,V;) : D, — Dy, I, D, is admissible,
there exists a lifting
p:Dpr1 — Dyl | Dy
in C' such that
pon =V, and pr, = V.
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If v and v are two n-arrows of G, composable in codimension 1, then p induces an
(n + 1)-arrow
Mgy P VU=V >x</n"_1 u.
Hence the independence from V,,.
In the same way, if x),_; : D,, = Dy,—1 is a morphism of C' with same globular source
and target as k,,_q, then the admissible pair (k,,_1,%},_1) : Dp — D1 admits a lifting

from which we immediately get the independence from «,,_;. O

Remark 4.7. For any n > 1, w,(G) is actually the truncation in dimension 1 of
a bigroupoid w?(G), i.e., of a bicategory in which every l-arrow is invertible up to
a 2-arrow and every 2-arrow is invertible. Let us briefly explain how to define this
bigroupoid. The underlying 2-graph of @?(G) is

Sn+1 Sn
Gn+1 o Gn —_— Gn—lv
tn41 tn

and its structure maps are induced by a choice of maps k1, kn, *_1, *Zﬂ, L a,,

I, and 7, as in the previous section. The axioms of bigroupoids follow from the existence
in C of

e codimension 1 and 2 associativity constraints;
e codimension 1 and 2 unit constraints;

e codimension 1 pentagon constraints;

e codimension 1 triangle constraints;

e codimension 1 and 2 inverse constraints.

One can easily show that @?2(G) does not depend on the choice of the above maps (up
to biequivalence).

The bigroupoid @} (G) (resp. the groupoid w;(G)) can be thought of as a truncation
of G in dimension 2 (resp. in dimension 1).

The author has no doubt that a reader more patient than him could check that a
similar construction gives rise to a tricategory in the sense of [10] in which every arrow
is weakly invertible.

4.8. The functor w,. Let f: G — H be a morphism of co-groupoids of type C. Such
a morphism induces a morphism of globular sets between the underlying globular sets
and in particular respects the notion of homotopy between n-arrows. It follows that for
any n > 1, f induces a morphism of graphs

wn(f) : wn(G) = wp(H).
The naturality of f implies that @, (f) is actually a functor. We thus get a functor
wp, : 00-Gpd — Gpd,
where Gpd denotes the category of groupoids.
4.9. Inverse image of globular functors. If F': D — D’ is a morphism of globular
extensions, then the precomposition by F' defines a functor Mod(D’) — Mod(D) that
we will denote by F*. In particular, if D and D’ are contractible, we get a functor

F* : 0o-Gpdpr — 00-Gpdp. Since F' is a functor under G, the underlying globular sets
of an oo-groupoid G of type D’ and of F*(G) coincide.
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Proposition 4.10. Let F': D — D’ be a morphism of contractible globular extensions.
Then for any n > 1, the triangle

0o-Gpd L 0o-Gpdp

o
Gpd

commutes.

Proof. Let G be an oo-groupoid of type D’. Since G and F*(G) have the same underlying
globular set, the underlying graphs of w,(G) and w,(F*(G)) coincide. The groupoid
structure of w, (F*(G)) is induced by a choice of morphisms

Vo:Dp =Dyl Dy,

Kp_1:Dp — Dp_1

of D such that

V,0, =¢yo, and V,7, =¢eT,,

Kp10p, =1p, _, and Kk, 37, =1p |,

where 1,9 : D, = D, II; | D, denote the canonical morphisms. By applying F' to
these morphisms, we get morphisms
F(v,):D, — D, Op, | Da,
F(k,_1): Dy = Dpy
of D' such that
F(V,)o, =¢y0, and F(V,)1, =T,
F(k,,_1)o, = Ip,_, and F(k,_1)7, = Ip, ;-

These morphisms can be used to define the groupoid structure of @, (G). (Note that we
have neglected some inoffensive canonical isomorphisms when describing the target of
F(V,) and F(k,_;).) But it is clear that these two choices lead to the same groupoid
structure. n

4.11. Homotopy groups of oco-groupoids. We define the set mo(G) of connected
components of G by
m0(G) = mo(w1(G)) = Gy.
Let n > 1 and let u,v be two parallel (n — 1)-arrows of G. We will denote by
Homg (u, v) the set of n-arrows of G from u to v. We set

(G, u,v) = Homg, () (w,v) and 7, (G, u) = mp (G, u, u).

The set m,(G, u,v) is nothing but the quotient of Homg(u,v) by the equivalence rela-
tion ~y,. Note that m,(G,u) is canonically endowed with a group structure.
If n > 1 and z is an object of G, we define the n-th homotopy group of (G, x) as

(G, x) = ma (K _1 ().
The Eckmann-Hilton argument shows that for n > 2, the group m, (G, x) is abelian.

From the fact that for every n > 1, w, is a functor from the category of co-groupoids
of type C to groupoids, we get that
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e 7 is a functor from the category of oo-groupoids of type C' to the category of
sets;

e foralln > 1, m, is a functor from the category of co-groupoids of type C' endowed
with an (n — 1)-arrow (or with an object) to the category of groups.

Lemma 4.12 (Division lemma). Letn > 2 and let i be an integer such that0 < i < n—1.
Let u,v be a pair of parallel (n — 1)-arrows of G and let v : v/ — v' be an n-arrow such
that
st(y) =177 () = 177 (o).

Then the map

Homg (u,v) — Homg (v +7t u, v’ 1 v)

QYR

induces a natural bijection

(G, u,v) — w0 (G

Proof. We will denote by K the map

n—1 r n—1
*r T u, v kT v).

?—1 /  n—1 U)

Homg (u, v) — Homg (u' *
o Yo
If A:a— o is a homotopy between two n-arrows a, o’ : u — v, then the (n + 1)-arrow
kn () *?‘H Ayl a—yxld

is a homotopy from K («a) to K(a'). Hence the map K induces a map

K mp(Gu,v) — w0 (G #7 L o $0 7 w).

We will construct a map
L : Homg (G, *?‘1 u, v’ *?_1 v) = Homg(u,v)

inducing an inverse

L (G 5 o 07 o) = (G, v)
of K.

Our proof will be quite technical. For this reason, we start by giving an idea of it.
Let 8 : o+ u — o' %" 1v. One could naively think that L'(8) = wl(y) *? 8 would
induce an inverse (that would be true if G were a strict oo-groupoid). But the source
(resp. the target) of L'(5) is

n—l n—l /  n—1 n—1

wl (W) T (W T ) (resp. wH (') #1L (v 47 w)).

In particular, L'($) does not belong to Homg(u,v). Nevertheless, the source (resp. the
target) of L'(S) and u (resp. of L'(8) and v) coincide in dimension i, that is, we have

sP(L'(B) = s (u) and £(L'(B)) = 77 (v).
We will “correct” the source and target of L'(S) dimension by dimension. We will first
construct (i + 2)-arrows c;42 and d;+o such that the n-arrow

aiyo = kit (dig) %7y (L(B) 7y ki (ciga))
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has the same source (resp. the same target) as u (resp. as v) in dimension i + 1. By
induction, we will define a; for i < j < n such that the source (resp. the target) of «;
and u (resp. of a; and v) coincide in dimension j — 1 (a;41 being L'(5)). We will end
up by defining L(3) as the n-arrow

an = dnxy [ (K2 (ire) ¥ (L/(B) i K2 (cin)) ) -+ | ¥ cal,

where the ¢;’s (resp. the d;’s) are the j-arrows “correcting the source (resp. the target)
of L'(8) in dimension j — 1.7

Here is how our proof is organized. First, we define the ¢;’s (resp. the d;’s) as func-
tions C; (resp. Dj) of u and ' (resp. of v and v). To define these functions, we will
define by mutual induction (on j) the Cj’s (resp. the D;’s), their sources C} (resp. D),
their targets C;f (resp. Dj) and functions S; (resp. Tj) which (as will be proved in the
fourth step) are the sources (resp. the targets) of the «;’s. An important point is that
all these functions come from morphisms of the contractible globular extension C'. This
will allow us to get liftings from C. Second, we show that the pairs of morphisms of C'
inducing the pairs (C;, C’f) and (D;, D;r) are admissible. This is actually needed by
the induction step of the first point. Third, we define the «;’s and we prove that their
sources (resp. their targets) are given by the S;’s (resp. the Tj’s). Fourth, we define L
and L. Fifth, we show that L is an inverse of K.

