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Abstract. — We prove that the folk model category structure on the category of
strict ω-categories, introduced by Lafont, Métayer and Worytkiewicz, is monoidal,
first, for the Gray tensor product and, second, for the join of ω-categories, introduced
by the first author and Maltsiniotis. We moreover show that the Gray tensor product
induces, by adjunction, a tensor product of strict (m, n)-categories and that this ten-
sor product is also compatible with the folk model category structure. In particular,
we get a monoidal model category structure on the category of strict ω-groupoids.
We prove that this monoidal model category structure satisfies the monoid axiom,
so that the category of Gray monoids, studied by the second author, bears a natural
model category structure.

Introduction

The category ω-Cat of strict ω-categories, that we shall simply call ω-categories
in this paper, is endowed with a model category structure, introduced by Lafont,
Métayer and Worytkiewicz [15], known as the folk model category structure. The
weak equivalences of this structure are the equivalences of ω-categories, higher dimen-
sional generalization of the equivalences of categories or of 2-categories; the cofibrant
objects are the ω-categories that are free in the sense of polygraphs [17]. This model
category structure, which is also called the canonical model category structure, is in
some sense intrinsic to the notion of ω-categories.

On the other hand, the category ω-Cat is endowed with two non-trivial monoidal
category structures. The first one is the Gray tensor product ⊗, sometimes called the
lax Gray tensor product, first introduced by Al-Agl and Steiner [1], and then studied
by Crans [5]. This tensor product generalizes the tensor product of 2-categories
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introduced by Gray in [7], hence its name. It is somehow a lax version of the cartesian
product. For instance, one has

D1 ⊗D1 =

• //

��

•

��
• // • ,
{� D1 ⊗∆2 =
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• //

��

•
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where

D1 = • // • , ∆2 = • // • // • and D2 = •
$$

::�� • .

In general, by iterating n times the Gray tensor product with D1 starting from D0,
one gets a lax cube of dimension n. This (non-symmetric) tensor product defines a
biclosed monoidal category structure and the two associated internal Hom are related
to higher lax and oplax transformations. The second monoidal category structure is
given by the join of ω-categories ?, introduced by the first author and Maltsiniotis
in [2] to study slice ω-categories in a similar way as Joyal did for quasi-categories (see
the introduction of [2] for more details). This operation, inspired by the topological
join, is a higher dimensional lax version of the classical join of categories. For instance,
one has

D0 ?D0 = • // • = D1 , D0 ?D1 =

•

��

•

99

$$ • ,
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D1 ?D1 =
• //
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• • //
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• // •

OO

• //
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More generally, by iterating n times the join with D0 starting from D0, one gets
Street’s n-th oriental On [23]. The join only admits “local internal Hom”, in some
appropriate sense, that are given by “generalized slice ω-categories”. The Gray tensor
product and the join are two fundamental structures of the theory of ω-categories.

The main goal of this paper is to prove that both the Gray tensor product and
the join interact well with the folk model category structure or, more precisely, that
they both define a monoidal model category structure on ω-Cat endowed with the folk
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model category structure. Concretely, this means that if i : X → Y and j : Z → T

are two folk cofibrations, then their pushout-product, that is, the ω-functor
i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T

induced by the commutative square

X ⊗ Z

i⊗Z
��

X⊗j
// X ⊗ T

i⊗T
��

Y ⊗ Z
Y⊗j

// Y ⊗ T ,

is a folk cofibration, and a folk trivial cofibration if moreover either i or j is a folk
trivial cofibration; and likewise for the join. This implies in particular that the Gray
tensor product and the join can be left-derived as functors of two variables.

Note that the fact that the pushout-product, for the Gray tensor product, of two
folk cofibrations is a folk cofibration was already proved by the second author in [16]
by means of cubical ω-categories. Moreover, the particular case saying that the
Gray tensor product of two cofibrant ω-categories is cofibrant was also established
by Hadzihasanovic in [8]. Our proof, which is based on Steiner’s theory of augmented
directed complexes [22] and results of the first author and Maltsiniotis about pushouts
of these [2, Chapter 3], is completely different and has the advantage to adapt easily
to the case of the join. The hard part in showing the compatibility of the Gray tensor
product and the join with the folk model category structure is then to prove that
the pushout-product of a folk cofibration and a folk trivial cofibration is a folk trivial
cofibration.

In the case of the Gray tensor product, we prove a more general result. Let
(m,n)-Cat, for 0 6 n 6 m 6 ω, be the category of (m,n)-categories, that is,
the category of (strict) m-categories whose k-cells are strictly invertible as soon
as k > n. Denote by r : ω-Cat → (m,n)-Cat the left adjoint to the inclusion
functor (m,n)-Cat ↪→ ω-Cat. It follows from [15] and [3] that the folk model cat-
egory structure can be transferred along this adjunction to (m,n)-Cat. We prove,
first, that the Gray tensor product induces, using r, a biclosed monoidal product for
(m,n)-categories and, second, that this Gray tensor product of (m,n)-categories is
compatible with the transferred model category structure on (m,n)-Cat. In particu-
lar, in the case n = 0, we get a monoidal model category structure on the category
of (strict) m-groupoids. We prove that this structure is symmetric and satisfies the
so-called monoid axiom of Schwede and Shipley [21]. This implies that the category
of Gray monoids, that is, of monoid objects in the category of ω-groupoids endowed
with the Gray tensor product, bears a canonical model category structure. This result
was one of the motivating starting point of this work, as the second author showed
in [16] that Gray monoids provide a good framework for higher dimensional rewriting.
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On our way to show these results, we prove several properties of independent
interest related to the Gray tensor product:

– We prove that if x is an m-cell of an ω-category X and y is an n-cell of an
ω-category Y , then the associated (m + n)-cell x ⊗ y is reversible (that is,
weakly invertible) if either x or y is reversible.

– We show that the analogous statement for strictly invertible cells holds. This
implies that the tensor product of two ω-groupoids is an ω-groupoid.

– We prove that if X is a cofibrant ω-category, then J1⊗X, where J1 is the
ω-category obtained by factorizing the codiagonal of the terminal ω-category
into a folk cofibration followed by a folk trivial fibration, is a cylinder object
for X in the folk model category structure.

– We show that the invertible cells of the ω-category Homoplax(X,Y ), defined by
the adjunction

Homω-Cat(T ⊗X,Y ) ' Homω-Cat(T,Homoplax(X,Y )),

are precisely the component-wise invertible higher oplax transformations. This
implies that if Y is an (m,n)-category, then so is Homoplax(X,Y ).

– We construct an ω-functor

X ⊗ (Y ? Z)→ (X ⊗ Y ) ? Z,

natural in X, Y and Z in ω-Cat, defining a tensorial strength on the functor
− ? Z for the Gray tensor product.

Finally, in an appendix, we prove that the “local internal Hom” of the join, the so-
called generalized slices, can be right-derived as functors of two variables. By “local
internal Hom”, we mean the right adjoints of the functors

ω-Cat → X\ω-Cat
Y 7→ (X ? Y,X ↪→ X ? Y )

ω-Cat → Y \ω-Cat
X 7→ (X ? Y, Y ↪→ X ? Y ),

by opposition to the right adjoints of the functors
ω-Cat → ω-Cat

Y 7→ X ? Y

ω-Cat → ω-Cat
X 7→ X ? Y,

which do not exist in the case of the join. These two local internal Hom, like classical
internal Hom, can be promoted to functors of two variables, but in the local case, we
get functors from the twisted arrow category:

Tw(ω-Cat)→ ω-Cat

X
u−→ Z 7→ u\Z

Tw(ω-Cat)→ ω-Cat

Y
v−→ Z 7→ Z

co
/ v.

We prove, in the general setting of locally biclosed monoidal category introduced
in [2], that these functors can be right-derived. This requires the use the theory of
right simplicial derivability structures of Kahn and Maltsiniotis [12] as the twisted
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arrow category of a complete and cocomplete category is neither finitely cocomplete
nor finitely complete in general.

We were unable to answer the following obvious question: is the tensor product of
two folk weak equivalences a folk weak equivalence? Of course, a similar question can
be asked for the join. We leave these two questions as open problems.

Our paper is organized as follows. In the first section, we recall the definitions
related to the folk model category structure on the category ω-Cat of (strict) ω-cate-
gories. In particular, we define reversible cells (that is, weakly invertible cells). Using
the Gray tensor product, whose definition is recalled in the next section, we introduce
oplax transformations and reversible transformations. We recall the definition of the
ω-category of cylinders and we end the section by introducing some classical dualities
of ω-Cat.

The purpose of the second section is to recall the definition of the Gray tensor prod-
uct. We start by a summary of Steiner’s theory of augmented directed complexes [22]
and we use this theory to introduce, following [22] and [2], the Gray tensor product
and its associated internal Hom, namely Homoplax and Homlax.

The aim of the third section is to prove that the pushout-product, for the Gray
tensor product, of two folk cofibrations is a folk cofibration. We start by recalling
the notion of a rigid monomorphism of augmented directed complexes with basis
and some results from [2] of compatibility between pushouts of augmented directed
complexes and pushouts of ω-categories. We then prove that the pushout-product,
for the tensor product of augmented directed complexes, of two rigid monomorphisms
is a rigid monomorphism. We then deduce the analogous result for ω-categories and
folk cofibrations.

In the fourth section, we prove that if X is a folk cofibrant ω-category, then J1⊗X,
where J1 is the ω-category obtained by factorizing the codiagonal of the terminal
ω-category into a cofibration followed by a trivial fibration, is a cylinder object for X
in the folk model category. On our way to do so, we prove that the tensor product of
a reversible (resp. invertible) m-cell by any other n-cell is reversible (resp. invertible).
We start by proving the case m = 1 providing explicit formulas and then prove the
general case by induction.

In the fifth section, we end the proof of the fact that the Gray tensor product makes
of ω-Cat endowed with the folk model category structure a monoidal model category.
Our strategy is abstracted in a general lemma whose main hypothesis, besides the
fact that the pushout-product of two generating cofibrations is a cofibration, is the
fact that the tensor product of a generating trivial cofibration and an object is a
weak equivalence. We prove this hypothesis for the Gray tensor product using results
from the previous section. We then prove some additional properties of the resulting
monoidal model category.
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In the sixth section, we introduce the category (m,n)-Cat of (strict) (m,n)-cat-
egories and we study the interactions between the Gray tensor product and these
(m,n)-categories. We prove that the invertible cells of the ω-category Homoplax(X,Y ),
defined by the adjunction Homω-Cat(T ⊗ X,Y ) ' Homω-Cat(T,Homoplax(X,Y )), are
precisely the component-wise invertible higher oplax transformations. As a conse-
quence, we obtain that if Y is an (m,n)-category, then so is Homoplax(X,Y ). This
implies by a result of Day [6] that the Gray tensor product induces, using the reflection
functor r : ω-Cat → (m,n)-Cat, a biclosed monoidal category structure on (m,n)-Cat.
In the case of m-groupoids (that is, the case n = 0), we show that the resulting
monoidal product is symmetric. We introduce the folk model category structure on
(m,n)-Cat, that is, the model category structure obtained by transferring along r the
folk model category structure on ω-Cat, and we prove that the monoidal product on
(m,n)-Cat induced by the Gray tensor product is compatible with this structure. In
the case of m-groupoids, we prove that the resulting monoidal model category satis-
fies the monoid axiom of Schwede and Shipley [21]. As a consequence, by results of
Harper [9] and Muro [19], we obtain model category structures on the categories of
algebras in ω-Gpd over a given non-symmetric operad in ω-Gpd.

In the seventh section, we recall the definition of the join of ω-categories, introduced
in [2], and its associated local internal Hom, the generalized slices. We prove that
the join makes of ω-Cat endowed with the folk model category structure a monoidal
model category. The proof, that we only sketch, is very similar to the one for the Gray
tensor product, and only requires one additional tool: the existence of an ω-functor
X ⊗ (Y ?Z)→ (X ⊗ Y ) ? Z defining a tensorial strength on the functor − ? Z for the
Gray tensor product.

Finally, in an appendix, we recall the definition of a monoidal model category and
how in this setting the monoidal tensor and, in the biclosed setting, the associated
internal Hom can be derived as functors of two variables. We then adapt this last
result to the case of locally biclosed monoidal products, introduced in [2], our ex-
ample of interest being the join of ω-categories. More precisely, we prove that the
local internal Hom of such a monoidal product can be right-derived as functors from
the twisted arrow category. To do so, we endow the twisted arrow category of a
model category with a right simplicial derivability structure in the sense of Kahn and
Maltsiniotis [12], proving that right simplicial derivability structures can be lifted
along discrete opfibrations.

1. Preliminaries on the folk model category structure

We will now describe the so-called “folk” model category structure on ω-Cat intro-
duced by Lafont, Métayer and Worytkiewicz in [15]. We start by describing the weak
equivalences of this structure: the equivalences of ω-categories.
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1.1. — We will denote by ω-Cat the category of strict ω-categories and strict ω-func-
tors. As all the ω-categories and ω-functors in this paper will be strict, we will drop
the adjective “strict” from now on. We will say that a cell of an ω-category is trivial
if it is the identity on a cell of lower dimension. If x is an n-cell of an ω-category
with n > 1, we will denote by 1x the identity on x, by sx its source (n− 1)-cell and
by tx its target (n− 1)-cell. If x is an n-cell with n > 0, for 0 6 k 6 n, we will denote
by sk(x) its iterated source k-cell and by tk(x) its iterated target k-cell.

1.2. — Let X be an ω-category. By a structure of reversibility on X, we mean a
set R of cells of X such that, if u : x→ y is an n-cell in R, then there exists an n-cell
ū : y → x and (n + 1)-cells r̄ ∗n r → 1x and r ∗n r̄ → 1y all three in R. We say that
an n-cell u of X is reversible if n > 1 and if there exists a structure of reversibility R
on X containing u. A cell ū in R as in the definition of a structure of reversibility is
then called a reverse of u.

If C is a set of cells of X, to prove that every cell of C is reversible, it suffices to
produce, for every n-cell u of C, a formula giving a reverse of u assuming that the
(n + 1)-cells of C are reversible. Indeed, one can then consider the subcategory R

of X generated by the reversible cells of X, the cells in C and the cells given by
the formulas, and show that the cells of R form a structure of reversibility. This is
sometimes called reasoning by coinduction.

1.3. — An ω-functor f : X → Y is an equivalence of ω-categories or folk weak
equivalence if:

– for every 0-cell y of Y , there exists a 0-cell x ofX and a reversible 1-cell f(x)→ y

of Y ,
– for every n > 1, every pair of parallel (n − 1)-cells x, x′ of X and every n-cell
v : f(x) → f(x′) of Y , there exists an n-cell u : x → x′ of X and a reversible
(n+ 1)-cell f(u)→ v of Y .

We now move on to the description of generating cofibrations and trivial cofibra-
tions of the folk model category structure.

1.4. — For every n > 0, we will denote by Dn the free-standing n-cell in ω-Cat. In
other words, the ω-category Dn corepresents the functor sending an ω-category to its
set of n-cells. This ω-category Dn is actually an n-category. It has a unique non-trivial
n-cell that we will call its principal cell. Here are pictures of Dn for small n:

D0 = {0} , D1 = 0 // 1 , D2 = 0
$$

::�� 1 and D3 = 0
""

<<����
*4 1 .

If x is an n-cell of an ω-category X, we will denote by 〈x〉 : Dn → X the corresponding
ω-functor.
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1.5. — Let n > 0. We will denote by ∂Dn the (n− 1)-category obtained from Dn by
removing its principal cell. In other words, ∂D0 is the empty ω-category (which is a
(−1)-category!) and, for n > 1, ∂Dn is the free-standing pair of parallel (n− 1)-cells
in ω-Cat. Here are pictures of ∂Dn for small n:

∂D0 = { } , ∂D1 = { 0 1 } , ∂D2 = 0
##

;; 1 and ∂D3 = 0
!!

>>����
1 .

If n > 1 and x, y are two parallel (n− 1)-cells of an ω-category X, we will denote by
〈x, y〉 : ∂Dn → X the corresponding ω-functor.

For every n > 0, we have a canonical inclusion

in : ∂Dn ↪→ Dn,

and, for n > 1, two ω-functors

s, t : Dn−1 → ∂Dn

corresponding to the source and target of the principal cell of Dn, respectively.

1.6. — We will denote by I the set

I = {in : ∂Dn ↪→ Dn | n > 0}.

As the category ω-Cat is locally presentable, this set generates a weak factorization
system on ω-Cat. The ω-functors in the left class (that is, the retracts of transfinite
compositions of pushouts of elements of I) will be called folk cofibrations or simply
cofibrations; as for the ω-functors in the right class (that is, the ω-functors having the
right lifting property with respect to I), they will be called folk trivial fibrations or
simply trivial fibrations.

1.7. — Let n > 1. Consider the ω-functor 〈d, d〉 : ∂Dn ↪→ Dn−1, where d denotes
the principal cell of Dn−1. Fix a factorization

∂Dn
kn−→ Jn

qn−→ Dn−1

of this ω-functor into a folk cofibration kn followed by a folk trivial fibration qn. As
in is a folk cofibration and qn is a folk trivial fibration, the commutative square

∂Dn

in

��

kn // Jn

qn

��

Dn 〈1d〉
//

;;

Dn−1 ,

where d still denotes the principal cell of Dn−1, admits a lift. We fix such a lift

ln : Dn → Jn .

