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Summary

Analysis of 15 complete bacterial chromosomes

revealed important biases in gene organization. Strong

compositional asymmetries between the genes lying

on the leading versus lagging strands were observed

at the level of nucleotides, codons and, surprisingly,

amino acids. For some species, the bias is so high

that the sole knowledge of a protein sequence allows

one to predict with almost no errors whether the gene

is transcribed from one strand or the other. Further-

more, we show that these biases are not species spe-

ci®c but appear to be universal. These ®ndings may

have important consequences in our understanding

of fundamental biological processes in bacteria, such

as replication ®delity, codon usage in genes and even

amino acid usage in proteins.

Introduction

Bacterial chromosome replication usually starts at a single

origin, and two replication forks propagate in opposite

directions up to termination signals (Marians, 1992). As

the replication mechanism differs for the two strands of the

duplex DNA (Marians, 1992), this process may, in principle,

give rise to compositional asymmetries between the lead-

ing (continuously replicated) strand and the lagging strand.

Indeed, numerous indications of these asymmetries have

been shown recently, essentially re¯ecting an excess of

G over C in the leading strand (Lobry, 1996; Francino and

Ochman, 1997; Freeman et al., 1998; MraÂzek and Karlin,

1998). Most of these studies focus on the nucleotide gen-

ome composition, using variants of the (GÿC)/(G�C)

plots initially proposed by Lobry (1996), although recent

analyses using oligonucleotides have been reported (Salz-

berg et al., 1998). In contrast, few studies have been

undertaken to investigate the impact of this bias at the

level of genes (Lobry, 1996; Kerr et al., 1997; McInerney,

1998), and none have been undertaken at the level of pro-

teins. We have therefore undertaken a study to address

the following questions: (i) are there detectable composi-

tional asymmetries in genes in terms of nucleotides,

codons or amino acids? (ii) how are they related to the

known G/C bias? (iii) are they species speci®c or universal?

The main dif®culty in answering these questions is tech-

nical: when considering more than the four variables G,

A, T, C (for instance, considering the abundance of codons

in genes), it becomes virtually impossible to check all poss-

ible combinations of variables manually, and more sophis-

ticated techniques are required. For this purpose, we have

introduced the use of a classical statistical tool called linear

discriminant analysis (LDA), initially formulated by R. A.

Fisher in 1936 (Fisher, 1936). Given two populations of

objects described by a set of n variables xi, the goal is to

build a function F (x )�a0�Sn
i� 1 a ixi, such that F (x )>0

when x belongs to the ®rst population and F (x )<0 when

x belongs to the second population. The purpose of LDA

is to determine the coef®cients {a i}i�1,n that discriminate

`best' between the two populations [in the context of LDA,

`best' means optimized ratio (mean difference)2/variance].

The application of this technique to our problem is straight-

forward. Let us set a putative origin of replication at an arbi-

trary position p in the chromosome (Fig. 1). This creates

two populations of genes: those lying on the leading strand

and those lying on the lagging strand. Then, we describe

each gene by using a set of variables (for instance, the

relative frequencies of the 61 non-stop codons), and we

subject the two populations of genes to LDA in order to

evaluate how accurately they can be separated (i.e. pre-

dicted) on the basis of these variables (Fig. 1). By varying

the position p along the chromosome, we plot the variation

of the prediction accuracy. If any bias does exist, we expect

higher accuracy when p coincides with the origin or termi-

nation region, as all genes `add up' their effect at these

locations. Here, we report the results obtained using four

different sets of variables: (i) the relative frequency of

nucleotides (four variables); this particular analysis is

equivalent to, although mathematically different from, the
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above-mentioned studies (Lobry, 1996; Grigoriev, 1998);

(ii) the relative frequency of nucleotides at each position

of the codon (12 variables); (iii) the relative frequency of

codons (61 variables); and (iv) the relative frequency of

amino acids (20 variables). Using these four sets of vari-

ables, we investigated the 15 complete and annotated

prokaryotic chromosomes published to date, namely

three archeae, Archaeoglobus fulgidus (Klenk et al.,

1997), Methanococcus jannaschii (Bult et al., 1996) and

Methanobacterium thermoautotrophicum (Smith et al.,

1997) and 12 eubacteria, Aquifex aeolicus (Deckert et al.,

1998), Bacillus subtilis (Kunst et al., 1997), Borrelia burg-

dorferi (Fraser et al., 1997), Chlamydia trachomatis (Ste-

phens et al., 1998), Escherichia coli (Blattner et al., 1997),

Haemophilus in¯uenzae (Fleischmann et al., 1995), Helico-

bacter pylori (Tomb et al., 1997), Mycobacterium tubercu-

losis (Cole et al., 1998), Mycoplasma genitalium (Fraser et

al., 1995), Mycoplasma pneumoniae (Himmelreich et al.,

1996), Synechocystis sp. (Kaneko et al., 1996) and Trepo-

nema pallidum (Fraser et al., 1998).