1. Definition of the C;’s and the D;’s
We define by induction on j such that i +2 < j < n maps
Si, T : Gn—1 X, Gn—1 = Gn—1,
C’j_,C;“,Dj_,D;-r Gt Xa; G — G,
C;,D; :Gp_1 xg; Gp—1 — Gy,

induced by morphisms of C.
We set

Siva(u', u) :w?_l(u’) *
Tyia(v/,0) =~ () =
for j such that i +2 < j < n, we set
S(u',u) =k~ Dy (u'u) 57y (S (u!,w) <773 KNG (ul ),
Tj(v',v) =k, 1 Djma (v, 0) ¥) 25 (Tj-1 (v, 0) 25 k21 Cima (v, 0));

for j such that i + 2 < j < n, we set

C: (v, u) :s?’:ll(u),
C;f(u’, u) :3’;__115} (v, u),
D7 (v',v) :s’j?:lliy(vl,v),
Dj (v, v) :t?__ll (v)
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For our definition to be complete, we need to define the C;’s and the D;’s. Let j be such
that ¢ + 2 < j < n. By induction, the maps
C;, C;r :Gpo1 Xg; Gn1 — Gj—1

are induced by a pair of morphisms of C. We will prove in the second step of the proof
that this pair is admissible. Admitting this fact, we get a lifting of the pair and so a
map

C;: Gpo1 g, Gp—1 — G
such that
SjCj = CJ_ and t]‘Cj = C;_
In the same way, we get a map
Dj Gt Xa, Gp_1— Gj
induced by C, such that

sjDj = D; and t;D; = D

2. The pairs (C’;,C’j) and (D;,Dj) are admissible
Let us check that the pair of morphisms of C' inducing the pair (C’; , C;r) is admis-
sible. It suffices to check that the (j — 1)-arrows C; (v, u) and C’f (u/,u) are parallel
for every (u’,u) in Gp—1 X@; Gn—1. (The reader not convinced by this assertion can
either extract a direct proof by dualizing our calculations, or read paragraph 5.3 of [2].)
Let (u/,u) be in Gy—1 X, Gn—1. For j =i+ 2, we have
si1C; (U u) = sip1siiy Sia(u/,u)

= N W) T e )

= 5?_1(?0 = 8i+13?+_11(u)
= 5i41C (', u)
and
H—IC+2(U u)—tz+131+1 (Ulvu)
= 1w W)+ ] T )
=t wp T (W)
= sy W) = 67 (w) = tinasP (u)
= ti410730 (W, w);
and for 7 + 2 < j < n, we have
sj_lcj'-"(u’,u) = Sj_lsn_lSj(u/ u)
= 5775 (k) Dy (uu) 775 (S (v ) )73 K 1 G (o, w)))
= s, 1k C'J 1w, u) = 521051 (v, w)

G- i ( “)_5? 21( ) = sj- 13” 11(U)

ZSj—lcj( ;)
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and
tj_lc’j (v u) =t;_ 1872 1S (', u)
o (kn— j—1(u, u) *J (SJ (W, ) * 2k£:110j—1(ul7“)>)
= n—_21k¥z:11 j—1(u'u) = tj_1Dj1(u',u)
= D (u',u) = 1775 (u )—tj 15771 (u)
= tj_le_(u’,u).

,_.

Very similar calculations show that the (j — 1)-arrows D; (v',v) and D;r(v' ,v) are
parallel for every (v/,v) in Gp—1 X@, Gn-1.
3. Definition of the aj’s and calculation of their sources and targets

Let B :u/ +? u — o' %! 1. We define by induction on j such that i < j < n, an

N-aITow «;. For j=14+1, we set
it = wi' () %' B.

For j > ¢+ 1, we set ‘ .
a; = K} (d;) #5y (g1 ¥y K (ey),

where
cj =Cj(u/,u) and dj =D, v).
To show that our «;’s are well-defined, we have to prove that
¢j:sh Tl (u) = sf (1) and dj ] (1) — 7 (v).

We first show by induction on j such that i +1 < j S n that we have
sn(aj—1) = Sj(u,u’).
For j =i+ 2, we have
sn(ait1) = sp(wy' (7) %{' B)
= spw]' (1) #7 " sa(6)
sn(7) %1 sn ()
L ()

(2

and for j > i+ 1, we have
sn(oj—1) = sp (k21 (dj—1) 0o (2 %7y k7 (c;-1)))
= (K25 (djm1) 975 (snayoa¥j_o k)1 (cj1)))
— KD, () $3 (Sjoa () #3 s KN ()
= S5;(u,u).

‘We hence have
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and
tj(c;) =t;Cj(u,u) = Cj(u’,u)
= 3? fS](u’,u) = ?—_11371@‘]—1)
= sj_1(aj-1),
ie.,

Very similar calculations give

-1
dj : t?_l(aj_l) — t;-l_l (’U)
4. Definition of L and L
Let 3 : *?71 u— v *?71 v and let @ = oy, be the n-arrow defined in the previous
step. Explicitly, we have

o =dysny [ (K2 dive) #fin (0] ) 7 B) s ki (eir2) ) -+ oy ea.
Note that

We can thus define the map

7'L71

L : Homg(G,u' "1 u, o' +771v) — Homg (u, v)

by sending 8 to c. The formula defining « is clearly functorial in 8 and the map L thus
induces a map

Lo (G #7007 o) — 71, (G, v).

5. The map L is an inverse of K
We first prove that L is a left inverse of K. Consider the maps
Gn xg, Gy = Gy
(a,7) = a,
(a,7) = LK(a).

They are both induced by a morphism of C. Moreover, we already know that «
and LK («) are parallel. We thus get from C an (n + 1)-arrow from « to LK («),
thereby proving that we have

LK == 17Tn(G,’Lt,U)'

Let us now show that L is injective. We have just shown that K is injective. This
means that for every n-arrow § and all j such that 0 < j < n — 1, the right composition
by 4 in codimension n — j (i.e., the operation o — a+7 §) reflects the property of being
homotopic. Dually, the left composition by ¢ in codimension n — j (i.e., the operation
a9 7 «) reflects the property of being homotopic. But the map L is obtained as
a composition of such operations. Hence the map L also reflects the property of being
homotopic. This exactly means that L is injective.

It follows that L is bijective. Its left inverse K is hence an inverse. O
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Theorem 4.13. Let n > 1 and let u be an (n — 1)-arrow of G. Set x = s *(u). There
exists an isomorphism

(G, u) — (G, ),

natural in G.

Proof. If n = 1, the result is tautological. For n > 2, by the previous lemma and its
dual, we have the following zig-zag of natural isomorphisms:

(G u) = ﬁn(G,u*g_l kg_l(x)) & (G, kg_l(x)) =, (G, x).
O

Corollary 4.14. Let n > 1 and let w : * — y be a l-arrow. Then u induces an
isomorphism

(G, z) = (G, y).
Proof. This follows from the previous theorem and its dual applied to k}_,(u). O

Corollary 4.15. Let n > 1 and let © be an object of G. The group m,(G,x) does not
depend on the choice of the pregroupoidal globular structure on C.

Proof. This follows from the previous theorem and Proposition 4.6 (i.e., the analogous
result for m, (G, u)). O

Remark 4.16. We have only proved that 7, (G, z) is unique up to a non-canonical iso-
morphism. Indeed, the zig-zag appearing in the proof of Theorem 4.13 depends on *871,
and hence on the choice of Vgil. Nevertheless, one can show that the isomorphism of
the theorem does not depend on this choice (the proof of this fact is very similar to
the one of Lemma 4.12). We hence obtain that m,(G,x) is unique up to a canonical

isomorphism.

4.17. Weak equivalences of co-groupoids. We will say that a morphism f: G — H
of co-groupoids of type C' is a weak equivalence if the following conditions are satisfied:
e the map mo(f) : mo(G) — mo(H) is a bijection;
e for all n > 1 and every object = of G, the morphism m,(G,z) — m,(H, f(x)),
induced by f, is an isomorphism.

By the previous corollary, this definition does not depend on the choice of a pregroupoidal
globular structure on C.

Theorem 4.18. Let f : G — H be a morphism of co-groupoids of type C. The following
conditions are equivalent:

(1) f is a weak equivalence;
(2) the map

mo(f) : mo(G) — mo(H)

is a bijection, and for allm > 1 and every (n — 1)-arrow u of G, the morphism
f induces an isomorphism of groups

(G, u) = (G, f(u));
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(3) the functor
w1(f) : w1(G) = wi(H)

is an equivalence of categories, and for everyn > 2 and every pair u,v of parallel
(n — 1)-arrows of G, the morphism f induces a bijection

Wn(G,U,’U) — Wn(Ga f(u)v f(v)),

(4) the functor
wi(f) : @ (G) = wi(H)

s full and essentially surjective, and for every n > 2 and every pair u,v of
parallel (n — 1)-arrows of G, the morphism f induces a surjection

Tn (G u,v) — (G, f(u), f(v)).

Proof. The equivalence of (1) and (2) is an immediate consequence of the previous the-
orem.