By definition, the principal cell of Jn is the image of the principal cell of Dn by ln.
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We will denote by
jn : Dn−1 → Jn

the composite
Dn−1

s−→ ∂Dn
kn−→ Jn,

that is, the ω-functor corresponding to the source of the principal cell of Jn, and by J
the set

J = {jn : Dn−1 → Jn | n > 1}.

Theorem 1.8 (Lafont–Métayer–Worytkiewicz). — The category ω-Cat is en-
dowed with a model category structure, cofibrantly generated by I and J , whose weak
equivalences are the folk weak equivalences and whose cofibrations are the folk cofibra-
tions. All the ω-categories are fibrant for this model category structure.

Proof. — This is [15, Theorem 4.39 and Proposition 5.1].

The model category structure of the previous theorem is known as the folk model
category structure on ω-Cat. We will now describe a path object for this structure.
We start by some preliminaries on oplax transformations.

1.9. — If X and Y are two ω-categories, we will denote by X ⊗ Y their Gray tensor
product. We refer the reader to Section 2 for more details and a precise definition of
this tensor product, based on Steiner’s work [22]. Let us only recall that the Gray
tensor product defines a (non-symmetric) biclosed monoidal category structure whose
unit is the terminal ω-category D0. Its right and left internal Hom will be denoted by
Homoplax and Homlax, respectively, so that if X, Y and Z are three ω-categories, we
have natural bijections

Homω-Cat(X,Homoplax(Y, Z)) ' Homω-Cat(X ⊗ Y, Z) ' Homω-Cat(Y,Homlax(X,Z)).

1.10. — Let X and Y be two ω-categories. By adjunction, the set of 0-cells of
Homoplax(X,Y ) can be identified with the set of ω-functors Homω-Cat(X,Y ). If
f, g : X → Y are two ω-functors, an oplax transformation α : f ⇒ g is a 1-cell
of Homoplax(X,Y ) from f to g. Such an oplax transformation can be identified with
a functor

h : D1 ⊗X → Y

making the diagram
X f

##
〈0〉⊗X %%

D1 ⊗X
h // Y

X g

;;
〈1〉⊗X

99

,
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where X is identified with D0 ⊗ X, commute. Alternatively, again by adjunction,
such an oplax transformation can be seen as an ω-functor

k : X → Γ(Y ),

where Γ(Y ) = Homlax(D1, Y ), making the diagram

Y

X

f //

g //

k // Γ(Y )
π−

;;

π+

##
Y ,

where Y is identified with Homlax(D0, Y ) and

π− = Homlax(〈0〉, Y ) and π+ = Homlax(〈1〉, Y ),

commute.
One can define lax transformations in a similar way.

1.11. — Let x be an m-cell of an ω-category X and let y be an n-cell of an ω-cate-
gory Y . One defines an (m+n)-cell x⊗y ofX⊗Y in the following way. The ω-category
Dm ⊗ Dn is an (m + n)-category that admits a unique non-trivial (m + n)-cell. We
will call this cell the principal cell of Dm ⊗ Dn. The (m + n)-cell x ⊗ y is the cell
corresponding to the ω-functor

Dm+n
〈p〉−−→ Dm ⊗Dn

〈x〉⊗〈y〉−−−−−→ X ⊗ Y,

where p denotes the principal cell of Dm ⊗Dn.

1.12. — Let f, g : X → Y be two ω-functors and let α : f ⇒ g be an oplax
transformation. Denote by h : D1 ⊗ X → Y the corresponding ω-functor and by
(01) the principal cell of D1. If x is an n-cell of X, the component of α at x is the
(n+ 1)-cell of Y

αx = h((01)⊗ x).
As the ω-category D1⊗X is generated by cells of the form 0⊗x, 1⊗x and (01)⊗x, with
x a cell of X, the transformation α is entirely determined by its components. Fur-
thermore, oplax transformations can be defined purely in terms of their components
(see [2, paragraph 1.9 and Section B.2]).

1.13. — If Y is an ω-category, the n-cells of Γ(Y ) are called n-cylinders in Y . By
adjunction, they correspond to ω-functors c : D1⊗Dn → Y . If c is such an n-cylinder,
we can set

x = c(0⊗ d) and y = c(1⊗ d)
and, for 0 6 k 6 n,

α−k = c((01)⊗ sk(d)) and α+
k = c((01)⊗ tk(d)),
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where (01) denotes the principal cell of D1 and d the one of Dn. Note that α−n = α+
n

and we will often write αn for this cell. These cells completely determine c and we
will often write c = (x, y, α). Moreover, by [2, Proposition B.1.6], n-cells x and y and
(k + 1)-cells α−k , α

+
k , for 0 6 k 6 n, with α−n = α+

n , determine an n-cylinder if and
only if one has

αεk : α+
k−1 ∗k−1 α

+
k−2 ∗k−2 · · · ∗1 α+

0 ∗0 xεk → yεk ∗0 α−0 ∗1 · · · ∗k−1 α
−
k−1,

for ε = ±, where x−k = sk(x) and x+
k = tk(x), and similarly for y.

If c = (x, y, α) is an n-cylinder, the cell α−n = α+
n is called the principal cell of c.

We say that c is reversible if all the cells αεk for 0 6 k 6 n and ε = ± are reversible.
It follows from the explicit formulas describing the operations of the ω-category Γ(Y )
(see [15, Appendix A] or [2, Proposition B.1.15]) that the graded subset Γrev(Y )
of Γ(Y ) consisting of reversible cylinders is actually a sub-ω-category.

1.14. — Let f, g : X → Y be two ω-functors and let α : f ⇒ g be an oplax
transformation. The transformation α is said to be reversible if, for every cell x of X,
the component αx is a reversible cell of Y . A reversible oplax transformation will be
simply called a reversible transformation.

Essentially by definition, the transformation α is reversible if and only if the cor-
responding ω-functor X → Γ(Y ) factors through the inclusion Γrev(Y ) ↪→ Γ(Y ). In
other words, the data of a reversible transformation α : f ⇒ g corresponds to the
data of an ω-functor

k : X → Γrev(Y )

making the obvious diagram

Y

X

f //

g 00

k // Γrev(Y )
π−

99

π+

%%
Y

commute.

1.15. — Let f : X → Y be an ω-functor. The identity on f seen as a 0-cell of
Homoplax(X,Y ) defines an oplax transformation 1f : f ⇒ f . This transformation is
easily seen to be reversible (its components are identities).
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In particular, by applying this to the identity ω-functor 1X : X → X, we get a
commutative diagram

X

X

1X
//

1X //

ι // Γrev(X)
π−

99

π+

%%
X

or, in other words, a factorization

X
ι−→ Γrev(X) π−→ X ×X

of the diagonal functor.

Theorem 1.16 (Lafont–Métayer–Worytkiewicz). — For every ω-category X,
the factorization

X
ι−→ Γrev(X) π−→ X ×X

of the diagonal is a path object for the folk model category structure, in the sense that
ι a weak equivalence and that π is a fibration.

Proof. — This is [15, Proposition 4.45].

Remark 1.17. — A right homotopy with respect to the path object of the previous
theorem is precisely a reversible transformation.

We will now describe the cofibrant objects of the folk model category structure.

1.18. — Let X be an ω-category. For m > −1, we will denote by X6m the
m-category obtained from X by removing the non-trivial k-cells for k > m. In
particular, if m = −1, we have X6−1 = ∅. There is an obvious inclusion ω-functor
X6m ↪→ X6m+1.

Let B be a set of cells of X. We will say that X is freely generated by B if, for
every n > 0, the commutative square∐

x∈Bn
∂Dn∐

x∈Bn
in

��

〈sx,tx〉
// X6n−1

��∐
x∈Bn

Dn 〈x〉
// X6n ,

where Bn denotes the set of n-cells in B and the right vertical arrow is the canonical
inclusion, is a pushout square.

One says that an ω-category is free in the sense of polygraphs if it admits a set of
cells that freely generates it.
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Theorem 1.19 (Métayer). — The cofibrant objects of the folk model category
structure are the ω-categories that are free in the sense of polygraphs.

Proof. — This is the main result of [17].

We end the section by introducing important dualities of ω-Cat and some of their
properties.

1.20. — If X is an ω-category, we will denote by Xop (resp. by Xco) the ω-category
obtained from X by reversing the direction of the cells of odd (resp. even) dimension.
The assignments X 7→ Xop and X 7→ Xco are both involutive automorphisms of the
category ω-Cat. Moreover, they are anti-monoidal in the sense that the assignment
x⊗ y 7→ y ⊗ x defines isomorphisms

(X ⊗ Y )op ' Y op ⊗Xop and (X ⊗ Y )co ' Y co ⊗Xco.

Furthermore, there are canonical isomorphisms

Homoplax(X,Y )op ' Homlax(Xop, Y op),
Homoplax(X,Y )co ' Homlax(Xco, Y co)

(see for instance [2, Propositions A.22 and A.23]).
The symmetry of the definition of a reversible cell shows that a cell is reversible

in X if and only if the corresponding cell is reversible in Xop (resp. in Xco). This
easily implies that an ω-functor f : X → Y is a folk weak equivalence if and only if
fop : Xop → Y op (resp. f co : Xco → Y co) is. Moreover, for every n > 0, the ω-functor
iop
n (resp. ico

n ) can be identified with the ω-functor in : ∂Dn ↪→ Dn. This implies that
an ω-functor i is a folk cofibration if and only if iop (resp. ico) is, and hence that j is
a folk trivial cofibration if and only if jop (resp. jco) is.

2. Preliminaries on the Gray tensor product

The purpose of this section is to define the Gray tensor product of ω-categories.
This tensor product was introduced by Al-Agl and Steiner [1] as a generalization
of Gray’s tensor product of 2-categories [7], and is somehow a lax version of the
cartesian product. The definition we will give in this section is based on Steiner’s
theory of augmented directed complexes [22]. The strategy, due to Steiner, is the
following. Steiner’s complexes are a tool to describe a large subclass of the class of free
ω-categories in the sense of polygraphs. The usual tensor product of chain complexes
induces a tensor product on these free ω-categories. The general Gray tensor product
is then obtained by density of this subclass in the category of ω-categories.

We start by briefly recalling Steiner’s theory.
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2.1. — An augmented directed complex is an augmented chain complex of abelian
groups in nonnegative degree

· · · d−→ Kn
d−→ Kn−1

d−→ · · · d−→ K0
e−→ Z,

endowed with, for every n > 0, a submonoid K∗n of Kn of so-called positive elements.
If K and L and two augmented directed complexes, a morphism f : K → L is
a morphism of the underlying augmented chain complexes respecting the positive
elements, that is, such that, for every n > 0, we have f(K∗n) ⊂ L∗n. We will denote
by Cad the category of augmented directed complexes.

2.2. — In [22], Steiner defines a functor

ν : Cad → ω-Cat.

We refer the reader to [22, Definition 1.6] (or [2, paragraph 2.4]) for a detailed
definition. Let us just mention that if K is an augmented directed complex, then
the n-cells of the ω-category ν(K) are given by tables(

x−0 · · · x−n

x+
0 · · · x+

n

)
,

where
– x−i and x+

i are in K∗i , for 0 6 i 6 n,
– x−n = x+

n ,
– d(x−i ) = x+

i−1 − x
−
i−1 = d(x+

i ), for 0 < i 6 n,
– e(x−0 ) = 1 and e(x+

0 ) = 1.

2.3. — If K is an augmented directed complex, a basis of K is a graded set (Bn)n>0
such that, for every n > 0,

– Bn is a basis of the Z-module Kn,
– Bn generates the submonoid K∗n.

One shows that if such a basis exists, then it is unique.

2.4. — If K is an augmented directed complex with basis (Bn), then for every
n-chain x, one can write x =

∑
b∈Bn

nbb, where the nb are integers, in a unique
way, and we set

x− =
∑
b∈Bn
nb<0

(−nb)b and x+ =
∑
b∈Bn
nb>0

nbb.

If x is an n-chain with n > 0, we set

d−x = (dx)− and d+x = (dx)+.
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2.5. — Let K be an augmented directed complex with basis. For every n-chain x in
the basis, we define a table

〈x〉 =
(
x−0 · · · x−n

x+
0 · · · x+

n

)
,

by induction, setting
– x−n = x and x+

n = x,
– x−i = d−(x−i+1) and x+

i = d+(x+
i+1), for 0 6 i < n.

This table is an n-cell of ν(K) if and only if e(x−0 ) = 1 and e(x+
0 ) = 1. In this case,

one says that the n-cell 〈x〉 is the atom associated to x.
The augmented directed complex with basis K is said to be unital if, for every

element x of the basis of K, one has e(x−0 ) = 1 and e(x+
0 ) = 1.

2.6. — One says that an augmented directed complex K with basis (Bn) is strongly
loop-free if there exists a partial order � on

∐
n>0Bn such that, for every n > 0,

every x in Bn, and every y and z in the support (according to the basis Bn−1) of d−x
and d+x, respectively, one has

y � x � z.

2.7. — A strong Steiner complex is an augmented directed complex with basis that
is both unital and strongly loop-free. We will denote by Stf the full subcategory of Cad
consisting of Steiner complexes.

Theorem 2.8 (Steiner). — The functor ν|Stf : Stf → ω-Cat is fully faithful. More-
over, if K is a strong Steiner complex, then ν(K) is freely generated (see para-
graph 1.18) by its atoms.

Proof. — This follows from [22, Proposition 3.7, Theorem 5.6 and Theorem 6.1].

We will now define the Gray tensor product of ω-categories, starting with the tensor
product of augmented directed complexes.

2.9. — The tensor product K ⊗L of two augmented directed complexes K and L is
defined in the following way:

– The underlying augmented complex of K ⊗ L is the usual one:
• for n > 0, we have

(K ⊗ L)n =
⊕
i+j=n

Ki ⊗ Lj ,

• for x in Ki and y in Kj , we have

d(x⊗ y) = dx⊗ y + (−1)ix⊗ dy,

where by convention dz = 0 if the degree of z is 0,
• for x in K0 and y in L0, we have

e(x⊗ y) = e(x)e(y).
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– The submonoid (K ⊗ L)∗n is defined to be generated by the subset⊕
i+j=n

K∗i ⊗ L∗j

of (K ⊗ L)n.
The tensor product defines a (non-symmetric) monoidal category structure on the
category of augmented directed complexes. Its unit, that we will denote by Z, is
the complex concentrated in degree 0 of value Z with the identity augmentation
and N as the submonoid of positive elements of degree 0. Steiner proved (see [22,
Example 3.10]) that this monoidal category structure restricts to the full subcategory
of strong Steiner complexes.

Theorem 2.10 (Steiner, Ara–Maltsiniotis). — There exists a unique, up to
unique isomorphism, biclosed monoidal category structure on ω-Cat making the func-
tor ν|Stf : Stf → ω-Cat a monoidal functor, where Stf is endowed with the monoidal
category structure given by the tensor product.

Proof. — See [22, Section 7], whose proof was completed by [2, Theorem A.15].

2.11. — We define the Gray tensor product to be the tensor product given by the
previous theorem. If X are Y are two ω-categories, their Gray tensor product will be
denoted by X ⊗ Y . Explicitly, one has

X ⊗ Y = lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf

ν(K ⊗ L).

The unit of the Gray tensor product is the terminal ω-category D0.
The right and left internal Hom of the Gray tensor product will be denoted by

Homoplax and Homlax, respectively, so that if X, Y and Z are three ω-categories, we
have natural bijections

Homω-Cat(X,Homoplax(Y, Z)) ' Homω-Cat(X ⊗ Y, Z) ' Homω-Cat(Y,Homlax(X,Z)).

Examples 2.12. — Here are some examples of Gray tensor products of ω-categories:

D1 ⊗D1 =

• //

��

•

��
• // • ,
{� D1 ⊗∆2 =

• //

��

• //

��

•

��
• // • // • ,
{� {�

D1 ⊗D2 =

• &&
88

��

�� •

��
• &&

88�� • ,


�
lt
Wg

where ∆2 = • // • // • .
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Remark 2.13. — If x is an m-cell of an ω-category X and y is an n-cell of an ω-cat-
egory Y , we saw in paragraph 1.11 that one can define an (m+n)-cell x⊗y of X⊗Y .
For instance, the tensor product of the principal cells of the disks appearing in the
examples above is, in both cases, the unique non-trivial cell of maximal dimension.
The formula that we gave as a definition for the Gray tensor product easily implies
that the ω-category X ⊗ Y is generated by the set of cells of the form x⊗ y, with x
a cell of X and y a cell of Y .

Remark 2.14. — The Gray tensor product used in this paper is what we like to
call the oplax Gray tensor product. The lax version is the functor (X,Y ) 7→ Y ⊗X
and is actually the one introduced by Gray in the 2-categorical case [7]. The natural
isomorphism (X ⊗ Y )op ' Y op ⊗Xop and the stability of the data of the folk model
category structure by the duality Z 7→ Zop (see paragraph 1.20) show that the results
we prove in this paper for the oplax version of the Gray tensor product can be adapted
to the lax version.

3. Compatibility of the tensor product with cofibrations

The purpose of this section is to prove that ω-Cat endowed with the Gray tensor
product ⊗ satisfies the part of the axioms of monoidal model categories (see para-
graph A.1) dealing with cofibrations. In other words, given two folk cofibrations

i : X → Y and j : Z → T,

we will prove that the ω-functor

i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T,

is also a folk cofibration. This immediately follow from the case of generating cofi-
brations, for which we will use Steiner’s theory.

We start by some supplements on pushouts of strong Steiner complexes.

3.1. — If K is an augmented directed complex with basis, we will denote its basis
by BK .

Let f : K → L be a monomorphism of augmented directed complexes with basis.
One says that f is a rigid monomorphism if it sends elements of the basis BK of K
to elements of the basis BL of L.

Proposition 3.2 (Ara–Maltsiniotis). — Consider a pushout square

K

f

��

u // M

g

��

L
v
// N

in the category of augmented directed complexes such that:
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– K, L, M , N are strong Steiner complexes,
– f and u are rigid monomorphisms.

Then
– we have BN = BL qBK

BM (as sets),
– the morphisms g and v are rigid monomorphisms,
– the functor ν : Cad → ω-Cat sends this square to a pushout square in ω-Cat.

Proof. — The first assertion is a particular case of [2, Proposition 3.6]. The second
one follows from [2, Proposition 3.12]. As for the third one, it is a special case of [2,
Theorem 3.8].

Remark 3.3. — The proposition remains true if one only assumes that the com-
plexes are Steiner complexes (named “augmented directed complexes with a loop-free
unital basis” in [1]) as opposed to strong Steiner complexes. We stated the more
restrictive result only because we did not include the definition of a Steiner complex
in this paper.

3.4. — If K and L are two augmented directed complexes with basis, one immedi-
ately checks that K ⊗ L is an augmented directed complex with basis

BK⊗L = BK ⊗BL = {x⊗ y | x ∈ BK , y ∈ BL}.

Proposition 3.5. — Let i : K → L and j : M → N be two rigid monomorphisms
between augmented directed complexes with basis. Then the morphism

i⊗′ j : L⊗M qK⊗M K ⊗N → L⊗N

is a rigid monomorphism between augmented directed complexes with basis which iden-
tifies L⊗M qK⊗M K ⊗N with the subcomplex generated by BL ⊗BM ∪BK ⊗BN .

Proof. — Colimits in the category of augmented directed complexes are computed
degreewise (see [2, paragraph 3.1]). Let n > 0. If B is the basis of an augmented
directed complex, we will denote by Bn the set of n-chains in B. As the free abelian
group functor commutes with colimits, the abelian group (L⊗M qK⊗M K ⊗N)n is
free with basis (BL ⊗BM )n q(BK⊗BM )n

(BK ⊗BN )n = (BL ⊗BM )n ∪ (BK ⊗BN )n.
Similarly, the submonoid (L ⊗M qK⊗M K ⊗ N)∗n is generated by this basis. This
proves that L⊗M qK⊗M K ⊗N is free with basis BL ⊗BM ∪BK ⊗BN . Moreover,
this shows that the map (i ⊗′ j)n : (L ⊗M qK⊗M K ⊗ N)n → (L ⊗ N)n can be
identified with the image of the map (BL ⊗ BM )n ∪ (BK ⊗ BN )n ↪→ (BL ⊗ BN )n
by the free abelian group functor. As this functor preserves monomorphisms, this
implies that i ⊗′ j is a monomorphism. The fact that it is rigid being obvious, this
ends the proof.
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Proposition 3.6. — Let i : K → L and j : M → N be two rigid monomorphisms
between strong Steiner complexes. Then the pushout square associated to

L⊗M K ⊗Mi⊗M
oo

K⊗j
// K ⊗N

satisfies the hypotheses of Proposition 3.2.

Proof. — Strong Steiner complexes and rigid monomorphisms are both stable under
tensor product by [22, Example 3.10] and [2, Proposition A.6]. It thus suffices to prove
that L⊗M qK⊗M K⊗N is a strong Steiner complex. This follows immediately from
the fact that, by the previous proposition, L ⊗M qK⊗M K ⊗N is a subcomplex of
the strong Steiner complex L⊗N generated by a subset of its basis.

Proposition 3.7. — Let i : K → L and j : M → N be two rigid monomorphisms
between strong Steiner complexes. Then the ω-functor

ν(i)⊗′ ν(j) : ν(L)⊗ ν(M)qν(K)⊗ν(M) ν(K)⊗ ν(N)→ ν(L)⊗ ν(N)

is a folk cofibration.

Proof. — By applying Proposition 3.2 to the pushout square of the previous proposi-
tion and using the fact that the functor ν|Stf : Stf → ω-Cat is monoidal for the tensor
product (Theorem 2.10), one gets that the ω-functor

ν(i)⊗′ ν(j) : ν(L)⊗ ν(M)qν(K)⊗ν(M) ν(K)⊗ ν(N)→ ν(L)⊗ ν(N)

can be identified with

ν(i⊗′ j) : ν(L⊗M qK⊗M K ⊗N)→ ν(L⊗N).

As the functor ν respects monomorphisms (this follows from its concrete descrip-
tion but also from the fact that it admits a left adjoint, see [22, Theorem 2.11]),
ν(L⊗MqK⊗MK⊗N) can be identified with a sub-ω-category of ν(L⊗M). Moreover,
by Steiner’s Theorem 2.8, these two ω-categories are freely generated by their atoms,
which, by Proposition 3.5, are in bijection with BL⊗BM ∪BK⊗BN and BL⊗BN , re-
spectively. The ω-category ν(L⊗N) can thus be obtained from ν(L⊗MqK⊗MK⊗N)
by freely adding cells (in the sense of taking pushouts along some in : ∂Dn ↪→ Dn)
indexed by (BL ⊗BN )\(BL ⊗BM ∪BK ⊗BN ). The inclusion morphism is therefore
a cofibration.

To apply the previous proposition to the generating cofibrations, we need the fol-
lowing lemma:

Lemma 3.8. — Let n > 0. The ω-functor in : ∂Dn ↪→ Dn can be written ν(λ(in)),
where λ(in) : λ(∂Dn) ↪→ λ(Dn) is a rigid monomorphism between strong Steiner
complexes.
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Proof. — Let λ(Dn) be the free augmented directed complex with basis the set of
non-trivial cells of Dn (see [2, paragraph 4.10] for an explicit description), let λ(∂Dn)
be the augmented directed subcomplex generated by the subset of non-trivial cells of
∂Dn and let λ(in) be the resulting inclusion morphism. One easily checks that in can
be identified with ν(λ(in)), that λ(Dn) is indeed a strong Steiner complex (see [22,
Example 4.7] or [2, paragraph 4.10]) and thus that any subset of its basis defines a
strong Steiner subcomplex whose inclusion morphism is a rigid monomorphism.

Theorem 3.9. — If
i : X → Y and j : Z → T

are two folk cofibrations, then the ω-functor

i⊗′ j : Y ⊗ Z qX⊗Z X ⊗ T → Y ⊗ T

is also a folk cofibration.

Proof. — By the classical Lemma A.3, it suffices to prove the result when i and j are
generating cofibrations. But this case follows from Proposition 3.7 by the previous
lemma.

Remark 3.10. — The previous result was first established by the second author
(see [16, Proposition 5.1.2.7]) using cubical sets. The advantage of the method of the
present paper is that it will adapt directly to the join of ω-categories (see Section 7).

Corollary 3.11. — The tensor product of two cofibrant ω-categories is a cofibrant
ω-category.

Proof. — Let X and Y be two ω-categories. The corollary follows from the theorem
applied to the ω-functors ∅→ X and ∅→ Y .

Remark 3.12. — This corollary was first proved directly by Hadzihasanovic (see [8,
Theorem 1.35]).

4. A cylinder object for the folk model category structure

In paragraph 1.7, we introduced an ω-category J1. The goal of this section is to
prove that if X is a cofibrant ω-category, then J1⊗X is a cylinder object for X in the
folk model category structure.

We will start by showing that the tensor product of a reversible cell by any other
n-cell is reversible, dealing first with the case n = 1. The proof will be a bit involved
and we begin by the following technical lemmas:
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Lemma 4.1. — Let u : x → y be a reversible n-cell of an ω-category X. Fix ū
a reverse of u and ε : u ∗n−1 ū → 1y a reversible cell. Then there exists a re-
versible n-cell η : 1x → ū ∗n−1 u for which there exists a reversible (n + 1)-cell
(ε ∗n−1 u) ∗n (u ∗n−1 η)→ 1u.

Proof. — Considering the n-cell u : x→ y, when n > 1, as a 1-cell of the ω-category
of cells of X from sx to ty, we reduce to the case n = 1.

In this case, since u is reversible, there exists a reversible 2-cell η′ : 1x → ū ∗0 u.
We set

η = (ū ∗0 u ∗0 η̄′) ∗1 (ū ∗0 ε̄ ∗0 u) ∗1 η′,
where η̄′ and ε̄ denote reverses of η′ and ε, respectively. The cell η is reversible, as a
composite of reversible cells. Moreover, we have

(ε ∗0 u) ∗1 (u ∗0 η)
= (ε ∗0 u) ∗1 (u ∗0 ū ∗0 u ∗0 η̄′) ∗1 (u ∗0 ū ∗0 ε̄ ∗0 u) ∗1 (u ∗0 η′)
= (u ∗0 η̄′) ∗1 (ε ∗0 u ∗0 ū ∗0 u) ∗1 (u ∗0 ū ∗0 ε̄ ∗0 u) ∗1 (u ∗0 η′)
= (u ∗0 η̄′) ∗1 ((ε̄ ∗1 ε) ∗0 u) ∗1 (u ∗0 η′)
→ (u ∗0 η̄′) ∗1 (u ∗0 η) = u ∗0 (η̄′ ∗1 η)→ 1u,

where the two arrows are reversible 2-cells coming from the fact that ε̄ and η̄′ are
reverses of ε and η′, respectively, which concludes the proof of the lemma.

Lemma 4.2. — Let X be an ω-category and let c be an n-cell of Γ(X). If c is
reversible in Γ(X), then the principal cell of c is reversible in X.

Proof. — In this proof, we will use freely the explicit formulas for the structure of
ω-category of Γ(X), as given for instance in [2, Proposition B.1.15]. We prove the
lemma by coinduction (see paragraph 1.2). Let c = (x, y, α) be an n-cell of Γ(X) (see
paragraph 1.13). We have

αn : α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x→ y ∗0 α−0 ∗1 · · · ∗n−1 α
−
n−1.

Suppose that (x, y, α) is reversible in Γ(X) and let (x̄, ȳ, β) be a reverse. Note that x̄
and ȳ are reverses of x and y, respectively. The relationship between the source and
target of (x, y, α) and (x̄, ȳ, β) implies that

βεk = αεk if 0 6 k < n− 1 and ε = ±,
β−n−1 = α+

n−1 and β+
n−1 = α+

n−1,

βn : α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x̄→ ȳ ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 α

+
n−1.

By hypothesis, there exists a reversible cell

(εx, εy,Λ) : (x, y, α) ∗n−1 (x̄, ȳ, β)→ 1t(x,y,α).

In particular, the cells

εx : x ∗n−1 x̄→ 1tx and εy : y ∗n−1 ȳ → 1ty
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are reversible. The cell (x, y, α) ∗n−1 (x̄, ȳ, β) is of the form (x ∗n−1 x̄, y ∗n−1 ȳ, γ),
with

γεk = αεk if 0 6 k < n− 1 and ε = ±,
γ−n−1 = β−n−1 = α+

n−1 and γ+
n−1 = α+

n−1,

γn = (y ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 βn) ∗n (αn ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x̄)

and we have

Λn+1 : α+
n−1 ∗n−1 · · · ∗1 α+

0 ∗0 εx → εy ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 α

+
n−1 ∗n γn.

Applying Lemma 4.1 to the cell (εx, εy,Λ) gives a reversible cell

(ηx, ηy,Γ) : 1s(x,y,α) → (x̄, ȳ, β) ∗n−1 (x, y, α)

and, using the projections π− and π+, reversible cells

(εx ∗n−1 x) ∗n (x ∗n−1 ηx)→ 1x and (εy ∗n−1 y) ∗n (y ∗n−1 ηy)→ 1y.

The cell (x̄, ȳ, β) ∗n−1 (x, y, α) is of the form (x̄ ∗n−1 x, ȳ ∗n−1 y, δ) with

δεk = αεk if 0 6 k < n− 1 and ε = ±,
δ−n−1 = α−n−1 and γ+

n−1 = β+
n−1 = α−n−1,

δn = (ȳ ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 αn) ∗n (βn ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x)

and we have

Γn+1 : δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 ηx → ηy ∗0 α−0 ∗1 · · · ∗n−1 α
−
n−1.

We now define our candidate n-cell ρ to be a reverse of αn:
ρ =

(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
.

We first produce a reversible cell between ρ ∗n αn and 1s(αn). We have

ρ ∗n αn
=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
∗n αn

=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
αn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 (x̄ ∗n−1 x))

)
∗n
(
(α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x) ∗n−1 (α+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 ηx)
)
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=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
αn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x̄) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 (x ∗n−1 ηx)
)

=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
([

(y ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 βn)

∗n−1 (α+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x̄)
]
∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 (x ∗n−1 ηx)
)

=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
γn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 (x ∗n−1 ηx)
)

=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 α

+
n−1 ∗n γn) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 (x ∗n−1 ηx)
)
.

By coinduction, the cell

Λn+1 : α+
n−1 ∗n−1 · · · ∗1 α+

0 ∗0 εx → εy ∗0 α−0 ∗1 · · · ∗n−2 α
−
n−2 ∗n−1 α

+
n−1 ∗n γn

is reversible and we thus get a reversible cell between ρ ∗n αn and the cell(
(α+
n−1 ∗n−1 · · · ∗1 α+

0 ∗0 εx) ∗n−1 (α+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x)
)

∗n
(
α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 (x ∗n−1 ηx)
)

= α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 ((εx ∗n−1 x) ∗n (x ∗n−1 ηx))

and hence a reversible cell between ρ ∗n αn and the identity on

α+
n−1 ∗n−1 α

+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x = s(αn).

We now produce a reversible cell between αn ∗n ρ and 1t(αn). We have

αn ∗n ρ
= αn

∗n
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 α

+
n−1 ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
((y ∗n−1 ȳ) ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 αn

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 βn ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 x)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
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=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1

[
(ȳ ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2 ∗n−1 αn)

∗n (βn ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 x)
])

∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1 δn

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1) ∗n−1 (α+

n−2 ∗n−2 · · · ∗1 α+
0 ∗0 ηx)

)
=
(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−2)

∗n−1 (δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 ηx)
)
.

By coinduction, the cell

Γn+1 : δn ∗n α−n−1 ∗n−1 α
+
n−2 ∗n−2 · · · ∗1 α+

0 ∗0 ηx → ηy ∗0 α−0 ∗1 · · · ∗n−1 α
−
n−1

is reversible and we thus get a reversible cell from αn ∗ ρ to(
(εy ∗0 α−0 ∗1 · · · ∗n−2 α

−
n−2) ∗n−1 (y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
∗n
(
(y ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−2) ∗n−1 (ηy ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1)

)
= ((εy ∗n−1 y) ∗n (y ∗n−1 ηy)) ∗0 α−0 ∗1 · · · ∗n−1 α

−
n−1

and hence a reversible cell between αn ∗n ρ and the identity on

y ∗0 α−0 ∗1 · · · ∗n−1 α
−
n−1 = t(αn),

hence the result.

4.3. — We will denote by Rn the free-standing reversible n-cell and by rn : Dn → Rn

the canonical ω-functor. This ω-category Rn is freely generated by
– two n-cells

r : x→ y, r̄ : y → x,

– four (n+ 1)-cells

α : r̄ ∗n−1 r → 1x, ᾱ : 1x → r̄ ∗n−1 r, β : r ∗n−1 r̄ → y, β̄ : y → r ∗n−1 r̄,

– eight (n+ 2)-cells comparing ᾱ ∗n α, α ∗n ᾱ, β̄ ∗n β and β ∗n β̄ to identities,
– etc. (see the remark below for a formal description).

The ω-functor rn : Dn → Rn sends the principal cell of Dn to r, the principal cell
of Rn. Note that this ω-functor is a folk cofibration. By definition, an n-cell x of
an ω-category X is reversible if and only if the ω-functor 〈x〉 : Dn → X factors
through rn. Note that such a factorization corresponds to a choice of witnesses that
r is reversible and is hence not unique.
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Remark 4.4. — More formally, the ω-category Rn is generated by two n-cells

r : x→ y, r̄ : y → x,

and, for every i > n, two sets of 2i−n i-cells

rl1,...,li−n
and r̄l1,...,li−n

,

where lj = ±1 for 1 6 j 6 i− n, whose sources and targets are given by

rl1,...,li−n−1,− : r̄l1,...,li−n−1
∗i−1 rl1,...,li−n−1

→ 1s(rl1,...,li−n−1 )

r̄l1,...,li−n−1,− : 1s(rl1,...,li−n−1 ) → r̄l1,...,li−n−1
∗i−1 rl1,...,li−n−1

rl1,...,li−n−1,+ : rl1,...,li−n−1
∗i−1 r̄l1,...,li−n−1

→ 1t(rl1,...,li−n−1 )

r̄l1,...,li−n−1,+ : 1t(rl1,...,li−n−1 ) → rl1,...,li−n−1
∗i−1 r̄l1,...,li−n−1

.

(With this notation, the (n+ 1)-cells α and β of the previous paragraph are α = r−
and β = r+.)

Proposition 4.5. — If x is a 1-cell of an ω-category X and y is a reversible n-cell
of an ω-category Y , then x⊗ y is reversible in X ⊗ Y .