The implication (3) = (2) is obvious. Let us show the reciprocal. Let n > 1 and let
u,v be two parallel (n — 1)-arrows of G. Suppose there exists an n-arrow « : u — v in
G and consider the map

(G, u) = (G, u,v),

which sends the n-arrow g to the n-arrow ax'_; 8 : u — v. Since w,(G) is a groupoid,
this map is a bijection. The morphism f obviously commutes with this isomorphism,
that is, the square

(G, u) ————— mp (G, u, v)

J |

mn(H, () —— mn(H, f(u), f(v))

is commutative. By hypothesis, the bottom horizontal arrow is a bijection and it follows
that the top horizontal arrow is also a bijection. Thus, it suffices to show that if there
exists an n-arrow (3 : f(u) — f(v) in H, then there exists an n-arrow o : u — v
in G. This is obvious when n = 1 by injectivity of mo(f). So let n > 2 and let
B : f(u) = f(v) be an n-arrow of H. Set x = s,_1(u) and y = t,—1(v). The arrow

Epn_1(w,_1(f(u)))*7_5 B is an n-arrow of H from w,_;(f(u))*""3 f(u) : f(z) — f(x)
to w,_1(f(w)*""3 f(v) : f(z) — f(x). By injectivity of the map

TI'nfl(G, -T) — anl(Hv f(x))a

the (n — 1)-arrows w,,_;(u) *"~3u and w,_,(u)*""5v are equal in m,_1(G,2). Since
wn—1(G) is a groupoid, this implies that © = v in 7,—1(G, x,y) and so that there exists
an n-arrow « : u — v.

The implication (3) = (4) is obvious. Let us show the reciprocal. Let n > 1. Let u, v
be two parallel (n — 1)-arrows of G and let «, 5 be two n-arrows from u to v. Suppose
we have f(a) = f(B) in m,(H, f(u), f(v)). By definition, there exists an (n + 1)-arrow
of H from f(a) to f(B). By surjectivity of the map

7Tn+1(G7a7/8) — 7Tn+1(H7 f(Oé), f(ﬁ))a

there exists an (n+1)-arrow of G from « to §, and we thus have o = § in 7, (G, u,v). O
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Remark 4.19. In [20], Simpson proves an analogous result for strict n-categories with
weak inverses (see Theorem 2.1.C of op. cit.). See also Proposition 1.7 of [4] for the case
of strict oo-groupoids.

5. FUNDAMENTAL 0co-GROUPOID FUNCTORS

5.1. Formal coherators. A formal coherator is a weakly initial object C' of the category
of contractible globular extensions, such that any globular functor ©g — C' is bijective
on objects. Recall that an object X of a category C is said to be weakly initial if for any
object Y of C there exists at least one arrow from X to Y. Proposition 2.14 shows that
every coherator is a formal coherator.

In the rest of this section, we fix a formal coherator C.

5.2. The fundamental co-groupoid functor of a contractible globular extension.
Let M be a contractible globular extension whose underlying category is cocomplete.
By definition of C', there exists a globular functor F': C'— M. Since M is cocomplete,
this functor induces an adjunction

RC7F:€'—>M, HC,F:M_>67

where R¢ r is the unique extension of F' to C preserving colimits and Il¢ r is given by the
following formula: for every object X of M, Il¢ p(X) = (S — Hom(F(S), X)). Since
the functor F' is globular, the presheaf Il¢ #(X) is globular and the previous adjunction
induces an adjunction

Rc p : 0c0-Gpdg — M, Ilc,r : M — o0o-Gpdg,

which we will denote the same way. If X is an object of M, we will call II¢ p(X)
the fundamental oco-groupoid of X. Note that it depends a priori on F'. However, the
underlying globular set of Il r depends neither on F' nor on C: its set of n-arrows is
given by

o p(X)n = Hompa(Dy, X).
Examples 5.3. Let M = Top. We have seen in Example 2.7.1 that the globular
extension Top is contractible. By the previous paragraph we get an adjunction

Rc p : 0c0-Gpde — Top, I : Top — oo-Gpdg,

which depends on a globular functor F': C — Top. If X is a topological space, we have

HC,F(X)n = Hom%p(Dn, X)

In particular,

IIc p(X)o is the set of points of X;

IIc p(X)1 is the set of paths of X;

IIg p(X)2 is the set of (relative) homotopies between paths of X;

IIc p(X)s is the set of (relative) homotopies between (relative) homotopies be-
tween paths of X;

e ctc.
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5.4. If D is a globular extension, then the Yoneda functor D — D factors through the
category Mod(D) and we get a functor D — Mod (D). In particular, if D is a contractible
globular extension, we get a functor

yp : D — oco-Gpdp.

Proposition 5.5. Let M be a cocomplete contractible globular extension and let F' :
C — M be a globular functor. Then for any object X of M and anyn > 1, the groupoid
wn(Ilo,r(X)) is equal to @, (Y, (X)). In particular, w,(Ilc,r(X)) depends neither on F
nor on C.

Proof. Consider the following diagram:

Y M e,
N

00-Gpd 4 L) oco-Gpde

gpd

The upper triangle is commutative by definition of II¢ r and the lower triangle is com-
mutative by Proposition 5.5. Hence the result. g

Remark 5.6. Let F, F' : C' — M be two globular functors. Since Il¢ p(X) and ¢ # (X)
have the same underlying globular set, we can consider the identity morphism (of globu-
lar sets) from Ilg F(X) to Ilc p/(X). This morphism is not a morphism of co-groupoids.
Our feeling is that it should be part of the data defining a weak morphism of co-groupoids
(whatever that might mean). The previous proposition would then show that this weak
morphism is a weak equivalence and so that II¢ r does not depend on F' in some homo-
topy category.

5.7. In the rest of this section, we will explain how to construct a fundamental co-group-
oid functor M — co-Gpd when M is a model category in which every object is fibrant.

We will denote by & (resp. *) the initial (resp. terminal) object of a category. If X is
an object of a model category M, we will say that X is weakly contractible if the unique
morphism X — * is a weak equivalence.

5.8. Cofibrant and weakly contractible functors (definition). Let M be a model
category endowed with a functor F' : G — M. For n > 0, we define an object S"~!
endowed with a map 4, : S"~! — D,, in the following way. For n = 0, we set

Sl=9o
and we define
io:S7H = Dy
as the unique morphism from the initial object to Dy. For n > 1, we set
S" 1 = (Dp_1,%n-1) Hgn-2 (in_1,Dpn_1)

and
in = (1,,0,): 9" " = D,.
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Let us justify that i, is well-defined. We have to check that o,i,—1 = 7,i,—1. But
by looking at the two components of this equality, one sees that it is equivalent to the
coglobular relations.

We will say that the functor F': G — M is cofibrant if for every n > 0, the morphism
in:S" ! — D, is a cofibration in M. We will say that the functor F : G — M is weakly
contractible if for any n > 0, the object D,, is weakly contractible in M.

Remark 5.9. If M is a model category, the category Hom(G, M) of functors from G
to M is endowed with a model category structure coming from the fact that G is a
direct category: the so-called Reedy model structure. It is easy to show that a functor
F : G — M is cofibrant in this model category if and only if it is a cofibration in the sense
of the previous paragraph. Indeed, the n-th latching object of a functor F' : G — M
is exactly S”~!. Moreover, a functor F': G — M is weakly contractible in this model
category structure if and only if it is weakly contractible in the sense of the previous
paragraph. In particular, a cofibrant and weakly contractible functor F : G — M
is nothing but a cofibrant replacement of the terminal object of Hom(G, M). Such a
functor hence exists and is in some sense unique.

We will make no use of this observation in the rest of the article. In particular, we
will prove by hand the existence of a cofibrant weakly contractible functor (see para-
graph 5.13). We refer the reader to Chapter 15 of [12] for the theory of Reedy model
structures.

Example 5.10. Let R : G — 7Top be the functor defining the globular extension
structure of Top. In this case, the morphism i, is nothing but the inclusion of the
(n — 1)-sphere S~ ! as the boundary of the n-disk D,, and is hence a cofibration. On
the other hand, the disks are of course contractible. The functor R is thus cofibrant and
weakly contractible.

Proposition 5.11. Let M be a model category endowed with a cofibrant and weakly
contractible functor F': G — M. Then every globular sum in M is weakly contractible.

Proof. Let us first prove that the ¢,,’s and the 7,,’s are cofibrations. Let n > 1. We have
0, = ingy and T, = ine;, where €;,65 : D, 1 — S~ are the two canonical morphisms.
The morphism i,, is a cofibration by hypothesis. Moreover, the ¢,’s are both pushouts
of i,,—1 and hence are cofibrations. It follows that o, and 7,, are cofibrations.

Let us now prove the assertion. We need to show that for every table of dimensions, the
globular sum associated to the table is weakly contractible. We prove this by induction
on the width n of the table. If n = 1, the globular sum is a D,, which is weakly
contractible by assumption. Otherwise, let

i1 in
s=(v, )
1 ln—1

be our table of dimensions and X be the globular sum associated to S. Set

2'1 e infl
T = ( g )
31 lp—2

and denote by Y the globular sum associated to T. We have
X=YlIp, D

n—1

in .
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More precisely, the commutative square

Dy |

Y — X

is cocartesian. But the top horizontal arrow is a cofibration between weakly contractible
objects and is thus a trivial cofibration. Hence the canonical morphism Y — X is a trivial
cofibration. Since by induction Y is weakly contractible, X is also weakly contractible.
Hence the result. O

Proposition 5.12. Let M be a model category endowed with a cofibrant and weakly
contractible functor F : G — M. Assume that every object of M is fibrant. Then the
globular extension (M, F) is contractible.