Proof. — Since y is reversible, 〈y〉 : Dn → Y factors through rn : Dn → Rn. Tensor-
ing by 〈x〉, we therefore get an ω-functor D1 ⊗ Rn → X ⊗ Y , which corresponds by
adjunction to an ω-functor Rn → Γ(X⊗Y ) and hence to a reversible cell of Γ(X⊗Y ).
By Lemma 4.2, the principal cell of this cylinder is reversible in X⊗Y . But this prin-
cipal cell corresponds to the composite

Dn+1
〈p〉−−→ D1 ⊗Dn

〈x〉⊗〈y〉−−−−−→ X ⊗ Y,

where p denotes the principal cell of D1⊗Dn, which is 〈x⊗ y〉. This shows that x⊗ y
is reversible.

Corollary 4.6. — If x is a reversible n-cell of an ω-category X and y is a 1-cell of
an ω-category Y , then x⊗ y is reversible in X ⊗ Y .

Proof. — We will use the duality Z 7→ Zop introduced in paragraph 1.20, denoting
by zop the cell of Zop corresponding to a cell z of Z. By this same paragraph, if x
is a reversible cell of X and y is a 1-cell of Y , then x ⊗ y is reversible in X ⊗ Y if
and only if (x ⊗ y)op is reversible in (X ⊗ Y )op if and only if yop ⊗ xop is reversible
in Y op ⊗Xop. As xop is reversible in Xop, the result thus follows from the previous
proposition.

We will now show that the tensor product of a reversible cell by any cell is reversible.
We will need a specific ω-functor from Dn−1 ⊗D1 to Dn that we now introduce.

4.7. — Let n > 1. The ω-category obtained from Dn−1 ⊗ D1 by collapsing, inde-
pendently, the sub-ω-categories Dn−1⊗{0} and Dn−1⊗{1} is canonically isomorphic
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to Dn. (This follows for instance from [2, Corollary B.6.6] using the dualityX 7→ Xco.)
In particular, there is a canonical ω-functor

Dn−1 ⊗D1 → Dn

sending Dn−1⊗{0} to 0, Dn−1⊗{1} to 1, and the principal cell of Dn−1⊗D1 to the
principal cell of Dn.

By iterating this construction, we get an ω-functor

D⊗n1 → Dn

sending the principal cell of D⊗n1 , that is, the tensor product of the principal cells of
the n copies of D1, to the principal cell of Dn.

Lemma 4.8. — If r is the principal cell of Rk and d is the principal cell of Dn, then
r ⊗ d is reversible in Rk ⊗Dn.

Proof. — By the Corollary 4.6, for every m > 0, the tensor product of the prin-
cipal cells of Rm and D1 is reversible, showing that there exists an ω-functor
p′ : Rm+1 → Rm⊗D1 making commutative the square

Dm+1

p

��

rm+1
// Rm+1

p′

��

Dm ⊗D1
rm⊗D1

// Rm⊗D1 ,

where p corresponds to the principal cell of Dm ⊗D1. Denote this square by Sm. By
composing the n squares Sn+k−1−m ⊗D⊗m1 for 0 6 m 6 n− 1

Dn+k

��

// Rn+k

��

Dn+k−1 ⊗D1

��

// Rn+k−1⊗D1

��

(Dn+k−2 ⊗D1)⊗D1

��

// (Rn+k−2⊗D1)⊗D1

��

(Dk ⊗D1)⊗D⊗n−1
1

// (Rk ⊗D1)⊗D⊗n−1
1 ,

we get a commutative square

Dn+k

��

rn+k
// Rn+k

��

Dk ⊗D⊗n1
rk⊗D⊗n

1

// Rk ⊗D⊗n1 .
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By composing this square with the ω-functor D⊗n1 → Dn of the previous paragraph,
we get a commutative square

Dn+k

��

rn+k
// Rn+k

��

Dk ⊗Dn
rk⊗Dn

// Rk ⊗Dn

showing that 〈r ⊗ d〉 factors through rn+k and hence that r ⊗ d is reversible.

Proposition 4.9. — Let x be an m-cell of an ω-category X and let y be an n-cell
of an ω-category Y . If either x or y is reversible, then x⊗ y is reversible in X ⊗ Y .

Proof. — We start with the case where x is reversible. The cell x⊗y then corresponds
to the composite

〈x⊗ y〉 : Dm+n
〈r⊗d〉−−−−→ Rm⊗Dn

〈x〉⊗〈y〉−−−−−→ X ⊗ Y,

where r and d denotes the principal cells of Rm and Dn respectively. But by the
previous lemma, r ⊗ d is reversible, and thus so is

x⊗ y = (〈x〉 ⊗ 〈y〉)(r ⊗ d).

Suppose now that y is reversible. Then yop is reversible, and so is yop ⊗ xop in
Y op⊗Xop by the previous case. This proves that x⊗y = (yop⊗xop)op is reversible.

We will use the previous proposition to study the notion of a J1-transformation
that we now introduce.

4.10. — Let f, g : X → Y be two ω-functors. A J1-transformation from f to g is an
ω-functor

h : J1⊗X → Y

making commutative the diagram

X f

##〈0〉⊗X %%

J1⊗X
h // Y

X g

<<
〈1〉⊗X

::

,

where we denoted by 0 and 1 the image by l1 : D1 → J1 (see paragraph 1.7) of the
objects 0 and 1 of D1.

Note that if h : J1⊗X → Y is a J1-transformation then the composite

D1 ⊗X
l1⊗X−−−→ J1⊗X

h−−→ Y

defines an oplax transformation from f to g.



28 DIMITRI ARA & MAXIME LUCAS

Proposition 4.11. — The oplax transformation associated to a J1-transformation
is reversible.

Proof. — Let h : J1⊗X → Y be a J1-transformation and let x be an n-cell of X.
We have to show that h((01) ⊗ x), where (01) denotes the principal cell of J1 (see
paragraph 1.7) is reversible. It suffices to show that (01)⊗ x is reversible and hence,
by Proposition 4.9, that (01) is reversible in J1. As the ω-functor r1 : D1 → R1 is
a cofibration and the ω-functor q1 : J1 → D0 is a trivial fibration, the commutative
square

D1

r1

��

l1 // J1

q1

��

R1 //

>>

D0

admits a lift, showing that (01) is indeed reversible in J1.

4.12. — We say that an ω-functor i : X → Y is an oplax transformation retract
(resp. a reversible transformation retract, resp. a J1-transformation retract) if it ad-
mits a retraction r, that is, an ω-functor r : Y → X such that ri = 1X , and an
oplax transformation (resp. a reversible transformation, resp. a J1-transformation)
α : ir ⇒ 1Y .

It follows from the fact that reversible transformations are right homotopies for
the folk model category structure (see Remark 1.17) that a reversible transformation
retract is a folk weak equivalence.

We say that a transformation retract i : X → Y (oplax, reversible or J1-) is strong
if r and α as above can be chosen so that α ∗ i = 1i, in the sense that, if α is given
by an ω-functor

h : D1 ⊗ Y → Y or h′ : J1⊗Y → Y,

then the diagrams

D1 ⊗X

D1⊗i
��

p
// X

i or
��

D1 ⊗ Y
h
// Y

J1⊗X

J1⊗i
��

p′
// X

i

��

J1⊗Y
h′
// Y ,

where p and p′ are the “projection” ω-functors induced by D1 → D0 and J1 → D0,
commute.

By [15, Corollary 4.30], every folk trivial cofibration is a strong reversible trans-
formation retract. (Note that strong reversible transformation retracts are called
“immersions” in [15].)

Proposition 4.13. — A J1-transformation retract is a reversible transformation re-
tract and in particular a folk weak equivalence.
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Proof. — This follows immediately from Proposition 4.11.

Proposition 4.14. — For every ω-category X, the ω-functors X → J1⊗X, obtained
by tensoring 〈0〉, 〈1〉 : D0 → J1 by X, are J1-transformation retracts and hence folk
weak equivalences.

Proof. — The class of J1-transformation retracts is clearly stable under tensor prod-
uct by an object on the right. Therefore it suffices to prove that 〈0〉, 〈1〉 : D0 → J1
are J1-transformation retracts. Let ε = 0, 1. The ω-functor r : J1 → D0 is clearly a
retraction of 〈ε〉. Moreover, a J1-transformation 〈ε〉r ⇒ 1J1 is precisely a lift to the
lifting problem

∂D1 ⊗ J1

k1⊗J1

��

〈ε〉rq J1
// J1

��

J1⊗ J1 //

77

D0 ,
where we identified ∂D1⊗J1 with J1q J1. As k1 is a cofibration and J1 is a cofibrant
object, it follows from Theorem 3.9 that the left vertical arrow is a cofibration. As
the right vertical arrow is a trivial fibration by definition of J1, the desired lift exists,
thereby proving the result.

Theorem 4.15. — Let X be an ω-category.
(a) The ω-functor J1⊗X → X, obtained by tensoring J1 → D0 by X, is a folk weak

equivalence.
(b) If moreover, X is cofibrant, then the factorization

X qX → J1⊗X → X

of the codiagonal, obtained by tensoring

∂D1
k1−→ J1 → D0

by X, is a cylinder object for the folk model category structure, in the sense that
the first arrow is a cofibration and the second one is a weak equivalence.

Proof. — The ω-functor J1⊗X → X is a retract of any of the ω-functors X → J1⊗X
considered in the previous proposition and is hence a weak equivalence by this same
proposition. This proves the first point. As for the second one, it follows from
Theorem 3.9 since k1 is a cofibration and X is cofibrant.

Remark 4.16. — The ω-functor XqX → J1⊗X is not a folk cofibration in general.
To see this, recall first that if p : y0 → y1 is a 1-cell in an ω-category Y and f : x0 → x1,
g : x1 → x2 are two 1-cells in an ω-category X, then the following relation holds
in Y ⊗X:

((y1 ⊗ g) ∗0 (p⊗ f)) ∗1 ((p⊗ g) ∗0 (y0 ⊗ f)) = p⊗ (g ∗0 f).



30 DIMITRI ARA & MAXIME LUCAS

Diagrammatically, this means that the following 2-cells are equal:

y0 ⊗ x0
y0⊗f //

p⊗x0

��

y0 ⊗ x1
y0⊗g //

p⊗x1

��

y0 ⊗ x2

p⊗x2

��

y1 ⊗ x0
y1⊗f

// y1 ⊗ x1 y1⊗g
// y1 ⊗ x2

p⊗f
v~

p⊗g
v~

y0 ⊗ x0
y0⊗(g∗0f)

//

p⊗x0

��

y0 ⊗ x2

p⊗x2

��

y1 ⊗ x0
y1⊗(g∗0f)

// y1 ⊗ x2 .

p⊗(g∗0f)
u}

Now take X to be the category generated by one object x and one arrow f : x→ x,
subject to the relation f ∗0 f = 1x. In other words, X is the cyclic group with 2
elements, seen as a one-object category. Let p : y0 → y1 be the principal cell of J1.
Then the previous formula (taking g = f) shows that the following equality holds in
J1⊗X:

((y1 ⊗ f) ∗0 (p⊗ f)) ∗1 ((p⊗ f) ∗0 (y0 ⊗ f)) = 1p⊗x.

This relation implies that any ω-functor from J1⊗X to a cofibrant ω-category must
send p ⊗ f to an identity. Consider now u : J1⊗X → Z the pushout of the obvious
ω-functor X qX → D0 q D0 = ∂D1 along the ω-functor X qX → J1⊗X. One can
check that the cell u(p ⊗ f) is non-trivial in Z. Factoring the map ∂D1 → Z into a
cofibration followed by a trivial fibration t : Z ′ → Z, we get a commutative square

X qX //

��

Z ′

t

��

J1⊗X u
// Z ,

with Z ′ a cofibrant ω-category. But this square cannot admit a lift for such a lift would
map p ⊗ f to an identity in Z ′, contradicting the fact that u(p ⊗ f) is non-trivial.
Therefore the map X qX → J1⊗X is not a cofibration.

Corollary 4.17. — Let f, g : X → Y be two ω-functors, where X is a cofibrant
ω-category. If there exists a reversible transformation from f to g, then there exists
a J1-transformation from f to g.

Proof. — As all the ω-categories are fibrant for the folk model category structure
and X is cofibrant by hypothesis, the relations of left homotopy and right homotopy
on Homω-Cat(X,Y ) coincide. We get the result using the path object Γrev(Y ) (see
Theorem 1.16) and the cylinder object J1⊗X given by the previous theorem.

Corollary 4.18. — Any reversible transformation retract whose target is cofibrant
is a J1-transformation retract.

Proof. — This follows immediately from the previous corollary.
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Remark 4.19. — The following diagram sums up the relationship between the dif-
ferent classes of ω-functors considered in this section in between folk trivial cofibra-
tions and folk weak equivalences:

folk trivial
cofibration

[15, Cor 4]
��

Prop 5.7

qy
J1-transformation

retract
Prop 4.13 +3 reversible

transformation
retract

[15, Lem 16]
+3

Cor 4.18
ks

folk weak
equivalence

.

(The dotted arrow means that the implication holds under the additional assumption
that the target is cofibrant.)

5. The folk model category structure is monoidal for the tensor product

In this section, we will end the proof of the compatibility of the Gray tensor product
with the folk model category structure and give some supplements on the resulting
monoidal model category.

We start by a general lemma abstracting our strategy to prove this compatibility:

Lemma 5.1. — LetM be a cofibrantly generated model category endowed with a (not
necessarily symmetric nor closed) monoidal category structure satisfying the following
hypotheses:
H1) the unit of the tensor product ⊗ is cofibrant,
H2) the sources of the generating cofibrations are cofibrant,
H3) if i is a cofibration (resp. a trivial cofibration), then so are i ⊗ ∅ and ∅ ⊗ i,

where ∅ denotes the initial object ofM,
H4) for every generating cofibrations i : A→ B and j : C → D, the pushout-product

i⊗′ j : B ⊗ C qA⊗C A⊗D → B ⊗D

is a cofibration,
H5) for every generating trivial cofibration i and every cofibrant object A, the mor-

phisms i⊗A and A⊗ i are weak equivalences.
ThenM is a monoidal model category.

Proof. — First note that by Remark A.2, the hypothesis H1) and H3) imply that the
unit axiom (see paragraph A.1) is satisfied.

Moreover, by the classical Lemma A.3 (see also Remark A.4), the pushout-product
axiom (see again paragraph A.1) can be checked on generators. The hypothesis H4)
thus implies that the pushout-product of two cofibrations is a cofibration, and it
suffices to show that if, either i : A → B is a generating trivial cofibration and
j : C → D is a generating cofibration, or i is a generating cofibration and j is a
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generating trivial cofibration, then i⊗′ j is a weak equivalence. Let us prove the first
case, the proof of the second one being dual.

Consider the commutative diagram

A⊗ C
A⊗j

//

i⊗C

��

A⊗D

ε2

��

i⊗D

��

B ⊗ C ε1 //

B⊗j
00

B ⊗ C qA⊗C A⊗D
i⊗′j
))

B ⊗D ,

where ε1 and ε2 are the canonical morphisms. The pushout-product axiom for cofi-
brations and hypothesis H3) imply that the tensor product of a cofibration and a
cofibrant object is a cofibration (see Remark A.2). It thus follows from H2) and H5)
that i ⊗ C is a trivial cofibration. The morphism ε2 being a pushout of i ⊗ C, it is
a trivial cofibration as well. For the same reasons as above, the morphism i⊗D is a
weak equivalence and the two-out-of-three property implies that i⊗′ j is also a weak
equivalence, thereby proving the lemma.

Remark 5.2. — Note that under the hypothesis H1), H2) and H3) of the lemma, the
fact thatM is a monoidal model category is actually equivalent to the hypothesis H4)
and H5).

Remark 5.3. — The hypothesis H1) and H2) are fulfilled by the folk model category
structure. Moreover, the hypothesis H3) is fulfilled in any biclosed monoidal structure
(we will also apply this lemma to the join of ω-categories which is not biclosed). To
prove that the folk model category structure is monoidal for the Gray tensor product,
it thus suffices to prove H4) and H5). The hypothesis H4) is Theorem 3.9 and will
now prove H5).

Let us see that H5) is a direct consequence of results from the previous section.

Proposition 5.4. — Let i : X → Y be a folk trivial cofibration between cofibrant
objects. Then, for any ω-category Z, the ω-functor i ⊗ Z : X ⊗ Z → Y ⊗ Z is a
J1-transformation retract and in particular a folk weak equivalence.

Proof. — As noted in paragraph 4.12, it is proved in [15] that such an ω-functor i is
a reversible transformation retract. As Y is cofibrant, Corollary 4.18 implies that i is
a J1-transformation retract. But it is immediate that J1-transformation retracts are
stable by tensoring by an object on the right, hence the result by Proposition 4.13.

Corollary 5.5. — Let i : X → Y be a folk trivial cofibration between cofibrant
objects. Then, for any ω-category Z, the ω-functor Z ⊗ i : Z ⊗X → Z ⊗ Y is a folk
weak equivalence.
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Proof. — We will use the duality T 7→ T op introduced in paragraph 1.20. By this
same paragraph, this duality preserves cofibrations, trivial cofibrations and weak
equivalences, and we have a natural isomorphism (A⊗B)op ' Bop⊗Aop. This implies
that the ω-functor iop : Xop → Y op is a trivial cofibration between cofibrant objects
and hence, by the previous proposition, that iop ⊗Zop : Xop ⊗Zop → Y op ⊗Zop is a
folk weak equivalence. This shows that Z⊗i, that can be identified with (iop⊗Zop)op,
is indeed a folk weak equivalence.

Theorem 5.6. — The folk model category structure on ω-Cat is monoidal for the
Gray tensor product.

Proof. — This follows from Lemma 5.1, whose non-trivial hypothesis are fulfilled by
Theorem 3.9, and the previous proposition and its corollary.

The previous theorem implies that the tensor product of a folk trivial cofibration
and a cofibrant object is a weak equivalence. We will now prove that this still holds
if we remove the cofibrancy hypothesis.

Proposition 5.7. — Any folk trivial cofibration is a strong J1-transformation re-
tract.

Proof. — Let i : X → Y be a trivial cofibration. As every ω-category is fibrant, the
lifting problem

X

i

��

X

Y

>>

admits a solution r : Y → X giving a retraction of i. Similarly, by Theorem 5.6, the
lifting problem

J1⊗X q∂D1⊗X ∂D1 ⊗ Y

k1⊗′i

��

(ip,(ir,1Y ))
// Y

J1⊗Y

66

,
where p denotes the “projection” ω-functor p : J1⊗X → X, admits a solution
h : J1⊗Y → Y . Such an h is precisely a J1-transformation as in the definition
of a strong J1-transformation retract.

Proposition 5.8. — Strong J1-transformation retracts are stable under pushouts.

Proof. — The analogous statement for strong reversible transformation retracts is
[15, Lemma 17], whose proof applies mutatis mutandis.
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Proposition 5.9. —
(a) Transfinite compositions of pushouts of tensor products of an object (on the left)

and a folk trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of tensor products of a folk trivial cofibra-

tion and an object (on the right) are folk weak equivalences.

Proof. — The second assertion can be deduced from the first one using the duality
X 7→ Xop as in the proof of Corollary 5.5. As for the first one, by Proposition 5.7,
trivial cofibrations are strong J1-transformation retracts. But J1-transformation re-
tracts are stable by tensoring by an object on the left, essentially by definition, and
by pushouts by the previous proposition. As J1-transformation retracts are weak
equivalences (by Proposition 4.14), the result follows from the fact that folk weak
equivalences are stable under transfinite compositions (see [15, Lemma 4.12]).

Remark 5.10. — In particular, the tensor product of a folk trivial cofibration by
an object (on the left or on the right) is a folk weak equivalence.

Remark 5.11. — We proved more precisely that the ω-functors of the first assertion
of the proposition are transfinite compositions of J1-transformation retracts.

6. The case of (m,n)-categories

In this section, we fix m and n such that 0 6 n 6 m 6 ω.

6.1. — Recall that an (m,n)-category is an ω-category X such that
– X is an m-category, that is, every k-cell of X with k > m is an identity,
– every k-cell x of X, for k > n, is invertible, meaning that there exists a k-cell y

such that
y ∗k−1 x = 1sx and x ∗k−1 y = 1tx.

We will denote by (m,n)-Cat the full subcategory of ω-Cat consisting of (m,n)-cat-
egories. Note that (m,m)-categories are nothing but m-categories, and (m, 0)-cate-
gories are m-groupoids, whose category will be denoted by m-Gpd.

The category (m,n)-Cat is a reflective subcategory of ω-Cat. In other words, the
inclusion functor (m,n)-Cat ↪→ ω-Cat admits a left adjoint r : ω-Cat → (m,n)-Cat.

The goal of this section is to prove, first, that the Gray tensor product of ω-cat-
egories induces, using the ω-functor r : ω-Cat → (m,n)-Cat, a monoidal category
structure on (m,n)-Cat and, second, that this monoidal category structure is com-
patible with the folk model category structure on (m,n)-Cat.

To prove the first point, we will use Day’s reflection theorem:

Proposition 6.2 (Day). — Let C be a biclosed monoidal category and let D ⊂ C be
a reflective subcategory of C. Then the following conditions are equivalent:
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(a) for every object X of C and every object Y of D, the objects Homr
C(X,Y ) and

Homl
C(X,Y ) (see paragraph A.6) are in D,

(b) for every objects X and Y of C, the canonical morphism

r(X ⊗ Y ) ∼−→ r(r(X)⊗ r(Y )),

where r : C → D denotes the left adjoint to the inclusion functor, is an isomor-
phism.

Moreover, when these conditions are satisfied, the tensor product

X ⊗D Y = r(X ⊗ Y )

defines a biclosed monoidal category structure on D, whose unit and internal Hom are
those of C.

Proof. — The analogous statement for closed symmetric monoidal categories is a
particular case of [6, Theorem 1.2]. The proof applies mutatis mutandis to the case
of biclosed monoidal categories.

We will prove that condition (a) is satisfied in our case of interest, that is, that
if X is an ω-category and Y is an (m,n)-category, then both Homoplax(X,Y ) and
Homlax(X,Y ) are (m,n)-categories. We start by some preliminaries on invertible
cells.

6.3. — We will denote by In the free-standing invertible n-cell in ω-Cat. In other
words, In is the n-category obtained from Dn by formally inverting the principal cell
of Dn. We have a canonical ω-functor Dn → In. The image of the principal cell
of Dn by this ω-functor is the principal cell of In. By definition, an n-cell x of an
ω-category X is invertible if and only the corresponding ω-functor 〈x〉 : Dn → X

factor through In.

Proposition 6.4. — Let x be an m-cell of an ω-category X and let y be an n-cell
of an ω-category Y . If either x or y is invertible, then x⊗ y is invertible in X ⊗ Y .

Proof. — The proof is similar to the proof of the analogous fact for reversible
cells (Proposition 4.9). More precisely, one first proves the statement analogous
to Lemma 4.2 using the same calculations as in its proof and one then proves the
statements analogous to Proposition 4.5, Corollary 4.6, Lemma 4.8 and, finally,
Proposition 4.9, by a straightforward adaptation consisting essentially in replacing
the ω-category Rn by In.

6.5. — Let Y be an ω-category. We will say that an n-cylinder c = (x, y, α) (see
paragraph 1.13) is invertible if all the αεk, for 0 6 k 6 n and ε = ±, are invertible
cells of Y . For the same reasons as for reversible cylinders, the graded subset Γinv(Y )
of Γ(Y ) consisting of invertible cylinders forms a sub-ω-category.
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We will now prove that the ω-functor

Homlax(I1, Y )→ Homlax(D1, Y ) = Γ(Y ),

induced by the canonical ω-functor D1 → I1, gives an isomorphism of ω-categories
between Homlax(I1, Y ) and Γinv(Y ) ⊂ Γ(Y ). (This will be achieved in Proposition 6.8.)

6.6. — Let Y be an ω-category. By adjunction, n-cells of Homlax(I1, Y ) correspond
to ω-functors I1 → Homoplax(Dn, Y ), that is, to invertible 1-cells of Homoplax(Dn, Y ).
Note that, again by adjunction, 1-cells of Homoplax(Dn, Y ) corresponds to n-cylinders
c = (x, y, α) in Y (and that the source and target of such a c correspond to the cells
x and y respectively). This means that the composition of 1-cells in Homoplax(Dn, Y )
defines a composition on n-cylinders in Y , that we will call the vertical composi-
tion, and that the n-cells of Homlax(I1, Y ) correspond to the n-cylinders in Y in-
vertible for the vertical composition. In particular, this shows that the ω-functor
Homlax(I1, Y )→ Γ(Y ) identifies Homlax(I1, Y ) with a sub-ω-category of Γ(Y ).

The vertical composition of n-cylinders can be described in the following way. Let
c = (x, y, α) and let d = (y, z, β) be two n-cylinders in Y (see paragraph 1.13). We
define by induction on k such that 0 6 k 6 n four (k+ 1)-cells aεk and bεk, with ε = ±,
as follows:

aεk = b+k−1 ∗k−1 · · · ∗1 b+0 ∗0 αεk,
bεk = βεk ∗0 a−0 ∗1 · · · ∗k−1 a

−
k−1.

The vertical composition of d and c, denoted by d ∗v c, is then given by the triple
(x, z, γ), where

γεk = bεk ∗k aεk.
Note that the unit of an n-cell x for the vertical composition is the n-cylinder (x, x, α),
where α−k = 1sk(x) and α+

k = 1tk(x).

Proposition 6.7. — Let c = (x, y, α) be an invertible n-cylinder in an ω-category Y .
Then c is invertible for the vertical composition with inverse (y, x, β) given by:

βεk = ᾱ+
0 ∗0 (ᾱ+

1 ∗1 · · · ∗k−2 (ᾱ+
k−1 ∗k−1 ᾱ

ε
k ∗k−1 ᾱ

−
k−1) ∗k−2 · · · ∗1 ᾱ−1 ) ∗0 ᾱ−0 ,

for 0 6 k 6 n and ε = ±, where ᾱεl denotes the inverse of αεl in Y .

Proof. — Let us first show that (y, x, β) is an n-cylinder. Let 1 6 k 6 n. We have to
show that

t(βεk) = xεk ∗0 β−0 ∗1 · · · ∗k−1 β
−
k−1.

For i ≤ k ≤ n, we set

βεk,i = ᾱ+
i ∗i (ᾱ+

i+1 ∗i+1 · · · ∗k−2 (ᾱ+
k−1 ∗k−1 ᾱ

ε
k ∗k−1 ᾱ

−
k−1) ∗k−2 · · · ∗i+1 ᾱ

−
i+1) ∗i ᾱ−i

and
ui = (α+

i−1 ∗i−1 · · · ∗1 α+
0 ∗0 xεk) ∗i β−i,i ∗i+1 · · · ∗k−1 β

−
k−1,i.
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In particular, we have

βεk,0 = βεk, ᾱ+
i−1 ∗i β

ε
k,i ∗i ᾱ−i−1 = βεk,i−1 and βεk,k = ᾱεk,

and
u0 = xεk ∗0 β−0 ∗1 · · · ∗k−1 β

−
k−1,

uk = α+
k−1 ∗k−1 · · · ∗1 α+

0 ∗0 xεk = s(αεk).

We have to show the equality t(βεk) = u0. More generally, we will prove by descending
induction on i such that 0 ≤ i ≤ k that we have t(βεk,i) = ui. For i = k, we have

t(βεk,k) = t(ᾱεk) = s(αεk) = uk.

For 0 6 i < k, using the induction hypothesis, we have
t(βεk,i) = t(α+

i ∗i β
ε
k,i+1 ∗i α−i )

= α+
i ∗i ui+1 ∗i α−i

= ᾱ+
i

∗i
(
(α+
i ∗i · · · ∗1 α

+
0 ∗0 xεk) ∗i+1 β

−
i+1,i+1 ∗i+2 · · · ∗k−1 β

−
k−1,i+1

)
∗i ᾱ−i

=
(
ᾱ+
i ∗i (α+

i ∗i · · · ∗1 α
+
0 ∗0 xεk) ∗i ᾱ−i

)
∗i+1 (ᾱ+

i ∗i β
−
i+1,i+1 ∗i ᾱ

−
i ) ∗i+2 · · · ∗k−1 (ᾱ+

i ∗i β
−
k−1,i+1ᾱ

−
i )

=
(
ᾱ+
i ∗i (α+

i ∗i · · · ∗1 α
+
0 ∗0 xεk) ∗i ᾱ−i

)
∗i+1 β

−
i+1,i ∗i+2 · · · ∗k−1 β

−
k−1,i

=
(
α+
i−1 ∗i−1 · · · ∗1 α+

0 ∗0 xεk
)
∗i β−i,i

∗i+1 β
−
i+1,i ∗i+2 · · · ∗k−1 β

−
k−1,i

= ui.

A similar calculation shows that

s(βεk) = β+
k−1 ∗k−1 · · · ∗1 β+

0 ∗0 yεk.

Let us now prove that (y, x, β) is an inverse of (x, y, α) for the vertical composition.
Consider (x, x, γ) = (y, x, β) ∗v (x, y, α). We have to prove that γεk is an identity for
every 0 6 k 6 n and ε = ±. Recall that by definition (see paragraph 6.6), we have

γεk = bεk ∗k aεk,

where
aεk = b+k−1 ∗k−1 · · · ∗1 b+0 ∗0 αεk,
bεk = βεk ∗0 a−0 ∗1 · · · ∗k−1 a

−
k−1.

We will start by proving, by induction on k, that
aεk = ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k,

bεk = ᾱ+
0 ∗0 ᾱ

+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k.
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For k = 0, the formulas boil down to the equalities aε0 = αε0 and bε0 = ᾱε0 which hold
by definition. Suppose k > 0. For 0 6 i ≤ j ≤ n, we set

aεj,i = ᾱ+
i ∗i ᾱ

+
i+1 ∗i+1 · · · ∗j−2 ᾱ

+
j−1 ∗j−1 α

ε
j ,

bεj,i = ᾱ+
i ∗i ᾱ

+
i+1 ∗i+1 · · · ∗j−2 ᾱ

+
j−1 ∗j−1 ᾱ

ε
j .

In particular, we have
aεj,j = ᾱεj and bεj,j = ᾱεj .

By induction hypothesis, for i ≤ j < k, we have

bεj = bεj,0.

We thus have
aεk = b+k−1 ∗k−1 · · · ∗1 b+0 ∗0 αεk

= b+k−1,0 ∗k−1 · · · ∗1 b+0,0 ∗0 αεk
= (ᾱ+

0 ∗0 b
+
k−1,1) ∗k−1 · · · ∗2 (ᾱ+

0 ∗0 b
+
1,1) ∗1 ᾱ+

0 ∗0 αεk
= ᾱ+

0 ∗0 (b+k−1,1 ∗k−1 · · · ∗2 b+1,1 ∗1 αεk)
= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗i−2 ᾱ

+
i−1 ∗i−1 (b+k−1,i ∗k−1 · · · ∗i+1 b

+
i,i ∗i α

ε
k)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k

and
bεk = βεk ∗0 a−0 ∗1 · · · ∗k−1 a

−
k−1

= βεk,0 ∗0 a−0,0 ∗1 · · · ∗k−1 a
−
k−1,0

= ᾱ+
0 ∗0 βεk,1 ∗0 ᾱ

−
0 ∗0 α

−
0 ∗1 (ᾱ+

0 ∗0 a
−
1,1) ∗2 · · · ∗k−1 (ᾱ+

0 ∗0 a
−
k−1,1)

= ᾱ+
0 ∗0 (βεk,1 ∗1 a−1,1 ∗2 · · · ∗k−1 a

−
k−1,1)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗i−2 ᾱ

+
i−1 ∗i−1 (βεk,i ∗i a−i,i ∗i+1 · · · ∗k−1 a

−
k−1,i)

= · · ·
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 β

ε
k,k

= ᾱ+
0 ∗0 ᾱ

+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k,

which ends the proof of the announced formulas. Finally, we get that
γεk = bεk ∗k aεk

=
(
ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 ᾱ

ε
k

)
∗k
(
ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 α

ε
k

)
= ᾱ+

0 ∗0 ᾱ
+
1 ∗1 · · · ∗k−2 ᾱ

+
k−1 ∗k−1 (ᾱεk ∗k αεk)

= 1ᾱ+
0 ∗0ᾱ

+
1 ∗1···∗k−2ᾱ

+
k−1

.
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This proves that (y, x, β) ∗v (x, y, α) is indeed the identity. Similar calculations show
that (x, y, α) ∗v (y, x, β) is the identity as well, thereby ending the proof.

Proposition 6.8. — Let Y be an ω-category. The ω-functor

Homlax(I1, Y )→ Homlax(D1, Y ) = Γ(Y ),

induces an isomorphism between Homlax(I1, Y ) and Γinv(Y ) ⊂ Γ(Y ).

Proof. — We saw in paragraph 6.6 that this ω-functor is injective. It thus suffices to
prove that its image is precisely Γinv(Y ).

Let us first prove that the ω-functor lands into Γinv(Y ). Consider an n-cell of
Homlax(I1, Y ), seen as an ω-functor c : I1⊗Dn → Y . Let (x, y, α) be the associated
cylinder. By definition, we have

α−k = c((01)⊗ sk(d)) and α+
k = c((01)⊗ tk(d)),

for 0 6 k 6 n, where (01) and d denote the principal cells of I1 and Dn, respectively.
As (01) is invertible in I1, so is its tensor product with any cell by Proposition 6.4,
and the αεk are thus invertible. This proves that (x, y, α) is an invertible cylinder.

Reciprocally, if c is an invertible n-cylinder, then, by the previous proposition, the
cylinder c is invertible for the vertical composition, and hence corresponds to an n-cell
of Homlax(I1, Y ) (see paragraph 6.6), thereby proving the result.

Remark 6.9. — In particular, an n-cylinder is invertible in the sense of para-
graph 6.5 if and only if it invertible for the vertical composition introduced in
paragraph 6.6.

Proposition 6.10. — An n-cell of Homoplax(X,Y ), seen by adjunction as an
ω-functor H : Dn ⊗X → Y , is invertible if and only if, for every m-cell x of X, the
(n+m)-cell H(d⊗ x), where d denotes the principal cell of Dn, is invertible in Y .

Proof. — Suppose that H : Dn⊗X → Y is invertible as an n-cell of Homoplax(X,Y ).
By universal property of In and by adjunction, this means that H factors through
In⊗X, so that H(d⊗ x) = H ′(d′ ⊗ x), where H ′ : In⊗X → Y and d′ is the principal
cell of In. As d′ is invertible in In, so is d′ ⊗ x by Proposition 6.4. This implies that
H(d⊗ x) = H ′(d′ ⊗ x) is invertible, showing one implication.