Proof. The data of an admissible pair (f,g) : D,, — X is equivalent to the data of a
morphism S” — X. Indeed, every morphism k : S™ — X can be written k& = (f,g),
where f,g : D, — X satisfy fi, = gi,. But the two components of this equality are
precisely the relations showing that f and g are globularly parallel.

Moreover, a morphism h : D,, — X is a lifting of the admissible pair (f,g) : D,, = X
if and only if the triangle

Dn+1

N

St — X
(f.9)
commutes. Indeed, the commutativity of the triangle is equivalent to the equalities
hineq = f and hine, = g. But we have i,e, = 0,, and i,6; = 7,.
Consider now the commutative square

gn (f.9) X

in+ll

Dn+1 — %

By hypothesis, the morphism 4,1 is a cofibration. Moreover, by the previous proposi-
tion, the globular sum X is weakly contractible. Since by assumption, every object of
M is fibrant, the morphism X — x is a trivial fibration. Hence there exists a lifting
Dy+1 — X. This shows that the globular extension (M, F') is contractible. U

5.13. Cofibrant and weakly contractible functors (construction). Let M be
a model category. We will now construct a cofibrant and weakly contractible functor
from G to M.

We define by induction on n > 0 an object D,, of M and a cofibration i, : S"~' — D,,,
where

ST'=g and S*'= (Dn—hin—l) Hgn-2 (in_l,Dn_l), n>1,
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in the following way. For n = 0, we define Dg as a cofibrant replacement of the terminal
object and iy : ST' — Dy as the unique morphism from the initial object to Dg. For
n > 1, consider the morphism

(1Dn—17 1Dn—1) : Snil — Dn_l

and factor it as a cofibration i,, followed by a weak equivalence p,,. We define D,, as the
middle object of this factorization

1 in Pn
S” - D, — D, _1.

Note that since p,, is a weak equivalence and Dy is weakly contractible, by induction on
n > 0, the object D,, is weakly contractible.
We now set
0, =1in€y and T, =1ipe;, N >1,
where €1,¢4 : D1 — S"! are the canonical morphisms. Let us prove the coglobular
relations. Let n > 1. By definition of S™, we have &}i, = ehip, where ],¢5 : D, — S"
are the canonical morphisms. We thus have

Opn4+10n = int1€9In€g = Int+1€1in€s = n+19n
and
On4+1Tpn = Z"VH-13":/21‘7181 - Z'71-5-15/1Z‘71€1 = Tn+1Tn-
We have thus defined a functor G — M. This functor is cofibrant and weakly con-
tractible by construction.

5.14. The fundamental co-groupoid functor of a model category. Let now M
be a model category in which every object is fibrant. By the previous paragraph, there
exists a cofibrant and weakly contractible functor ' : G — M. By Proposition 5.12, the
globular extension (M, F) is contractible. We can thus apply paragraph 5.2 and we get
an adjunction

Rc i : 00-Gpdy — M, Il ik : M — oo-Gpd,
which depends on a globular functor K : C' — M.

If X is an object of M, we will call Il i (X) the fundamental co-groupoid of X. Note
that it depends a priori on F' and K. In particular, its underlying globular set depends
on F. However, this co-groupoid should not depend on F' and K in some weak sense
(see Remark 5.6). We will show in the next section that the homotopy groups of this
oo-groupoid are independent of F' and K.

Remark 5.15. If M is a combinatorial model category, we can also construct a funda-
mental co-groupoid functor. Indeed, by a theorem of Dugger ([9, Theorem 1.1]), such
an M is Quillen equivalent to some left Bousfield localization A of a category of sim-
plicial presheaves endowed with the projective model structure. The model category
N is combinatorial and every cofibration of A is a monomorphism. By a theorem of
Nikolaus ([18, Corollary 2.21]), such a model category is Quillen equivalent to a model
category P in which every object is fibrant. Although these two Quillen equivalences do
not compose, we obtain a functor @) : M — P “inducing” an equivalence on homotopy
categories. We can thus define a fundamental co-groupoid functor as the composition

Moo : M — P 2 00-Gpd,,
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where Il : P — o0o-Gpd is a fundamental co-groupoid functor in the sense of the
previous paragraph.

Remark 5.16. We do not need the full strength of a model category structure to
construct the fundamental oo-groupoid functor. Recall that if C is category, a weak
factorization system consists of two classes of morphisms L and R of C satisfying the
following properties:
(1) every morphism f of C factors as f = pi with ¢ in L and p in R;
(2) L is the class of morphisms of C having the left lifting property with respect
to R;
(3) R is the class of morphisms of C having the right lifting property with respect
to L.

Let M be a cocomplete category admitting a terminal object, endowed with a weak
factorization system (L, R). We will think of the elements of L as cofibrations and of
the elements of R as trivial fibrations (and in particular as weak equivalences). We can
construct as in paragraph 5.13 a functor F' : G — M by replacing every factorization
as a cofibration followed by a weak equivalence, by a factorization as a morphism of L
followed by a morphism of R. It is not true in general that (M, F') is a contractible
globular extension: we need to add a hypothesis saying that in some sense every object
of M is fibrant.

We will say that an object X of M is fibrant and weakly contractible if the unique
morphism X — x is in R. Suppose now that our weak factorization system satisfies the
following additional property: for every cocartesian square

X1*>X2

| ]

X3HX4

in M, if X1, X5, X3 are fibrant and weakly contractible, then so is X4. Note that
this hypothesis is satisfied when we consider the factorization system of cofibrations and
trivial fibrations of a model category in which every object is fibrant.

Under this hypothesis, the proofs of Propositions 5.11 and 5.12 can easily be adapted
and we obtain that (M, F)) is a contractible globular extension. We can thus define a
fundamental co-groupoid functor Iy, : M — co-Gpd.

6. QUILLEN’S THEORY OF m IN A MODEL CATEGORY

The purpose of this section is to recall to the reader some definitions and facts about
Quillen’s theory of 71 in a model category which was introduced in Section 1.2 of [19].

6.1. Notation and terminology about model categories. If M is a model category
and X,Y are two objects of M, we will denote by [X, Y] the set of morphisms between
X and Y in the homotopy category Ho(M) of M. If M is understood, we will simply
denote this set by [X,Y]. Recall that when X is cofibrant and Y is fibrant, [X,Y] is in
canonical bijection with the set of morphisms X — Y up to (left or right) homotopy.
Let M be a model category. The definition of cylinder objects varies from author to
author. We will use Quillen’s original definition: a cylinder object of an object A of M
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is an object C of M endowed with a factorization

AnaAT o oy
of the codiagonal of A as a cofibration followed by a weak equivalence. Dually, a path
object of an object B of M is an object P of M endowed with a factorization

B_" P(phpO)B <« B

of the diagonal of B as a weak equivalence followed by a fibration. We will always use
the letters i, s, 7 and p to denote the structural maps of cylinder and path objects.

If f,g: A— B are two morphisms of M, a left homotopy from f to g is a morphism
h : C — B, where C is a cylinder object of A, such that hig = f and hi; = g.
Note that we have inverted Quillen’s original direction for homotopies (because we have
exchanged i and 41) in order to be coherent with our convention for globular sums. We
apply the same treatment to right homotopies.

We will use the following easy fact several times.

6.2. Existence and uniqueness of morphisms of path objects. Let f : A — A’ be
a morphism in a model category M. Let P (resp. P’) be a path object of A (resp. of A").
Suppose moreover that r : A — P is a cofibration. Then there exists a morphism g such
that the square

(p1,po0)

A " P Ax A

T

A P A x A
r (Py:pp)

is commutative. Indeed, any lifting of the commutative square

A—T L u r P

rl l(p’l Dy)

P— s AxA— A x A
(p1,p0) Ixf
gives such a morphism g. Moreover, such a morphism is a weak equivalence and is
unique up to homotopy in the category of objects of M under A and over A’ x A’ (see
Proposition 7.6.14 of [12]).

From now on, we fix a model category M, a cofibrant object A of M, a fibrant object
B of M and two morphisms f,g: A — B.

6.3. 2-homotopies and correspondences. Let C' and C’' be two cylinder objects

of A. A 2-cylinder object of C' and C’ is an object D of M endowed with a factorization

(C', (&, ) Tata (C, (i1 i0)) 22 D 15 4

of the morphism

(8/, S) : (Cl, (le,zf))) HAHA (C, (il,io)) — A
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as a cofibration followed by a weak equivalence. If C' = C’, we will simply say that D is
a 2-cylinder object of C.