Let us show the converse. We will argue by induction on n > 1. Suppose n = 1.
The hypothesis implies that the associated ω-functor k : X → Γ(Y ) factors through
Γinv(Y ) ⊂ Γ(Y ). The result thus follows from the bijections

Homω-Cat(X,Γinv(Y )) ' Homω-Cat(X,Homlax(I1, Y ))
' Homω-Cat(I1,Homoplax(X,Y )),

the first bijection being a consequence of the previous proposition.
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Suppose now that n > 1. Denote by s : Dn−1 ⊗ D1 → Dn the ω-functor of
paragraph 4.7 and consider the ω-functor

H(s⊗X) : Dn−1 ⊗D1 ⊗X → Y.

Denote by e the principal cell of Dn−1. We will prove that, for every cell z of D1⊗X,
the cell H(s⊗X)(e⊗ z) is invertible in Y . Since the ω-category D1⊗X is generated
by cells of the form 0 ⊗ x, 1 ⊗ x and (01) ⊗ x, where (01) denotes the principal cell
of D1 and x is a cell of X, it suffices to show that H(s⊗X)(e⊗ z), where z is one of
these generators, is an invertible cell. Since s(e⊗ ε)⊗x, for ε = 0, 1, is an identity by
definition of s and the fact that e is of dimension at least 1, the cell H(s⊗X)(e⊗ε⊗x)
is invertible. Furthermore, the cell

H(s⊗X)(e⊗ (01)⊗ x) = H(s(e⊗ (01))⊗ x) = H(d⊗ x)

is invertible by hypothesis on H. By induction hypothesis, this implies that H(s⊗X)
is invertible as an (n − 1)-cell of Homoplax(D1 ⊗ X,Y ). This means that H(s ⊗ X)
factors trough In−1⊗(D1⊗X), so that we get an ω-functor H ′ : In−1⊗(D1⊗X)→ Y .
Denote by d′ and e′ the principal cells of In and In−1, respectively. Using the fact that,
by Proposition 6.4, the cell e′ ⊗ (01) is invertible in In−1⊗D1, we get a commutative
diagram

Dn ⊗X

〈d′〉⊗X
��

〈e⊗(01)〉⊗X
// Dn−1 ⊗D1 ⊗X

s⊗X
//

〈e⊗(01)〉⊗D1⊗X
��

Dn ⊗X //H // Y

In⊗X
〈e′⊗(01)〉⊗X

// In−1⊗D1 ⊗X
H′

22

.

Since s〈e⊗ (01)〉 = 1Dn , the composite of the three composable horizontal arrows of
the diagram is H : Dn ⊗ X → Y . This implies that H factors through In⊗X and
hence that it is invertible as a cell of Homoplax(X,Y ).

Remark 6.11. — In particular, an oplax transformation is invertible as a 1-cell of
Homoplax(X,Y ) if and only it its components are invertible in Y .

Proposition 6.12. — If X is an ω-category and Y is an (m,n)-category, then both
Homoplax(X,Y ) and Homlax(X,Y ) are (m,n)-categories.

Proof. — Since
Homlax(X,Y ) ' Homoplax(Xop, Y op)op

(see paragraph 1.20) and (m,n)-categories are stable under the duality Z 7→ Zop, it
suffices to prove that Homoplax(X,Y ) is an (m,n)-category.

The fact that Homoplax(X,Y ) is an m-category is already known (see for instance
[2, Proposition A.29]). Let us prove that this m-category is an (m,n)-category. Con-
sider a k-cell of Homoplax(X,Y ), with k > n, seen as an ω-functor H : Dk ⊗X → Y .
Let d be the principal cell of Dk and let x be a cell of X. The cell H(x ⊗ d) is a
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cell of Y of dimension at least k. It is therefore invertible as Y is an (m,n)-category.
Proposition 6.10 thus shows that H is invertible in Homoplax(X,Y ).

Theorem 6.13. — The Gray tensor product of (m,n)-categories

X ⊗m,n Y = r(X ⊗ Y ),

where r : ω-Cat → (m,n)-Cat denotes the left adjoint to the inclusion functor
(m,n)-Cat ↪→ ω-Cat, defines a monoidal category structure on (m,n)-Cat, whose unit
is the (m,n)-category D0 and whose internal Hom are Homoplax and Homlax.

Proof. — This follows from the previous proposition by Day’s reflection theorem
(Proposition 6.2).

Remark 6.14. — The case of m-categories was already proved in [2, Appendix A].

We now focus on the case of m-groupoids (that is, the case n = 0).

Proposition 6.15. — If X and Y are two ω-groupoids, then X⊗Y is an ω-groupoid,
so that

X ⊗ω,0 Y = X ⊗ Y.

Proof. — The ω-category X ⊗ Y is generated by n-cells of the form x⊗ y, where x a
k-cell of X and Y an l-cell of Y with n = k+ l. If n > 0, then k > 0 or l > 0, so that
x or y is invertible. It follows from Proposition 6.4 that x ⊗ y is invertible, thereby
proving the result.

Remark 6.16. — Note that it is not true that the tensor product of an ω-groupoidX
and an ω-category Y is an ω-groupoid in general, as the tensor product of a 0-cell
of X and a non-invertible n-cell of Y is not invertible in X ⊗ Y .

Lemma 6.17. — The functor X 7→ Xop is naturally isomorphic to the identity when
restricted to the category m-Gpd of m-groupoids.

Proof. — Let X be an m-groupoid. Recall that for any n-cell x of X and any
i < n, the cell x is invertible for the composition ∗i (see for instance [3, Proposi-
tion 1.3]). We will denote this inverse by wi(x). Note that for any i, j < n, we
have wi(wj(x)) = wj(wi(x)). We define an ω-functor δX : Xop → X by setting
δX(x) = w1(w3(· · ·wk(x) · · · )), for any n-cell x of X, where k is the largest odd inte-
ger strictly smaller than n. The fact that this defines an ω-functor natural inX follows
from a straightforward calculation. Clearly, the ω-functor δX is an isomorphism with
inverse δXop , thereby proving the result.

Proposition 6.18. — The Gray tensor product on m-Gpd is symmetric.
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Proof. — If X and Y are two m-groupoids, then, using the natural isomorphism of
the previous lemma, we get an isomorphism

X ⊗m,0 Y = X ⊗ Y ' (X ⊗ Y )op ' Y op ⊗Xop ' Y ⊗X = Y ⊗m,0 X.

One checks that this isomorphism defines a symmetry for the Gray tensor product.

Let us come back to the general case 0 6 n 6 m 6 ω. We will now show that
the tensor product of (m,n)-categories is compatible with the so-called folk model
category structure on (m,n)-Cat that we now recall:

Theorem 6.19 (Lafont–Métayer–Worytkiewicz, Ara–Métayer)
The folk model category structure on ω-Cat can be transferred along the adjunction

r : ω-Cat → (m,n)-Cat, (m,n)-Cat ↪→ ω-Cat.

In particular, we get a model category structure on (m,n)-Cat, whose weak equiv-
alences are the folk equivalences between (m,n)-categories and which is cofibrantly
generated by r(I) and r(J) (see paragraphs 1.6 and 1.7).

Proof. — The case ofm-categories is [15, Theorem 5] and the case of (ω, n)-categories
is [3, Theorem 3.19 and Remark 3.20]. Combining these two proofs, one easily gets
the general case.

The compatibility between the tensor product of (m,n)-categories and the folk
model category structure on (m,n)-Cat will follow formally from the following general
statement:

Proposition 6.20. — Let M be a biclosed monoidal model category, which is cofi-
brantly generated by sets I and J , and whose unit for the tensor product is cofibrant,
and let N ⊂ M be a reflective subcategory of M. Denote by r : M → N the left
adjoint to the inclusion functor. Suppose that
(a) N ⊂ M satisfies the equivalent conditions of Day’s reflection theorem (Propo-

sition 6.2), so that
X ⊗N Y = r(X ⊗ Y )

defines a biclosed monoidal category structure on N ,
(b) N is endowed with a model category structure cofibrantly generated by r(I)

and r(J).
Then N endowed with the tensor product ⊗N is a monoidal model category.

Proof. — The hypothesis implies that r is a left Quillen functor. In particular, the
unit of ⊗N is cofibrant. By Lemma A.3, it suffices to show that if i is in I and j

is in I, then r(i) ⊗′N r(j) is a cofibration of N , and that if either i is in I and j is
in J , or i is in J and j is in I, then r(i) ⊗′N r(j) is a trivial cofibration. Using the
definition of ⊗N , the natural isomorphism r(X ⊗ Y ) ' r(r(X) ⊗ r(Y )) and the fact
that r preserves pushouts, we get that r(i) ⊗′N r(j) can be identified with r(i ⊗′ j).
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The result thus follows from the pushout-product axiom inM and the fact that r is
a left Quillen functor.

Theorem 6.21. — The folk model category structure on (m,n)-Cat is monoidal for
the Gray tensor product of (m,n)-categories.

Proof. — This follows from the previous proposition, whose hypothesis are fulfilled
by Proposition 6.12 and Theorem 6.19.

Remark 6.22. — In [13], slightly corrected by [14], Lack proves that the folk model
category structure on 2-Cat is monoidal for the pseudo Gray tensor product. This
is different from the result we get from the previous theorem in the case m = 2 and
n = 2, which deals with the oplax Gray tensor product.

Proposition 6.23. — The folk model category structure on (m,n)-Cat satisfies the
two following properties:
(a) Transfinite compositions of pushouts of tensor products of an object (on the left)

and a folk trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of tensor products of a folk trivial cofibra-

tion and an object (on the right) are folk weak equivalences.

Proof. — The second assertion can be deduced from the first one using the dual-
ity X 7→ Xop. As for the first one, using the fact that the tensor product of
(m,n)-categories is biclosed and hence commutes with colimits in each variable, it
suffices to consider transfinite compositions of pushouts of tensor products of an
object and an element of r(J). As the functor r commutes with colimits, such a
transfinite composition is of the form r(f), where f is a transfinite composition of
pushouts of tensor products of an object and an element of J . By Remark 5.11,
such an f is a transfinite composition of J1-transformation retracts. As folk weak
equivalences are stable under transfinite compositions, it suffices to show that r sends
J1-transformation retracts to weak equivalences. But if h : J1⊗X → Y is a J1-trans-
formation from an ω-functor u : X → Y to an ω-functor v : X → Y , then by
precomposing r(h) : r(J1⊗X)→ r(Y ) by the natural ω-functor

J1⊗r(X)→ r(J1)⊗ r(X)→ r(r(J1)⊗ r(X)) ' r(J1⊗X),

one gets an ω-functor J1⊗r(X) → r(Y ) defining a J1-transformation from r(u)
to r(v). This proves that r sends J1-transformation retracts to J1-transformation
retracts, hence the result by Proposition 4.13.

Remark 6.24. — In the case n = 0, in which the tensor product is symmetric,
the previous proposition asserts that the so-called monoid axiom of Schwede and
Shipley [21] holds in m-Gpd.

Corollary 6.25. — Let us endow m-Gpd with the Gray tensor product.
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(a) If P is a non-symmetric (m-Gpd)-operad, then the category of P-algebras in
m-groupoids is endowed with a right proper combinatorial model category struc-
ture whose weak equivalences (resp. fibrations) are the morphisms whose under-
lying m-functor is a folk weak equivalence (resp. a folk fibration) of m-groupoids.

(b) If P is a non-symmetric (m-Gpd)-operad such that P(n) is a cofibrant
m-groupoid for every n > 0, and if A is a cofibrant P-algebra in m-Gpd,
then the underlying m-groupoid of A is cofibrant.

Proof. — Using the previous remark, the first point is [9, Theorem 1.2] (or also [19,
Theorem 1.3], taking V = C = m-Gpd).

Let us prove the second point using results and terminology from [4]. Let P̃ be the
free symmetric operad on the non-symmetric operad P. We have P̃(n) = Σn×P(n),
where Σn denotes the symmetric group, the action of Σn on P̃(n) being the obvious
one. Since P(n) is cofibrant by hypothesis, this implies that, in the terminology of [4],
the operad P̃ is Σ-cofibrant. Moreover, the category of P̃-algebras is isomorphic to
the category of P-algebras via a functor constant on the underlying object and, by the
first point, this category is thus endowed with a model category structure compatible
with the forgetful functor to m-Gpd. In the terminology of [4], this means that P̃ is
an admissible operad. The result thus follows from [4, Corollary 5.5].

Remark 6.26. — In particular, the first point applied to the operad of monoids
(seen as an (m-Gpd)-operad by using the inclusion functor of sets into m-groupoids)
gives a model category structure on the category of monoids in the category of
m-groupoids endowed with the Gray tensor product.

Remark 6.27. — The monoid axiom implies many other interesting properties of
the homotopy theory of operads and their algebras. Another important setting to
obtain these kinds of results has been introduced by Berger and Moerdijk in [4]. One
easily checks that the folk model category structure on m-Gpd, equipped with the
Gray tensor product, satisfies the hypothesis of [4, Theorem 3.1], the “Hopf interval”
being simply the m-groupoid I1.

7. The folk model category structure is monoidal for the join

In this section, we will recall the definition of the join of ω-categories, introduced by
the first author and Maltsiniotis in [2], and we will prove that the resulting monoidal
category structure is compatible with the folk model category structure.

The strategy to define the join is similar to the one for the Gray tensor product. In
particular, we start by defining the join at the level of augmented directed complexes.

7.1. — The join K ? L of two augmented directed complexes K and L is defined in
the following way:
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– For n > 0, we have

(K ? L)n =
⊕

i+1+j=n
i>−1,j>−1

Ki ⊗ Lj ,

where by convention K−1 = Z and L−1 = Z. The positive generator of K−1
or L−1 will be denoted by ∅. If x is in Ki and y is in Kj , we will denote by
x ? y the element x⊗ y seen as an (i+ 1 + j)-chain of K ? L.

– For x in Ki and y in Kj with i+ 1 + j > 1, we have

d(x ? y) = dx ? y + (−1)i+1x ? dy,

where by convention dz = e(z)∅ if the degree of z is 0, and dz = 0 if the degree
of z is −1.

– For x in K0 and y in L0, we have

e(x ?∅) = e(x) and e(∅ ? y) = e(y).

– The submonoid (K ? L)∗n is defined to be generated by the subset⊕
i+1+j=n
i>−1,j>−1

K∗i ⊗ L∗j

of (K ? L)n.
The join defines a (non-symmetric) monoidal category structure on the category of
augmented directed complexes. Moreover, the first author and Maltsiniotis proved
(see [2, Corollary 6.21]) that this monoidal category structure restricts to the full
subcategory of strong Steiner complexes.

Theorem 7.2 (Ara–Maltsiniotis). — There exists a unique, up to unique isomor-
phism, locally biclosed monoidal category structure (see paragraph A.12) on ω-Cat
making the functor ν|Stf : Stf → ω-Cat a monoidal functor, where Stf is endowed
with the monoidal category structure given by the join.

Proof. — This is [2, Theorem 6.29].

7.3. — We define the join of ω-categories to be the monoidal product given by the
previous theorem. IfX and Y are two ω-categories, their join will be denoted byX?Y .
Explicitly, one has

X ? Y = lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf

ν(K ? L).

The unit of the join is the empty ω-category. As a consequence, if X and Y are two
ω-categories, we get canonical ω-functors ι1 : X → X ? Y and ι2 : Y → X ? Y .

The fact that the join is locally biclosed means that the functors
ω-Cat → X\ω-Cat

Y 7→ (X ? Y, ι1 : X → X ? Y )
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and
ω-Cat → Y \ω-Cat

X 7→ (X ? Y, ι2 : Y → X ? Y )

admit right adjoints. We thus get pairs of adjoint functors

ω-Cat → X\ω-Cat,
Y 7→ (X ? Y, ι1)

X\ω-Cat → ω-Cat

(Z,X u−→ Z) 7→ u\Z

and
ω-Cat → Y \ω-Cat,

X 7→ (X ? Y, ι2)
Y \ω-Cat → ω-Cat,

(Z, Y v−→ Z) 7→ Z
co
/ v

so that, if X and Y are ω-categories and u : X → Z and v : Y → Z are ω-functors,
we have natural bijections

HomX\ω-Cat((X ? Y, ι1), (Z, u)) ' Homω-Cat(Y, u\Z),

HomY \ω-Cat((X ? Y, ι2), (Z, v)) ' Homω-Cat(X,Z
co
/ v).

(See [2, Remark 6.37] for the reason for the decoration “co” in Z
co
/ v .)

One important consequence of the existence of these adjoints is that the join com-
mutes with connected colimits in each variable.

Examples 7.4. — Here are some examples of joints of ω-categories:

D0 ?D0 = • // • = D1 , D0 ?D1 =

•

��

•

99

$$ • ,

CK

D1 ?D1 =
• //

�� ��

• • //

��

•

• // •

OO

• //

??

• .

OO

*4
�#{�

����

We now begin to prove that the join is compatible with the folk model category
structure.

Proposition 7.5. — If

i : X → Y and j : Z → T

are two folk cofibrations, then the ω-functor

i ?′ j : Y ? Z qX?Z X ? T → Y ? T

is also a folk cofibration.
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Proof. — The proof is essentially the same as the one of Theorem 3.9. It is immediate
that if K and L are two augmented directed complexes with basis (that we denote
by BK and BL, respectively, following the notation introduced in paragraph 3.1),
then K ? L (see paragraph 7.1) is an augmented directed complex with basis

BK?L = {x ? y | x ∈ BK , y ∈ BL} ∪ {x ?∅ | x ∈ BK} ∪ {∅ ? y | y ∈ BL}.

From this, one deduces as in Proposition 3.5 that if i : K → L and j : M → N are
two rigid monomorphisms between augmented directed complexes with basis, then
the morphism

i ?′ j : L ?M qK?M K ? N → L ? N

is a rigid monomorphism between augmented directed complexes with basis which
identifies L ?M qK?M K ? N with the subcomplex generated by

BL ? BM ∪BK ? BN ∪BL ? {∅} ∪ {∅} ? BN .