If h: C — Band b : C'" — B are two left homotopies from f to g, then a left
2-homotopy from h to h' is a morphism H : D — B such that Hjo = h and Hj; = h/.
If such an H exists, we will say that h and I’ are left 2-homotopic.

Let C be a cylinder object of A and let P be a path object of B. If h : C' — B is a left
homotopy from f to g and k : A — P is a right homotopy from f to g, a correspondence
between h and k is a map H : C' — P such that

poH=h, Hig=k, piH=gs and Hi; =rg.

If such a correspondence exists, we will say that h and k correspond.

Lemma 6.4 (Quillen).

(1) Let h: C — B be a left homotopy from f to g. Then for every path object P of
B, there exists a right homotopy k : A — P corresponding to h.

(2) Let h : C — B and h' : C' — B be two left homotopies from f to g. If h
corresponds to a right homotopy k, then h is left 2-homotopic to h' if and only
if h' corresponds to k. More precisely, if D is a fized 2-cylinder object of C and
C’, then there exists a left 2-homotopy D — B from h to ' if and only if h' and
k correspond.

Proof.

(1) See Lemma 1 of [19, Section I1.2].
(2) See Lemma 2 of [19, Section I.2]. The fact that one can fix the 2-cylinder D is
not stated but appears clearly in the proof.

O

6.5. The set 11 (A, B; f,g). We will denote by 71(A, B; f, g) the class of left homotopies
of M from f to g, up to left 2-homotopy. It is not clear a priori that m (A, B; f,g) is
a set. But by the previous lemma (and its dual), w1 (A, B; f, g) is in canonical bijection
with the class of left homotopies from a fixed cylinder C' up to left 2-homotopy. This
is obviously a set. Note that we can even ask for the left 2-homotopies to use a fixed
2-cylinder of C.

Dually, we can consider right homotopies up to right 2-homotopies in an appropriate
sense. The previous lemma shows that we get this way a set in canonical bijection with

Wl(AaB;fvg)'

6.6. The groupoid II;(A, B). Let II; (A, B) be the graph defined in the following way.
The objects of II; (A, B) are the morphisms from A to B of M. If f,g: A — B are two
such objects, the set of arrows from f to ¢ in II1 (A, B) is m1 (A4, B; £, 9).

Let f1, f2, f3 : A — B be three morphisms of M, andlet h: C — Band ' : C' — B
be two left homotopies respectively from f; to fa and from fs to f3. Then

(C'ig) 4 (i1, C)
is a left cylinder for the factorization

i1 g (s',8)

ATLA DS (0 i) Ty (i, C) 25 A
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and ,
(i) Ty (i, C) LM B

is a left homotopy from f; to fs.

Proposition 6.7 (Quillen). The above construction defines a map

771("47B;f2>f3) X 771("47B;f1>f2) — WI(A7B;f1>f3)
for every fi, fa, f3 : A — B and these maps induce a groupoid structure on I11(A, B).

Proof. See Proposition 1 of [19, Section I.2]. O

6.8. Under and over model categories. If X is an object of M, we will denote
by X\ M the category of objects of M under X, that is, the category whose objects are
pairs (Y, u) where Y is an object of M and u : X — Y is a morphism of M, and whose
morphisms from (Y, u) to (Y’/,u’) are morphisms v : Y — Y’ of M such that uv = u'.
This category inherits a structure of model category from the one on M: a morphism
of X\ M is a cofibration (resp. a fibration, resp. a weak equivalence) if the underlying
morphism of M is a cofibration (resp. a fibration, resp. a weak equivalence). Note that
an object (Y, u) is cofibrant (resp. fibrant) in X\ M if and only if u is a cofibration of
M (resp. if and only if Y is a fibrant object of M).

Dually, if X is an object of M, we will denote by M /X the category of objects of M
over X. This category is nothing but (X\M?°)°, and all the above statements can be
dualized.

In what follows, we will often work in the category (A IT A)\ M. The morphisms
fyg: A — B induce a morphism (g, f) : AIl A — B and we get an object (B, (g, f)) of
(ATI A)\ M. This object is fibrant since B is fibrant in M. Similarly, from a cylinder
object C' of A, we get an object (C,(i1,49)) of (AIl A)\ M. This object is cofibrant
since (i1,%0) is a cofibration of M. Each time we will consider B and C' as objects of
(ALl A)\ M, they will be endowed with the morphisms we have just defined.

Proposition 6.9. Let C be a cylinder object of A. A morphism h : C — B of M defines
a morphism (C, (i1,10)) — (B, (g, f)) in (AILA)\M if and only if h is a homotopy from f
to g in M. This correspondence induces a bijection

771(14) B; f>g) = [(Cv (ila iO))a (37 (ga f))](AHA)\M

Proof. The first assertion is obvious. Let us prove the second one. Since the objects
(C, (i1,40)) and (B, (g, f)) are respectively cofibrant and fibrant,

[(C, (i1,70)), (B, (9, )] (araym

is the set of morphisms (C, (i1,i0)) — (B, (g, f)) up to left homotopy in (A IT A)\ M.
Moreover, by paragraph 6.5, w1 (A, B; f, g) is the set of left homotopies C' — B between
f and g up to left 2-homotopy in M.

Let h,h' : (C, (i1,i0)) = (B, (g, f)) be two morphisms. We have to show that h and A’
are left homotopic in (A II A)\ M if and only if they are 2-homotopic as homotopies
between f and g in M.

Consider the morphism (15,1-) : C Haa C — C of M. Let

CHAHACLDL)C
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be a factorization of this morphism as a cofibration followed by a weak equivalence. We
get an object (D, k) under AII A and the above factorization makes (D, k) a cylinder
object of (C, (i1,70)) in (A Il A)\ M. The morphisms h and h’ are left homotopic in
(AITA)\M if and only if there exists a left homotopy between them in (AIT A)\ M using
the cylinder (D, k).

Using the weak equivalence s : C' — A of M, we obtain a factorization

Cllaga C — D254

in M, making D a 2-cylinder of C' in M. The left homotopies h and h' are left
2-homotopic if and only if there exists a left 2-homotopy between them in M using
the 2-cylinder D (see paragraph 6.5).

But it is obvious that a morphism H : D — B of M induces a left homotopy between h
and b/ in (ALl A)\M if and only if H is a left 2-homotopy between h and A’ in M.
Hence the result. 0

Remark 6.10. Let C be a cylinder object of A and let P be a path object of B. The
previous proposition and its dual proposition imply that there is a canonical bijection

[(C’ (ih iO))7 (37 (g’ f))](AHA)\M = [(A’ (97 f))? (P7 (plapﬂ))}M/(BxB)'

Explicitly, a left homotopy h : C'— B from f to g is sent to a right homotopy k: A — P
corresponding to h.

Lemma 6.11. Let B’ be a second fibrant object of M and let v : B — B’ be a morphism
of M. Let C be a cylinder object of A and let P (resp. P') be a path object of B
(resp. of B'). Assume that r : B — P is a cofibration. Let w : P — P be any morphism
making the diagram

(p1,p0)

B—" P Bx B

Ul ’wl J{UX’U

B’ P B' x B’
T (P},pp)

commute (such a morphism exists by paragraph 6.2). Then the induced map

wo —: [(A’ (g? f))? (Pv (plapo))]/\/l/(BxB) - [(A7 (’Ug, Uf))> (P/> (pllapé)))}M/(B’xB’)

does not depend on the choice of w, and the square

[(C, (i1, 10)), (B, (9, )] carrapmg ——— [(4, (g, f)); (P, (91, 0)] ;m/(Bx B)

[(07 (ilv iO))v (B/a (’Ugv vf))](AHA)\M — [(A7 (Uga Uf))v (Plv (p/17p6>)]M/(B’><B’)7
where the horizontal arrows are the bijections of the previous remark, is commutative.

Proof. 1t suffices to show that the square of the statement is commutative. Let h : C — B
be a left homotopy from f to g and let k : A — P be a right homotopy corresponding to h
via a correspondence H : C' — P. We have to show that the left homotopy vh : C — B’
from vf to vg corresponds to the right homotopy wk : A — P’. It is immediate that
wH : C — P’ is the desired correspondence. O
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6.12. Functoriality of II;. Let B’ be a second fibrant object of M and let v : B — B’
be a morphism of M. The morphism v induces a morphism of graphs
Hl(A,’U) : Hl(A, B) — Hl(A, B,)

by sending a morphism f : A — B of M to vf : A — B’, and a left homotopy
h : C — B representing an element of 71 (A, B; f, g) to the left homotopy vh : C — B'.
It is easy to see that this morphism of graphs is a functor. Note that in the bijection of
Proposition 6.9, the mapping h — vh corresponds to the post-composition by v seen as
a morphism of Ho((A IT A)\M).

Dually, if A" is a second cofibrant object and u : A’ — A is a morphism of M, then u
induces a functor

Hl(u, B) : Hl(A, B) — Hl(A/, B)
Note that we need to consider right homotopies to define this functor.
By Lemma 3 of [19, Section 1.2], the square

Hl(Aa B) 4>H1(AlvB)

J J

Hl(A, B/) — I (A/, B,)
is commutative. This also follows easily from Lemma 6.11. We can thus define a functor
11 (u, 2}) 11 (A, B) — I (AI, B/).

Proposition 6.13. Let u: A’ — A be a weak equivalence between cofibrant objects and
let v: B — B’ be a weak equivalence between fibrant objects. Then the functor

Hl(uav) : HI(A¢ B) — Hl(Ala B/)
is an equivalence of categories.

Proof. By definition of II;(u,v) and by duality, we can assume that « is an identity.
But in the bijection of Proposition 6.9, II;(A,v) is the post-composition by v in the
homotopy category of (A1l A)\ M. Since v is a weak equivalence, this post-composition
is a bijection, hence the result. O

7. QUILLEN HOMOTOPY GROUPS IN A MODEL CATEGORY

In this section, we fix a model category M in which every object is fibrant.

7.1. Connected components. Let X be an object of M. The set my(X) of connected
components of X is defined by

mo(X) = [*, X].
This set can be described in terms of homotopy classes thanks to the formula

mo(X) = [Do, X],

where Dg is any cofibrant contractible object of M. It is obvious that my defines a
functor from M to the category of sets and that this functor sends weak equivalences to
bijections.
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7.2. Based objects. Let X be an object of M. A base point x of X is a morphism
Dy — X of M, where Dg is cofibrant and weakly contractible. We will say that an
object of M endowed with a base point is a based object of M.

Let (X, 2z : Do — X) and (X', 2’ : D{j — X) be two based objects of M. A morphism of
based objects from (X, z) to (X', z’) is given by morphisms f : X — X’ and fy : Do — Dy,
of M making the square

Dy —— X

J

D) —— X'
x

commute. Note that such an fy is necessarily a homotopy equivalence since Dy and Dy,
are both cofibrant, fibrant and weakly contractible. We will denote such a morphism of
based objects by (f, fo)-

We adopt the following convention on notation: if (X, z) (resp. (X’,2')) is a based
object of M, then the source of  (resp. of z’) will be denoted by Dg (resp. by Dy),
unless otherwise specified.

7.3. The fundamental group. Let (X,z : Dg — X) be a based object of M. The
fundamental group of (X, x) is the group m1 (Do, X; z, z). We will denote it by 71 (X, ) um,
or briefly, by m1 (X, z).

Let (f, fo) : (X,z) = (X’,2’) be a morphism of based objects. The morphism (f, fo)
can be decomposed as

(fleO)

1 1Al
(X, 2) 20 (x7 ot py e,

(X', 2)).
By applying the functor II;, we get a diagram
m (X, z) = m (X', 2" fo) + m (X', 2).

Since fj is a weak equivalence, the right arrow is an isomorphism and, using its inverse,
we get a morphism
7r1(f, f()) : 7T1(X, x) — m(X’,w’).

One can easily check that this definition makes 7 a functor from the category of based
objects of M to the category of groups.

If follows from Proposition 6.13 that if f is a weak equivalence, then w1 (f, fo) is an
isomorphism. Moreover, by paragraph 6.12, if Dp = D{, and f, ¢ : (X,z) — (X', 2) are
two morphisms of Dy\.M inducing the same morphism in Ho(Dy\.M), then we have

71-1(.][.7 1Do) = 7Tl(gv 1D0)'

7.4. Loop objects. Let (X,z) be a based object of M and let P be a path object
of X such that r : X — P is a cofibration. The loop object of X based at x (using P) is
defined as the pullback of the diagram

Dy = x % x ) p

We will denote it by QF X. Since every object of M is fibrant and (p1, po) is a fibration,
the cartesian square defining QF X is actually a homotopy cartesian square and QX is
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a model for the homotopy pullback
Dy = X < Dy.

In particular, the image of QL X in Ho(M) does not depend on P up to a canonical
isomorphism.

One can explicitly construct this canonical isomorphism. Let P’ be a second path
object of X and let g : P — P’ be a morphism making the diagram

(p1,p0)

X———pP Ax A
1XJ QJ ll)(xx
X P Ax A

i (P1p0)

commute (such a morphism exists by paragraph 6.2). Then the commutative diagram

Dy (z,2) X x X (p1,p0) p

W e

Dp— s X x X — P
(z,2) (P},p5)

induces a morphism f from QX to QF "X. Since the pullbacks defining these objects
are homotopy pullbacks and ¢ is a weak equivalence, f is also a weak equivalence. The
morphism f hence induces our canonical isomorphism in Ho(M).

The commutative diagram

Dp—4—X—" P

1D0l J(m o)

Dp——— X x X

(z,x

induces a morphism ¢, : Dg — QL X. The loop object QX is thus endowed with the
structure of a based object (' X, ¢;). As above, the image of this object in Ho(Dg\.M)
does not depend on P up to a canonical isomorphism. For this reason, we will often
denote this object by (2, X, ¢;), without reference to P.

Let (f, fo) : (X,2) — (X’,2’) be a morphism of based objects of M. Consider the
decomposition of (f, fo) as

(Fip,) -
(X, 2) 220 x g gy S .

The first morphism can be seen as a morphism of Do\ M. Since the objects Q,X
and QX' are defined as homotopy pullbacks, by the theory of derived functors, the
morphism f induces a morphism from (£,X,c;) to (4, X, ¢z f,) in Ho(Dg\M).
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This morphism can be described explicitly in the following way. Let P (resp. P’) be
a path object of X (resp. of X’) and let g : P — P’ be a morphism making the diagram

X o p PP v x
fJ{ gl lef
Y P’ Y xY

r' (V)

commute (such a morphism exists by paragraph 6.2). Then the commutative diagram

Dy — " L xx x P p

W s

Dp——— X' x X' +—— P
(Ilvxl)fo (pll 7p6)
induces a morphism Qp, f : 2, X — Qs X’ and (Qp,, f, lDO) is a morphism of based ob-
jects from (2, X, c;) to (Qy £, X', ¢z 4,). This morphism induces our canonical morphism
in Ho(Do\M).
The second morphism (1y/, fo) gives rise to a commutative diagram

Dy E e T

fOJ 1X/><X/J llpl

D)y s X'x X'« P
(z'2") (¥}:15)
This diagram induces a canonical morphism Q¢ X’ : Qg X' — Qp X', and (Qy, X', fo)
is a morphism of based objects from (5, X', cpr5,) to (Qr X', €a0).
We set

Q Qp X'
QO f = QX oo/, O X' = QX7

This morphism induces a canonical morphism in Ho(M). Moreover, (Qy,f, fo) is a
morphism of based objects from (2,X,¢;) to (Qu X', cypr)

7.5. Higher homotopy groups. Let (X, x) be a based object of M. Since (2, X, ¢;) is
well-defined, up to a canonical isomorphism coming from D\ M, as an object Ho(Do\ M),
the group m1(Q,X, ¢;) is well-defined by the last point of paragraph 7.3.

Let (f, fo) : (X,2) — (X', 2") be a morphism of based objects of M. We claim that the
morphism 7 (£, f, fo) is well-defined. Recall that by definition, Qy, f is the composition
of

Q QX'
QxX if} Qx’foX/ f0—> Qx/X/,
where the first morphism is well-defined as a morphism of Ho(Dy\ M) and the second
morphism is well-defined as a morphism of M. It follows that w1 (¢, f, fo) is the com-
position of

T (QDO f71D0 )

w1 (Qgp, X,
71 (00X, ) PO e (X fy) I,

Wl(Qr’X,a C(E')a
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where both morphisms are well-defined (the left one is well-defined by the last point of
paragraph 7.3). One easily checks that 71 (€, f, fo) is functorial in (f, fo).
For n > 2, we define, by induction on n, the n-th homotopy group of (X, z) as
(X, ) = mp—1 (X, ¢z).

It follows from the above discussion that 7, is a well-defined functor from the category
of based objects of M to the category of (abelian) groups.
Let (f, fo) : (X,2z) — (X', 2’) be a morphism of based objects of M. It is immediate,

by induction on n > 1, that if f is a weak equivalence, then

T (f, fo) : (X, 2) = mu (X', 2)
is an isomorphism.
7.6. Functoriality of [Dg,Q,X]. Let (f, fo) : (X,z) — (X’,2’) be a morphism of
based objects of M. The morphisms Qg f : QX — QX' and fo : Dy — Dj induce a
diagram

[Do, Q2. X] — [Do, QL X'] + [Df, QL X'].

Since fy is a weak equivalence, the right arrow is a bijection. Using the inverse of this
bijection, we get a map

[f, fo] : [Do, 2. X] — [Dg, Qu X'].
Note that the inverse of the bijection is induced by any inverse of fy up to homotopy

(remember that Dy and Djj are fibrant and cofibrant). The morphism [f, fo] is easily
seen to be functorial in (f, fo).