One then deduces, as in Proposition 3.7, that if K, L, M and N are assumed to be
strong Steiner complexes, then the ω-functor

ν(i) ?′ ν(j) : ν(L) ? ν(M)qν(K)?ν(M) ν(K) ? ν(N)→ ν(L) ? ν(N)

is a folk cofibration. To do so, one needs the fact that rigid monomorphisms and
strong Steiner complexes are stable under join (see [2, Proposition 6.17 and Corol-
lary 6.21]) and that the functor ν|Stf : Stf → ω-Cat is monoidal for the join (see [2,
Theorem 6.29]). The result then follows from the fact that generating cofibrations
are of the form ν(i) for i a rigid monomorphism between strong Steiner complexes
(see Proposition 3.8).

Corollary 7.6. — The join of two cofibrant ω-categories is a cofibrant ω-category.

Proof. — This follows immediately from the previous proposition.

To end the proof of the compatibility of the join with the folk model category
structure, we will apply Lemma 5.1. The only non-trivial remaining hypothesis to be
checked is H5). To do so, we will prove that the class of J1-transformations is stable
by taking the join by an object on the right (a fact which was trivial for the tensor
product) by showing that, for every ω-category T , the functor − ? T can be endowed
with what is called a tensorial strength for the Gray tensor product. We start by
defining this tensorial strength at the level of augmented directed complexes.

7.7. — Let K, L and M be three augmented directed complexes. We define a mor-
phism

σ : K ⊗ (L ?M)→ (K ⊗ L) ? M,

natural in K, L and M , in the following way. For n > 0, we set

σn(x⊗ (y ? z)) =
{
e(x)(y ? z) if |y| = −1,
(x⊗ y) ? z if |y| > 0,
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where by convention e(x) = 0 if x is not of degree 0.

Proposition 7.8. — The morphisms σn define a morphism of augmented directed
complexes σ : K ⊗ (L ?M)→ (K ⊗ L) ? M .

Proof. — It is immediate that σn respects positive elements. Let us prove that σ0 is
compatible with the augmentations. If the degree of x⊗ (y ? z) is 0 then |x| = 0 and

– either |y| = −1 and |z| = 0, in which case we have

e(σ0(x⊗ (y ? z))) = e(e(x)(y ? z)) = e(x)e(y ? z) = e(x⊗ (y ? z)),

– or |y| = 0 and |z| = −1, in which case we can assume that z = ∅ and we have
e(σ0(x⊗ (y ?∅))) = e((x⊗ y) ?∅) = e(x⊗ y)

= e(x)e(y) = e(x)e(y ?∅) = e(x⊗ (y ?∅)).

Suppose now that the degree n of x⊗ (y ? z) is at least 1 and let us prove that

σn−1d(x⊗ (y ? z)) = dσn(x⊗ (y ? z)).

We will freely use the conventions for the differentials of tensors and joins introduced
in paragraphs 2.9 and 7.1. We distinguish four cases:

– If |y| = −1, then we have

σn−1d(x⊗ (y ? z)) = σn−1
(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= e(dx)(y ? z) + (−1)|x|e(x)d(y ? z)

(being careful with the case |z| = 0)
= e(x)d(y ? z)

(as ed = 0 and e(x) = 0 if |x| 6= 0)
= d(e(x)(y ? z))
= dσn(x⊗ (y ? z)).

– If |y| = 0 and |z| = −1, then we have
σn−1d(x⊗ (y ? z)) = σn−1(dx⊗ (y ? z))

= (dx⊗ y) ? z
= d(x⊗ y) ? z
= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)).

– If |y| = 0 and |z| > 0, then we have

σn−1d(x⊗ (y ? z))

= σn−1
(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ (e(y)∅ ? z) + (−1)|x|+|y|+1x⊗ (y ? dz)

)
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= (dx⊗ y) ? z + (−1)|x|e(x)e(y)(∅ ? z) + (−1)|x|+|y|+1(x⊗ y) ? dz
(being careful with the case |z| = 0)

= (dx⊗ y) ? z + (e(x⊗ y)∅ ? z) + (−1)|x⊗y|+1(x⊗ y) ? dz
(as the second term is null if |x| 6= 0)

= d(x⊗ y) ? z + (−1)|x⊗y|+1(x⊗ y) ? dz
(distinguishing the cases |x| = 0 and |x| 6= 0)

= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)).

– If |y| > 1, then we have

σn−1d(x⊗ (y ? z))

= σn−1
(
dx⊗ (y ? z) + (−1)|x|x⊗ d(y ? z)

)
= σn−1

(
dx⊗ (y ? z) + (−1)|x|x⊗ (dy ? z) + (−1)|x|+|y|+1x⊗ (y ? dz)

)
= (dx⊗ y) ? z + (−1)|x|(x⊗ dy) ? z + (−1)|x|+|y|+1(x⊗ y) ? dz

(being careful with the cases |z| = −1 and |z| = 0)

= d(x⊗ y) ? z + (−1)|x⊗y|+1(x⊗ y) ? dz
= d((x⊗ y) ? z)
= dσn(x⊗ (y ? z)),

thereby proving the result.

Proposition 7.9. — For any augmented directed complex T , the morphism σ of the
previous proposition defines a tensorial strength for the tensor product on the functor

Cad → Cad

K 7→ K ? T,

meaning that, for every augmented directed complexes K, L and M , the triangles

K ⊗ L⊗ (M ? T ) K⊗s
//

s
''

K ⊗ ((L⊗M) ? T )

s
vv

(K ⊗ L⊗M) ? T

and
Z⊗ (K ? T ) s //

λ
$$

(Z⊗K) ? T

λ?T
zz

K ? T ,
where we have neglected the associativity constraints and λ denotes the left unit con-
straint, are commutative.
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Proof. — This follows from direct calculations.

7.10. — Let X, Y and Z be three ω-categories. We define an ω-functor

s : X ⊗ (Y ? Z)→ (X ⊗ Y ) ? Z,

natural in X, Y and Z, in the following way. First, recall that any ω-category T is a
canonical colimit of ω-categories associated to strong Steiner complexes in the sense
that we have a canonical isomorphism

T ' lim−→
ν(K)→T, T∈Stf

ν(K).

(This follows from the fact that ν(Stf) contains Joyal’s category Θ which is dense
in ω-Cat, see also [22, Theorem 7.1].) This colimit is connected as the null aug-
mented directed complex is an initial object of the category of strong Steiner com-
plexes. As by Theorems 2.10 and 7.2, both the Gray tensor product and the join
commute with connected colimits in each variable and are compatible with the func-
tor ν|Stf : Stf → ω-Cat, we get canonical isomorphisms

X ⊗ (Y ? Z) ' lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf
ν(M)→Z,M∈Stf

ν(K ⊗ (L ?M)),

(X ⊗ Y ) ? Z ' lim−→
ν(K)→X,K∈Stf
ν(L)→Y, L∈Stf
ν(M)→Z,M∈Stf

ν((K ⊗ L) ? M).

We thus obtain our ω-functor s : X ⊗ (Y ? Z) → (X ⊗ Y ) ? Z by taking the colimit
over K, L and M of the ω-functors

ν(σ) : ν(K ⊗ (L ?M))→ ν((K ⊗ L) ? M),

where σ : K ⊗ (L ?M)→ (K ⊗ L) ? M is the morphism of Proposition 7.8.

Proposition 7.11. — For any ω-category T , the ω-functor s of the previous para-
graph defines a tensorial strength for the Gray tensor product on the functor

ω-Cat → ω-Cat
X 7→ X ? T,

meaning that, for every ω-categories X, Y and Z, the triangles

X ⊗ Y ⊗ (Z ? T ) X⊗s
//

s
''

X ⊗ ((Y ⊗ Z) ? T )

s
ww

(X ⊗ Y ⊗ Z) ? T
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and
D0 ⊗ (X ? T ) s //

λ
%%

(D0 ⊗X) ? T

λ?T
yy

X ? T ,
where we have neglected the associativity constraints and λ denotes the left unit con-
straint, are commutative.

Proof. — Using the same arguments as for the definition of s in terms of σ, we get that
these two triangles are colimits of the image by ν of triangles as in Proposition 7.9.
The result thus follows from this proposition, which asserts that these triangles are
commutative.

Proposition 7.12. — Let f, g : X → Y be two ω-functors. If h : J1⊗X → Y is a
J1-transformation from f to g, then, for any ω-category Z, the ω-functor

J1⊗(X ? Z) s−→ (J1⊗X) ? Z h?Z−−→ Y ? Z

defines a J1-transformation from f ? Z to g ? Z.

Proof. — This follows from the commutativity of the diagram

X ? Z

'
��

'

((

f?Z

��

D0 ⊗ (X ? Z) s //

〈0〉⊗(X?Z)
��

(D0 ⊗X) ? Z

(〈0〉⊗X)?Z
��

J1⊗(X ? Z) s // (J1⊗X) ? Z h?Z // Y ? Z

D0 ⊗ (X ? Z) s //

〈1〉⊗(X?Z)

OO

(D0 ⊗X) ? Z

(〈1〉⊗X)?Z

OO

X ? Z

'

OO

'

66

g?Z

DD

,

the two squares in the middle of the diagram being commutative by naturality of s,
the two triangles by the previous proposition, and the two other small diagrams by
hypothesis on h.

Remark 7.13. — The analogous statement for oplax transformations, obtained by
replacing J1 by D1, is true as well, the proof applying mutatis mutandis.

Theorem 7.14. — The folk model category structure on ω-Cat is monoidal for the
join.
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Proof. — We apply Lemma 5.1. The hypothesis H1) and H2) are true for the folk
model category structure and the hypothesis H3) is true for any locally biclosed
monoidal category, as the initial object is the tensor unit. The hypothesis H4) follows
from Proposition 7.5.

It remains to prove H5). Let i be a generating trivial cofibration and let Z be an
ω-category. As seen in the proof of Proposition 5.4, the ω-functor i is a J1-deformation
retract. The previous proposition thus implies that i ? Z is also a J1-deformation
retract, and therefore a weak equivalence by Proposition 4.13. The fact that Z?i is also
a weak equivalence follows from a duality argument, as in the proof of Corollary 5.5,
using the canonical natural isomorphism

(X ? Y )op ' Y op ? Xop

(see [2, Proposition 6.35]). This ends the proof of H5) and hence of the theorem.

The statement analogous to Proposition 5.9 holds as well, the proof being a direct
adaption:

Proposition 7.15. —
(a) Transfinite compositions of pushouts of join of an object (on the left) and a folk

trivial cofibration are folk weak equivalences.
(b) Transfinite compositions of pushouts of join of a folk trivial cofibration and an

object (on the right) are folk weak equivalences.

Remark 7.16. — In particular, the join of a folk trivial cofibration by an object (on
the left or on the right) is a folk weak equivalence.

Finally, as for the Gray tensor product, the join of ω-categories induces a join of
m-categories, which is compatible with the folk model category structure on m-Cat:

Theorem 7.17 (Ara–Maltsiniotis). — Let m > 0. The join of m-categories

X ?m Y = r(X ? Y ),

where r : ω-Cat → m-Cat denotes the left adjoint to the inclusion functor
m-Cat ↪→ ω-Cat, defines a locally biclosed monoidal category structure on m-Cat.

Proof. — This is the main result of [2, Chapter 8].

Theorem 7.18. — The folk model category structure on m-Cat is monoidal for the
join of m-categories.

Proof. — This follows from a straightforward adaption of the proof of Proposi-
tion 6.20, which only uses connected colimits, with whom any locally biclosed
monoidal tensor commutes.
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Appendix A
Monoidal model categories and derived tensor products

In this appendix, we recall classical results on biclosed monoidal model categories
and extend them to locally biclosed monoidal model categories. In particular, we will
get that the “local internal Hom” of the join, the so-called generalized slices, can be
right-derived as functors of two variables.

A.1. — A monoidal model category is a model category whose underlying category
is endowed with a monoidal category structure satisfying the following compatibility
axioms:
M1) the tensor product ⊗ : M×M → M satisfies the pushout-product axiom: if

i : A→ B and j : C → D are two cofibrations, then the morphism

i⊗′ j : B ⊗ C qA⊗C A⊗D → B ⊗D,

induced by the commutative square

A⊗ C

i⊗C
��

A⊗j
// A⊗D

i⊗D
��

B ⊗ C
B⊗j
// B ⊗D ,

is a cofibration. Moreover, if either i or j is a trivial cofibration, then so is i⊗′ j.
M2) the tensor product satisfies the unit axiom: for every cofibrant replace-

ment p : QI ∼−� I of the tensor unit and every cofibrant object A, both
p⊗A : QI ⊗A→ I ⊗A and A⊗ p : A⊗QI → A⊗ I are weak equivalences.

Remark A.2. — The pushout-product axiom implies that, if the cofibrations (resp.
the trivial cofibrations) are stable by tensoring by the initial object ∅, then they
are stable by tensoring by any cofibrant object X. In particular, if this condition for
trivial cofibrations is satisfied and the tensor unit I is cofibrant, then, by Ken Brown’s
lemma, the pushout-product axiom implies the unit axiom.

Lemma A.3. — LetM be a cofibrantly generated model category with sets of gener-
ating cofibrations I and of generating trivial cofibrations J and let ⊗ :M×M→M
be a functor which commutes with pushouts and transfinite compositions in each vari-
able. Then for ⊗ to satisfy the pushout-product axioms, it suffices that it holds for
cofibrations in I and trivial cofibrations in J .

Proof. — See for instance (the proof of) [18, Lemma 4.1.4].

Remark A.4. — More precisely, in the situation of the previous lemma, each of the
three conditions appearing in the pushout-product axiom can be checked on “gener-
ators”.
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Proposition A.5. — IfM is a monoidal model category having the additional prop-
erty that trivial cofibrations are stable by tensoring by the initial object, then the tensor
product admits a total left derived functor ⊗L : Ho(M)×Ho(M)→ Ho(M) and this
derived tensor product defines a monoidal category structure on Ho(M).

Proof. — It follows from Remark A.2 that the tensor product of two trivial cofibra-
tions between cofibrant objects is a weak equivalence. By Ken Brown’s lemma, this
implies that the tensor product preserves weak equivalences between cofibrant ob-
jects and hence, by a classical result of Quillen [20, I.4, Proposition 1], that its total
left derived functor ⊗L exists. Checking that ⊗L indeed defines a monoidal category
structure on Ho(M) is not difficult (see the proof of [10, Theorem 4.3.2]).

A.6. — Recall that a monoidal category C is said to be biclosed if, for every object X
of C, the functor

C → C
Y 7→ X ⊗ Y

and, for every object Y of C, the functor
C → C
X 7→ X ⊗ Y

admit right adjoints. In this case, we get pairs of adjoint functors

C → C
Y 7→ X ⊗ Y

C → C

Z 7→ Homl
C(X,Z)

and
C → C
X 7→ X ⊗ Y

C → C
Z 7→ Homr

C(Y,Z).

Moreover, Homl
C and Homr

C extend to functors

Homl
C ,Homr

C : Cop × C → C

and, if X, Y and Z are three objects, we get natural bijections

HomC(X,Homr
C(Y,Z)) ' HomC(X ⊗ Y, Z) ' HomC(Y,Homl

C(X,Z)).

Remark A.7. — Let C be a monoidal category. If C is biclosed, then its tensor prod-
uct preserves colimits in each variable. By a classical adjoint theorem, the converse
holds provided that the category C is locally presentable.

Proposition A.8. — LetM be a model category endowed with a biclosed monoidal
category structure. Then the following conditions are equivalent:

i) the tensor product satisfies the pushout-product axiom,
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ii) for every cofibration i : A→ B and every fibration p : X → Y , the induced map

Homl
M(B,X)→ Homl

M(A,X)×Homl
M(A,Y ) Homl

M(B, Y )

is a fibration that is trivial if either i or p is,
iii) for every cofibration j : C → D and every fibration p : X → Y , the induced map

Homr
M(D,X)→ Homr

M(C,X)×Homr
M(C,Y ) Homr

M(D,Y )

is a fibration that is trivial if either j or p is.

Proof. — See for instance [10, Lemma 4.2.2].

A.9. — A biclosed monoidal model category is a monoidal model category whose
underlying monoidal category is biclosed. Our example of interest in this paper is the
folk model category structure on ω-Cat (or more generally (m,n)-Cat) endowed with
the Gray tensor product (see Theorems 5.6 and 2.10). Since tensoring any object by
the initial object gives the initial object in a biclosed monoidal model category, the
hypothesis of Proposition A.5 are satisfied in such a model category and the monoidal
tensor ⊗ thus admits a total right derived functor ⊗L.

Proposition A.10. — LetM be a biclosed monoidal model category. Then, if X is
a cofibrant object ofM, the adjoint pair

M→M
Y 7→ X ⊗ Y

M→M

Z 7→ Homl
M(X,Z)

is a Quillen pair and, likewise, if Y is a cofibrant object ofM, the adjoint pair
M→M
X 7→ X ⊗ Y

M→M
Z 7→ Homr

M(Y,Z)

is a Quillen pair.

Proof. — It suffices to show that the left adjoints respect cofibrations and trivial
cofibrations. This follows from the pushout-product axiom (see Remark A.2).