Proposition 7.7. Let (X,z : Dg — X) be a based object of M. Then there exists a
canonical bijection

7['1(X, IL’) = [Do,QmX] = Wo(QwX),

natural in (X, x).
Proof. Let P be a path object of X such that r : P — X is a cofibration. Recall that
Ql‘X - QfX - (P7 (p17p0)) XXxX ((l’,.’E),DO).

If Y is an object of M, a morphism f : Y — Q,X of M is hence given by a pair of
morphisms v : Y — P and v : Y — Dy of M such that (p1,po)u = (x,z)v. We will
denote by (u,v) this morphism.

By the dual of Proposition 6.9, we have a canonical bijection

(X, z) = [(D07 (z,2)), (P, (plvpo))]M/(XxX)-
Let
m : [(Do, (z,)), (P, (p1,p0))]m/(x xx) = [Do, Lz X]
be the map sending a morphism
w: (Do, (z,2)) = (P, (p1,10))
to the morphism
(u,1p,) : Do — Q2. X.
Let us show that this map is well-defined. Let C be a cylinder object of Dy. Then
(C, (x,x)s) is a cylinder object of (Dg, (z,z)) in M/(X x X). Thus, a left homotopy
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h: (C,(x,z)s) — (P,(p1,po)) of M/(X x X) from a morphism u to a morphism u’
induces a left homotopy (h,s) : ¢ — QX of M from the morphism (u,1p, ) to the
morphism (u/, 1, ).

Let us show that the map m is surjective. Let (u,v) : Dg — 2, X be a morphism
of M. We have to show that (u,v) is left homotopic to (v, 1 ) in M for some morphism
u' 2 (Do, (z,2)) = (P, (p1,p0)) of M/(X x X). Consider the commutative square

(1p, )
D0HD04>D0

(ihiO)J J
C— %

Since Dy is fibrant and weakly contractible, this square admits a lifting h : C — Dy.
Consider now the commutative square

Do v P

iol J(Phpo)

CTDOﬁXxX

Since Dy is cofibrant, ig is a trivial cofibration and the square admits a lifting k& : C' — P.
Set v/ = ki;. The morphism ' induces a morphism «’ : (Do, (z,2)) — (P, (p1,p0))
of M /(X x X), and the morphisms h and k induce a morphism (k, h) : C — Q, X which
is a left homotopy of M from (u,v) to (v, 1)

Let us now show that m is injective. Let w,u’ : (Do, (z,2)) — (P, (p1,p0)) be two
morphisms of M/(X x X). Suppose (k,h) : C — QX is a left homotopy of M
from (u, 1p,) to (v/,1p, ). We have to show that v and u’ are left homotopic in M /(X x
X). Let C’ be a cylinder object of C' in M. Consider the commutative square

(s,h)
crne—"".p,

(i’p%)l l

O — %
This square admits a lifting H : C' — Dq for the same reasons as above. Consider now
the commutative square
u P

Zﬁl l(phpo)

C'——Dyg—— X x X
H (@2)

Since Dy is cofibrant, C' is cofibrant and i : C — C’ is a trivial cofibration. The
square hence admits a lifting K : ¢’ — P. The morphism k¥’ = K3} : C — P induces
a morphism k' : (C, (z,x)s) — (P, (p1,po)) which is a left homotopy of M/(X x X)
from k'ig to k'i;. But we have

k/io = Ki’lio = Ki6i0 = kio = u,
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and a similar calculation shows that k'i; = /.

Finally, let us show the naturality of this bijection. Let (f, fo) : (X,z) — (X,2/)
be a morphism of based objects. By the decomposition of such a morphism given in
paragraph 7.3, it suffices to show the result when f or fj is an identity. Suppose first
that fo is the identity. Let P (resp. P’) be a path object of X (resp. of X') and assume
that r : X — P is a cofibration. Let g : P — P’ be a morphism making the diagram

(p1,p0)

), g— P X xX

o e

X' P’ X' x X'
i (,pp)

commute. Consider the naturality square

(Do, (z,2)), (P, (P1,P0)] My (xxx) — [Do, 22 X]

| |

(Do, (, 2)), (P', (P, Po)) vy (xxx) — [Do, ar X']

The right vertical map is induced by g by definition and the left vertical map is induced
by g by Lemma 6.11. The square is hence commutative.
Suppose now f is the identity. The vertical maps in the naturality square

(Do, (z,2)), (P, (P1,P0))] My (xxx) — [Do, 2z X]

J |

[( 6’ (.T,l')), (Pa (plvpo))]M/(XxX) — [ 6a QIX]

are both induced by an inverse of fy up to homotopy and the square is hence commuta-
tive. O

7.8. A description of the composition of homotopies. Let X be an object of M.
Choose Dy a cofibrant replacement of the terminal object of M and D; a cylinder object
of Dg. Denote by

(T1,01) Ko
DO 11 DO E— D1 E— DO
the associated factorization.

Let z,2',2"” : Dy — X be three morphisms of M. Every element of 71(Dg, X;x,2')
can be represented by a homotopy [ : D; — X from z to 2/. Similarly, an element
of m1(Dg, X;2’,2") can be represented by a homotopy ' : D; — X from 2’ to . Let
[ and " be such homotopies. We will describe a homotopy D; — X from z to z”
representing the composition of [ and [’.

Let

D1 HDo D = (Dlv 01) HDO (Tl’Dl)
be the cylinder considered in paragraph 6.6. Denote by

€1,€9: D1 — D1 HDD D1
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the two canonical morphisms and consider the commutative square

(2171,6207)

Do I Dy —————= D, lIp, Dy

(TI,O'l)l J

D1 *

The left vertical morphism is a cofibration by definition. Since D; IIp, Dy is a cylinder
object of a weakly contractible object, it is also weakly contractible. Moreover, by
assumption on the model category M, every object is fibrant. The square hence admits
a lifting, i.e., there exists a morphism

such that
VIO'I — 520'1 and VlTl — 817—1.
The morphism (I’,1)V; is the announced homotopy from z to z”.
Proposition 7.9. With the notation of the above paragraph, the homotopy (I,1')V,

corresponds under the bijection of Proposition 6.9, to the composition of | and l'. In
other words, the homotopies

(I',1): Dy Iy, Dy = X and (I',1)V,:D; = X
are left 2-homotopic.

Proof. Let D be a 2-cylinder object of the cylinders Dy II, D; and Dy. Consider the
commutative square

(VllelLlDODl)
D1 HDO (D1 HDO Dl) _— D1 HDO D1

(j1 Jo)l l

D *

The left vertical morphism is a cofibration by definition and the object D; IIp, Dy is
fibrant and weakly contractible. The square hence admits a lifting H : D — Dy L Dy
and (I,1)H is the desired left 2-homotopy from (I',1) to (I',1)V, O

8. COMPARISON OF QUILLEN AND GROTHENDIECK HOMOTOPY GROUPS

8.1. In this section, we fix a formal coherator C', a model category M in which every
object is fibrant, and a fibrant and weakly contractible functor ' : G — M. By
paragraph 5.14, such a functor induces a functor

HC,K M = OO—gpdC,

which depends on a globular functor K : ¢ — M. From now on, we will denote
this functor by Il and, if X is an object of M, we will call IIo(X) the fundamental
oo-groupoid of X. Recall that the set of n-arrows of this fundamental co-groupoid is the
set of morphisms from D,, to X in M.
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We recall some notation from paragraph 5.13. For n > 0, we have an object S?~!
of M and a morphism i, : S® ! — D,,. For n = 0, the morphism iy is the unique
morphism @ — Dg and, for n > 1, we have

in = (T,,0,): S" ' =Dy 1 llgn-2D,_1 — Dy

The hypothesis on F' exactly means that ,, is a cofibration and that the D,, is weakly
contractible.

For n > 0, we will denote by j,+1 : gn—=1 Dj,+1 the composition of the canonical
morphism S”! — S" =D, Hgn-1 D, followed by i,4+1. Note that we have

Jnt1 = (Tpi 1Ty Ons10p) : S" 1 =Dpog llgn—2 Dyyo1 — Dy
We will also fix a choice of morphisms

K ZDn+1—>Dn, TLZO,

n
of C such that

KpOpi1 = 1p, and £K,7,.1 =1p .
These morphisms are weak equivalences since the D,,’s are weakly contractible. More-
over, they induce a choice of units &k, : G, = G,—1 for every oco-groupoid G of type

C.

Lemma 8.2.
(1) The object Dy is a cofibrant replacement of the terminal object of M.
(2) For every n > 0, the object (Dyy1,jnt1) s a cylinder object of (Dy,iy) in the
category S""I\M for the factorization

7;774 . Hn .
(Sn> ln) 4H> (Dn+1a]n+1) — (Dna Zn) ,

where 1, : S*"1 - S* =D, gn—1 Dy, is the canonical morphism.

Proof. The first assertion is true by definition. Let us prove the second one. The
equalities

int1ln = Jnt1s  Bpdntl = Ep(Tug1 T Ong10n) = (T 0n) = in,
and
Fplnt1 = K (Tpy150n41) = (Ip,: 1p,,),
show that we indeed have a factorization of the codiagonal of (D,,i,) in S*~1\ M.

Moreover, i, is a cofibration and we have already noticed that x,, is a weak equivalence.
O

Proposition 8.3. Let X be an object of M and let G be its fundamental co-groupoid.

(1) Two objects x,y : Dy — X of G are homotopic as objects of G if and only if
x,y : Do = X are equal as morphisms of Ho(M). In particular, we have a canonical
bijection

70 (Iloo (X)) = mo(X),

natural in X .

(2) Let n > 1 and let z,y : D1 — X be two parallel (n — 1)-arrows of G. Two
n-arrows u,v : D, — X from x to y are homotopic as n-arrows of G if and only if
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u,v : (Dp,in) = (X, (y,2)) are equal as morphisms of Ho(S""'\M). In particular, we
have a canonical bijection

Tn(Hoo (X), 2, y) = [(Dn, i), (X, (%x))]S”*l\M’
natural in X.

Proof.

(1) By definition, two objects =,y : Dg — X of G are homotopic if there exists a
l-arrow h @ x — y in G, i.e., a morphism h : Dy — X of M such that ho; = =
and ht; = y. By the previous lemma, D; is a cylinder object of Dy and so h is a left
homotopy from z to y in M. The result then follows from the fact that Dg is cofibrant
and X is fibrant.

(2) By definition, the n-arrows u,v : D, — X are homotopic if there exists an
(n + 1)-arrow h : u — v in G, i.e., a morphism h : D, 41 — X of M such that ho,  ; = u
and hr, ; = v. Such an h induces a morphism A : (Dyq1,jnt+1) = (X, (y,2)). But by
the previous lemma, (Dy41,jnt1) is a cylinder object of (Dy,,i,) in S* 1\ M and so h
is a left homotopy between u,v : (Dy,i,) — (X, (y,2)) in S"" '\ M. The result then
follows from the fact that i, is a cofibration and X is fibrant. O

Proposition 8.4. Let X be an object of M. There is a canonical isomorphism of
groupoids
@1 (Ioo (X)) = 111 (Do, X),
natural in X.
Proof. Let z,y : Dg — X be two objects of wi (Il (X)). By the previous proposition,
we have
Hom, (1. (x)) (2, ) = [(D1,41), (X, (y, 2))]so\ -
Hence by Proposition 6.9, the underlying graphs of w; (Il (X)) and of II; (Do, X) are
canonically isomorphic. This isomorphism is obviously natural in X. Moreover, by
definition, the composition of w; (Il (X)) is induced by any morphism
Vl : D1 — D1 HDO D1
such that
V0, =90, and V1 =¢;7y.
The result thus follows from Proposition 7.9. O
Proposition 8.5. Let X be an object of M. Let n > 2 and let uw : x — y be an
(n — 1)-arrow of the fundamental co-groupoid of X. We have a canonical isomorphism
of groups
WH(HOO(X)a u) = ﬂ-l((X’ (ya x))v U)S"—Q\/\/h
natural in X.

Proof. We have the following series of natural bijections of sets:
T (oo (X), 1) = [(Dn, in), (X, (u, u))]gn—1\m (by Proposition 8.3)
= 1 ((Dn-1,in-1), (X, (¥, 7)); U, u)gn—2 pq (see below)
= m((X, (¥, 7)), u)gn—2\ -
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Let us justify the second bijection. By Lemma 8.2, the object (D, j,) is a cylinder object
of (Dy_1,in_1) in S*"2\ M. This bijection thus comes from Proposition 6.9 applied to
the model category S"~2\ M.

Furthermore, the composition of 7, (Ils(X), u) is induced by any morphism

V,:Dp— D,y Dy
such that
V,0, =¢y0, and V,7,=¢eT,.

Denote by k, : S"2 — D, HD%1 D,, the composition of 4,1 : S*"2 — D,,_; followed
by the canonical morphism D,,_; — D, HDn_1 D,,. We have

(D, HDn,l Dy, k) = (D, jin) H(Dn_l,in_l) (Dns Jin),

where the amalgamated sum is taken in S*~2\ M. Moreover, a morphism V,, as above
induces a morphism V,, : (Dp, jn) — (Dn Up | Dy, ky). It thus follows from Proposi-
tion 7.9 that the bijection we have defined is a morphism of groups. O

Proposition 8.6. Let X be an object of M and let x be an object of the fundamental
oo-groupoid of X. For every n > 2, there is a canonical isomorphism of groups

T (oo (X)), ) =2 71 (Meo (X)), ¢2),
natural in X.
Proof. We have the following series of natural isomorphisms:
(Moo (X), ) = 7 (oo (X)), Ky ()

2= 1 (X, (tn-1k—1(2), sn—1kn_1(2))), kp_1(2))sn-2\m
(by the previous proposition)

= m1((X, (kn_a(2), kn_5(2))), k1 (2))sn-2\ 11

= (Dot 1), Qg o) (X, (Kaf), KOy ()20
(by Proposition 7.7)
= [(On-1sin-1), Qo ()X, (o) G0, (@))]sn-2\1

= [((Dn-15in-1), (X, (40 2):Cro_ (2)))lsn-2Mm
(see below)

7Tn—l(:Hoo(Qac-X)? ck?hQ(z))
(by Proposition 8.3)

= anl(Hoo(QxX)a kg—Q(Cl))

= Tp—1(ITeo(Q:X), cz).

12

To end the proof, it suffices to show that we have a canonical weak equivalence

(o (@)X (@) Cr0_ () = (X (0 2)5 o))
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in S""2\ M. Consider the commutative diagram

ko 7k2— 9.
D, , (k1 (@) .k 1 () X% X (p1,p0) p
n%ll 1XxXJ llP
Dy X xX P
(z,2) (p1,p0)

where P is a path object of X in M. This diagram induces a morphism
ng,l(ﬂf)X — QxX

of M. Since 0 _; is a weak equivalence and the pullbacks defining loop objects are

homotopy pullbacks, this morphism is a weak equivalence. Moreover, it induces a mor-
phism

Qo (@)X (0 @) @0 @) = (X, (o (2)> o ()
in S""2\ M. This is our desired weak equivalence. O
Theorem 8.7. Let X be an object of M.
e There is a canonical bijection
7o (oo (X)) = 70 (X),

natural in X.
e Letn > 1 and let x be an object of the fundamental co-groupoid of X. There is
a canonical isomorphism of groups

ﬂ-n(HOO(X)v'I) = 7Tn(X, :E)a
natural in X.

Proof. Let us prove the result by induction on n > 0. For n = 0 and n = 1, the result
is a direct consequence of Proposition 8.4. For n > 2, we have

T (oo (X)), ) = 1 (Too (22 X), 1) (by the previous proposition)
= m,-1(2: X, ¢p) (by induction hypothesis)
=7 (X, x),
thereby proving the theorem. O

Corollary 8.8. If X is an object of M, the homotopy groups of o (X) depend only
on X. In particular, they do not depend on the choice of the formal coherator C.

Corollary 8.9. Let f : X — Y be a morphism of M. Then Il (f) is a weak equivalence
of oco-groupoids of type C if and only if the following conditions are satisfied:
o the map mo(f) : mo(X) — mo(Y) is a bijection;
e for every n > 1 and every base point x : Dy — X, the morphism m,(f,x) :
(X, ) = mp (Y, f(x)) is an isomorphism.

Proof. This follows immediately from the naturality of the isomorphisms of the above
theorem. 0
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Corollary 8.10. Let f be a weak equivalence of M. Then Il (f) is a weak equivalence
of oo-groupoids of type C.

Proof. This follows immediately from the previous corollary and the fact that weak
equivalences of M induce isomorphisms on homotopy groups. O

Corollary 8.11. Let M be Top endowed with its usual model category structure. A
map [ is a weak equivalence of topological spaces if and only if Uso(f) is a weak equiva-
lence of co-groupoids of type C'.

Proof. This follows immediately from Corollary 8.9. U

Remark 8.12. This corollary is proved directly in Section 4.4 of [1] (see in particular
Corollary 4.4.11).

8.13. The functor II.. Let Wrep be the class of weak equivalences of topological
spaces and let Wy gpd, be the class of weak equivalences of oco-groupoids of type C.
By the previous corollary, the functor Iy, sends Wy, into Weo-gpa,.- This functor thus
induces a functor

I, : Hot = Top[Wy,,] = Ho(co-Gpdc) = 00-Gpd e Wil goa,]-

We can now state a precise version of Grothendieck’s conjecture:

Conjecture 8.14 (Grothendieck). If C is a coherator, the functor Il is an equivalence
of categories.
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