Theorem A.11 (Hovey). — Let M be a biclosed monoidal model category. Then
the monoidal category structure on Ho(M) defined by the derived tensor product is
biclosed. Moreover, the functors

Homl
M,Homr

M :Mop ×M→M

admit total right derived functors and we have

RHoml
M = Homl

Ho(M) and RHomr
M = Homr

Ho(M) .

Proof. — This is [10, Theorem 4.3.2]. Let us just briefly recall why these functors
admit total right derived functors: one deduces from Proposition A.8 that these
functors preserve trivial fibrations between fibrant objects; by Ken Brown’s lemma,
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this implies that they preserve weak equivalences between fibrant objects and hence
that they admit total right derived functors.

We now move on to locally biclosed monoidal categories, as introduced in [2].

A.12. — Let C be a monoidal category. Let us denote by ? the tensor product of C
and suppose that its tensor unit is an initial object ∅. If X and Y are two objects,
we get morphisms

X
ι1−→ X ? Y

ι2←− Y
by precomposing the morphisms

X ?∅ X?∅Y−−−−→ X ? Y
∅X?Y←−−−− ∅ ? Y,

where ∅Z denotes the unique morphism from ∅ to Z, with the unit constraints. Using
these morphisms, we obtain, for every object X of C, a functor

C → X\C
Y 7→ (X ? Y, ι1)

and, for every object Y of C, a functor
C → Y \C
X 7→ (X ? Y, ι2).

We say that C is locally biclosed if its tensor unit is an initial object and if the two
above functors admit right adjoints. In this case, we thus get pairs of adjoint functors

C → X\C
Y 7→ (X ? Y, ι1)

X\C → C

(Z,X u−→ Z) 7→ u\Z
and

C → Y \C
X 7→ (X ? Y, ι2)

Y \C → C

(Z, Y v−→ Z) 7→ Z/v.

By abuse of notation, we will often denote u\Z by X\Z and, similarly, Z/v by Z/Y .
These functors are called the slice functors. By definition, we have natural bijections

HomX\C((X ? Y, ι1), (Z, u)) ' HomC(Y,X\Z)

and
HomY \C((X ? Y, ι2), (Z, v)) ' HomC(X,Z/Y ).

Similarly to what happened in the case of biclosed monoidal categories, the functors
(Z, u : X → Z) 7→ X\Z and (Z, v : Y → Z) 7→ Z/Y can be made functorial in X

and Y , respectively. More precisely, they canonically extend to functors
Tw(C)→ C
X → Z 7→ X\Z

Tw(C)→ C
Y → Z 7→ Z/Y ,

where Tw(C) denotes the twisted arrow category of C. (Recall that the objects of
Tw(C) are arrows f : X → Y of C and that a morphism of Tw(C) from an object
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f : X → Y to an object f ′ : X ′ → Y ′ is a pair of morphisms g : X ′ → X and
h : Y → Y ′ of C making the square

X

f

��

X ′
g

oo

f ′

��

Y
h
// Y ′

commute.) Indeed, if
X

u

��

X ′
g

oo

u′

��

Z
h
// Z ′

is a commutative square, one defines a morphism

(g∗, h∗) : X\Z → X ′\Z ′

using the Yoneda lemma. If T is any object of C, then
HomC(T,X\Z) ' HomX\C((X ? T, ι1), (Z, u))

HomC(T,X ′\Z ′) ' HomX′\C((X
′ ? T, ι1), (Z ′, u′))

and the natural map

HomC(g ? T, h) : HomC(X ? T,Z)→ HomC(X ′ ? T, Z ′)

induces the desired morphism. Note that this morphism (g∗, h∗) is the diagonal of
the commutative square

X\Z
h∗ //

g∗

��

X\Z ′

g∗

��

X ′\Z
h∗

// X ′\Z ′ ,

where g∗ = (g∗, 1∗) and h∗ = (1∗, h∗). A similar construction applies to the other
slice functor.

Remark A.13. — Let C be a monoidal category. If C is locally biclosed, then its
tensor product preserves connected colimits in each variable (as the forgetful functor
C → Z\C preserves these colimits). By a classical adjoint theorem, the converse
holds provided that the category C is locally presentable (as colimits in Z\C can be
computed as connected colimits in C).

A.14. — A locally biclosed monoidal model category is a monoidal model category
whose underlying monoidal category is locally biclosed. Our example of interest in this
paper is the folk model category structure on ω-Cat (or more generally n-Cat) endowed
with the join (see Theorems 7.14 and 7.2). Note that in the locally biclosed setting,



58 DIMITRI ARA & MAXIME LUCAS

the unit axiom is a consequence of the pushout-product axiom. This follows from
Remark A.2 as the tensor unit is the initial object and is thus cofibrant. Moreover,
Proposition A.5 shows that the monoidal tensor ? of such a model category admits a
total right derived functor ?L.

Proposition A.15. — Let M be a locally biclosed monoidal model category. For
every cofibrant object X ofM, the adjoint pair

M→ X\M
Y 7→ (X ? Y, ι1)

X\M →M
(Z,X → Z) 7→ X\Z

is a Quillen pair and, likewise, for every cofibrant object Y ofM, the adjoint pair
M→ Y \M
X 7→ (X ? Y, ι2)

Y \M →M
(Z, Y → Z) 7→ Z/Y

is a Quillen pair.

Proof. — It suffices to show that the left adjoints respect cofibrations and trivial
cofibrations. As the cofibrations and trivial cofibrations of Z\M are defined using
the forgetful functor Z\M → M, this follows from the pushout-product axiom by
Remark A.2.

The goal of the rest of this appendix is to derive the slice functors of a locally
biclosed monoidal model categoryM, as functors of source Tw(M), where the weak
equivalences of Tw(M) are the level-wise weak equivalences. Unfortunately, the cat-
egory Tw(M) is neither finitely cocomplete (it does not even have an initial object)
nor finitely complete in general, and therefore cannot be endowed with a model cate-
gory structure. We will see that it can be endowed with a right simplicial derivability
structure in the sense of Kahn and Maltsiniotis (see [12, Definition 6.7]) and that this
is enough to derive the slice functors.

We start by recalling this notion of right simplicial derivability structure and the
corresponding result of derivation.

A.16. — A localizer, or relative category, is a pair (C,W), where C is a category and
W is a class of morphisms of C called weak equivalences. Such a localizer is said to be
multiplicative if W contains all the identities and is stable under composition. In this
case, the class W can be identified with a subcategory of C with same objects as C.

A morphism from a localizer (C,W) to a localizer (C′,W ′) is a functor F : C → C′
such that F (W) ⊂ W ′.

If (C,W) is a localizer and I is a small category, then we get a localizer (CI ,WI),
where CI denotes the category Hom(I, C) of functors from I to C and WI the class of
natural transformations between these functors which are object-wise weak equiva-
lences. This construction is functorial in I in an obvious way: if F : (C,W)→ (C′,W ′)
is a morphism of localizers, we get a morphism FI : (CI ,WI)→ (C ′I ,W ′I).
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A.17. — Fix K : (C0,W0) → (C,W) a morphism of multiplicative localizers and
denote by K[ the induced functor K[ :W0 →W. If X is an object of C, the category
of right K-resolutions of X is the comma category X ↓ K[, that is, the category
whose objects are pairs (Y,X w−→ KY ), where Y is an object of C0 and w is a weak
equivalence of C, and whose morphisms from an object (Y,w) to an object (Y ′, w′)
are the weak equivalences w0 : Y → Y ′ of C0 such that K(w0)w = w′.

If I is a small category and F : I → C is a functor, then, by considering the induced
morphism of localizersKI , we get a notion of category of rightKI -resolutions for F . In
particular, considering I = {0 < 1}, we get a notion of category of right K-resolutions
of an arrow of C, and taking I = {0 < 1 < 2}, we get a notion of category of right
K-resolutions of a pair of composable arrows of C.

A.18. — Let (C,W) be a multiplicative localizer. A right simplicial derivability
structure on (C,W) consists of a multiplicative localizer (C0,W0) and a morphism of
localizers K : (C0,W0)→ (C,W) satisfying the following conditions:
(a) for every object X of C, the category of right K-resolutions of X is 1-connected

(that is, simply connected and non-empty),
(b) for every arrow f of C, the category of right K-resolutions of f is 0-connected

(that is, connected and non-empty),
(c) for every pair (g, f) of composable arrows of C, the category of right K-resolu-

tions of (g, f) is −1-connected (that is, non-empty).

Example A.19. — If M is a model category, then (M,W), where W is the class
of weak equivalences of M, is naturally endowed with a right simplicial derivability
structure K : (M0,W0) → (M,W), where M0 denotes the full subcategory of M
consisting of fibrant objects and W0 the class of weak equivalences between fibrant
objects (see the “table of implications” at the very end of [12]).

Proposition A.20 (Kahn–Maltsiniotis). — Let F : (C,W) → (C′,W ′) be a
morphism of localizers. If there exists a right simplicial derivability structure
K : (C0,W0) → (C,W) on (C,W) such that FK(W0) ⊂ W ′, then F admits a total
right derived functor RF : C[W−1]→ C′[W ′−1].

Proof. — See [12, Proposition 5.9 and paragraph 6.8].

We will now prove a general result allowing to lift a right simplicial derivability
structure along a discrete opfibration, result that we will then apply to the discrete
opfibration Tw(M)→Mop ×M.

Proposition A.21. — Let (C,W) be a multiplicative localizer endowed with a right
simplicial derivability structure K : (C0,W0)→ (C,W) and let p : C̃ → C be a discrete
opfibration. Set W̃ = p−1(W). Then (C̃, W̃) is endowed with a natural simplicial
derivability structure K̃ : (C̃0, W̃0)→ (C̃, W̃), obtained by pulling back K along p.
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Proof. — Let I be a small category and let F̃ : I → C̃ be a functor. We are going
to show that the categories of right K̃I -resolutions of F̃ and of right KI -resolutions
of pF̃ are isomorphic. This will immediately imply the result.

By definition, we have a pullback square

(C̃0, W̃0) K̃ //

��

(C̃, W̃)

p

��

(C0,W0)
K
// (C,W)

in the category of localizers. Note that pullbacks in this category are computed
component-wise. By applying the Hom(I,−) functor, we get a commutative square

((C̃0)I , (W̃0)I)
K̃I //

��

(C̃I , W̃I)

pI

��

((C0)I , (W0)I)
KI

// (CI ,WI) ,

that is easily seen to still be a pullback square. As the Hom(I,−) functor pre-
serves discrete opfibrations, the functor pI : C̃I → CI and therefore its restriction
(pI)[ : W̃I →WI are still discrete opfibrations.

By definition, the category of right K̃I -resolutions of F̃ : I → C̃ is the comma
category F̃ ↓ (K̃I)[, while the category of right KI -resolutions of pI(F̃ ) = pF̃ : I → C
is the comma category pI(F̃ ) ↓ (KI)[. The result thus follows from the following
lemma, applied to the pullback square

(W̃0)I
(K̃I)[

//

��

W̃I

(pI)[

��

(W0)I
(KI)[

// WI ,

lemma which is probably well known and whose proof is left as an easy exercise to
the reader.

Lemma A.22. — Let
X ′ G //

��

X

p

��

B′
F
// B

be a pullback square of categories, where p is a discrete opfibration. Then, for ev-
ery object X of X , the functor p induces an isomorphism between the comma cate-
gories X ↓ G and p(X) ↓ F .
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A.23. — LetM be a model category. We will say that a morphism

X

f

��

X ′
g

oo

f ′

��

Y
h
// Y ′

of Tw(M) from f to f ′ is
– a weak equivalence if g and h are,
– a fibration if g is a cofibration and h is a fibration.

The category Tw(M) admits as a terminal object the unique arrow ∅→ ∗ from the
initial object ofM to the terminal object ofM, and we will say that an object X → Y

of Tw(M) is fibrant if the unique morphism from this object to the terminal object
is a fibration. This amounts to saying that X is cofibrant and Y is fibrant.

We will denote by (Tw(M), W̃) the resulting localizer and by (Tw(M)0, W̃0) the
induced localizer on the full subcategory of Tw(M) consisting of fibrant objects.

Proposition A.24. — IfM is a model category, then the inclusion morphism

(Tw(M)0, W̃0) ↪→ (Tw(M), W̃)

is a right simplicial derivability structure.

Proof. — It is immediate that the functor

Tw(M)→Mop ×M
X → Y 7→ (X,Y )

is a discrete opfibration. We thus get the result by applying Proposition A.21 to
this functor and to the right simplicial derivability structure associated to the model
categoryMop ×M (see Example A.19).

To use Proposition A.20 to derive the slice functors, we now need to prove that
these functors preserve weak equivalences between fibrant objects. To do so, we will
generalize Proposition A.8 to the locally biclosed setting.

A.25. — Let C be a locally biclosed monoidal category. If i : A→ B and j : C → D

are two morphisms of C, note that the morphism

i ?′ j : B ? C qA?C A ? D → B ? D

is naturally above both B and D. If now p : (X, f)→ (Y, g) is a morphisms of B\C,
using i and p we get a morphism

i\′p : B\X → A\X ×A\Y B\Y
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induced by the commutative square

B\X
p∗ //

i∗

��

B\Y

i∗

��

A\X p∗
// A\Y .

Similarly, from j and a morphism p : (X, f)→ (Y, g) of D\C, we get a morphism

p/′j : X/D → X/C ×Y/C Y/D.

Lemma A.26 (Joyal). — Let C be a locally biclosed monoidal category. If
i : A → B and j : C → D are two morphisms of C and p : X → Y is a
morphism of C above D, then we have

i ?′ j ⊥D\C p if and only if j ⊥C i\′p if and only if i ⊥C p/′j,

where ⊥D denotes the relation of weak orthogonality in the category D.

Proof. — The lemma is inspired by [11, Lemma 3.6], whose proof applies mutatis
mutandis.

Proposition A.27. — Let M be a model category endowed with a locally biclosed
monoidal category structure. Then the following conditions are equivalent:

i) the tensor product ? satisfies the pushout-product axiom,
ii) for every cofibration i : A → B, every fibration p : X → Y and every map

f : B → X, the induced map

i\′p : B\X → A\X ×A\Y B\Y

is a fibration that is trivial if either i or p is,
iii) for every cofibration j : C → D, every fibration p : X → Y and every map

f : D → X, the induced map

p/′j : X/D → X/C ×Y/C Y/D
is a fibration that is trivial if either j or p is.

Proof. — This follows directly from the previous lemma and the fact that
i ?′ j ⊥M p if and only if for every f : B → X, we have i ?′ j ⊥B\M p,

if and only if for every f : D → X, we have i ?′ j ⊥D\M p.

Proposition A.28. — IfM is a locally biclosed monoidal model category, then the
functors

Tw(M)→M
X → Z 7→ X\Z

Tw(M)→M
Y → Z 7→ Z/Y

both send fibrations (resp. trivial fibrations) between fibrant objects to fibrations (resp.
trivial fibrations). Moreover, they preserve weak equivalences between fibrant objects.
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Proof. — Let us prove the result for the first functor, the proof for the second one
being similar. Let

X

u

��

X ′
g

oo

u′

��

Z
h
// Z ′

be a morphism of Tw(M) between fibrant objects u and u′. The morphism

(g∗, h∗) : X\Z → X ′\Z ′

factors as

X\Z
g∗−→ X ′\Z

h∗−→ X ′\Z ′.

These morphisms g∗ and h∗ are the images of g and h by the functors

(M/Z)op →M
(X,X → Z) 7→ X\Z

X ′\M →M
(Z,X ′ → Z) 7→ X ′\Z,

and it therefore suffices to show that the first of these functors sends cofibrations
(resp. trivial cofibrations) of M/Z to fibrations (resp. trivial fibrations) of M and
that the second one preserves fibrations and trivial fibrations. Note that by Ken
Brown’s lemma (which cannot be applied directly to Tw(M)), this will imply that
the first functor preserves weak equivalences between cofibrant objects of M/Z (an
object ofM/Z being cofibrant if its underlying object inM is) and that the second
functor preserves weak equivalences between fibrant objects in X ′\M (an object of
X ′\M being fibrant if its underlying object in M is), thereby proving the second
assertion.

For the first functor, observe that the morphism g∗ can be identified with the
morphism

g\′p : X\Z → X ′\Z ×X′\∗ X\∗

of paragraph A.25, where p : Z → ∗ denotes the unique morphism from Z to the ter-
minal object ∗. As Z is fibrant, Proposition A.27 implies that this first functor sends
cofibrations (resp. trivial cofibrations) ofM/Z to fibrations (resp. trivial fibrations)
of M. As for the second functor, since X ′ is cofibrant, it preserves fibrations and
trivial fibrations by Proposition A.15.

Theorem A.29. — If M is a locally biclosed monoidal model category, then the
functors

Tw(M)→M
X → Z 7→ X\Z

Tw(M)→M
Y → Z 7→ Z/Y

both admit total right derived functors.



64 DIMITRI ARA & MAXIME LUCAS

Proof. — Since by the previous proposition these functors preserve weak equivalences
between fibrant objects, the result follows from the derivability condition of Kahn and
Maltsiniotis (Proposition A.20) applied to the right simplicial derivability structure
of Proposition A.24.

Corollary A.30. — The functors
Tw(ω-Cat)→ ω-Cat

X
u−→ Z 7→ u\Z

Tw(ω-Cat)→ ω-Cat

Y
v−→ Z 7→ Z

co
/ v

(see paragraph 7.3 for the notation), where ω-Cat is endowed with the folk model
category structure, admit total right derived functors.

Proof. — This follows from the previous theorem applied to the folk model category
structure on ω-Cat endowed with the join (see Theorems 7.14 and 7.2).
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