Results and discussion

For nine out of the 15 species, the plots exhibit two clear

maxima located at or near the origin and terminus of repli-

cation (Fig. 2). This clearly demonstrates the existence of

a bias acting at the level of nucleotides, codons and, sur-

prisingly, also amino acids. The amplitude of this bias was

totally unexpected and is very strong, judging from the

absolute value of the prediction accuracy (y-axis of the

plots). For instance, codon bias generally gives 70±80%

correct predictions (Fig. 2), whereas LDA random prediction

would yield only 50% accuracy. Extreme cases are obtained

for the genomes of B. burgdorferi, T. pallidum and C. tra-

chomatis. In the case of B. burgdorferi, the accuracy of

discrimination using the amino acid frequencies is 96%. In

other words, the sole knowledge of a protein sequence

of this species is suf®cient to predict with almost no errors

(4% of false predictions) the orientation of the correspond-

ing gene with respect to replication. B. burgdorferi is an

extreme case, but it is clear that such a bias also exists

for the other species (Fig. 2). One should note that a strong

bias in the codon usage of B. burgdorferi was revealed

recently by McInerney (1998) using factorial analysis, but

its implications have not yet been perceived at the protein

level. The six other species reveal ambiguous plots (M.

jannaschii, M. genitalium and M. pneumoniae) or no signi®-

cant bias at all (A. aeolicus, A. fulgidus and Synechocystis

sp.). It is interesting to note that no experimentally deter-

mined origin of replication has yet been proposed for the

last three cases. It should be pointed out that the absence

of a signi®cant skew is not a distinctive feature of archeae,

as M. thermoautotrophicum displays a clear codon bias

(Fig. 2). The absence of observable asymmetries may sug-

gest that, like eukaryotes, replication could take place at

different locations on the chromosome of these species

or, alternatively, that these genomes are shuf¯ed so fre-

quently that biases do not have time to become established.

To elucidate the nature of the bias observed in the nine spe-

cies, we need to examine more closely the coef®cients of

the discriminant analysis when p is set to the known origin

of replication (or to the maximum of the previous curves

when experimentally unknown) (Table 1). Indeed, positive

coef®cients indicate variables in favour of the leading

strand and, conversely, negative coef®cients correspond

to variables in favour of the lagging strand. Moreover, the

amplitude of the coef®cients indicates the importance of

the corresponding variable in the discrimination. Examina-

tion of the ®rst set of variables (nucleotides) con®rms earlier

results on the excess of G over C in the leading strand

(Table 1). Moreover, closer examination reveals that T is

constantly dominant over A on the leading strand. This

answers a still open question about the status of A and

T (MraÂzek and Karlin, 1998), showing (i) that A and T

are also skewed and (ii) that the bias is keto (GT) versus

amino (AC) rather than purine versus pyrimidine. The

second set of variables gives a more focused view of the

bias within genes: there is a clear universal skew in favour

of G over C in the third position to the codon (Table 1). This

observation is consistent with the fact that, in the genetic
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Fig. 1. Schema of the analysis. A putative origin of replication is
set at an arbitrary position p in the chromosome, and we consider
the genes lying on the leading strand (white arrows) and on the
lagging strand (grey arrows) within a window centred on p and
covering 7/8th of the chromosome. The reason for this is that,
unlike the origin, termination may occur at several Ter sites
opposite to the origin (Marians, 1992). This window therefore
allows for some uncertainty in the termination loci. For a linear
chromosome (the only case studied here is B. burgdorferi ), this is
not required, and the window covers the whole chromosome.
Within each of the two populations of genes, we draw 70% of the
elements to be subjected to linear discriminant analysis randomly
(learning set). The remaining 30% (test set) are used to evaluate
the quality of the discrimination, as measured by the `accuracy',
which is simply the percentage of correct predictions on the test set
(more sophisticated measures, which take into account a possible
imbalance in the size of the populations, have also been tested and
do not signi®cantly change the results presented here).
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code, the third position is more tolerant to mutations (Muto

and Osawa, 1987). However, a closer examination shows

that the keto-amino bias sometimes extends up to the ®rst

base and, more rarely, to the second base of the codon

(Table 1). Indeed, the examination of the third set of vari-

ables (codons) shows that the previous rule does not apply

uniformly on all codons (Table 1). The leading strand is

clearly biased towards codons starting or ending with G

or T but (i) not all such codons are selected for and (ii)

some codons are chosen universally. The most conspicu-

ous codons are GTG (V), GCG (A), GAG (E) on the leading

strand and CTC (L), GCC (A), CCC (P), ATC (I) and ACC

(T) on the lagging strand (Table 1). A comparison of the

most discriminative codons with the overall codon usage

of each species did not reveal any correlation. This elimi-

nates the possibility that the bias is caused by the well-

known over-representation of highly expressed genes on

the leading strand (Brewer, 1988; Francino and Ochman,

1997). Therefore, the codon asymmetry revealed here is

distinct from the usual codon bias resulting from gene

expression levels. Finally, the most unexpected ®nding is

that there is a constant trend towards valine on the leading

strand and, to a lesser extent, towards threonine and iso-

leucine on the lagging strand (Table 1). As far as we know,

this is the ®rst time that a constraint acting at the DNA level

(replication) has been shown to have such a deep impact

on protein composition. This impact can be revealed more

dramatically in the extreme cases of B. burgdorferi, C. tra-

chomatis and T. pallidum by simply plotting the abundance

of valine versus threonine in the translation product of

each gene (Fig. 3). These plots reveal that the constraint

is so high that it enforces a complete inversion of the

valine±threonine ratio in the two strands. An interesting

illustration of this last fact is provided by two homologous

genes (BB0629 and BB0408) in B. burgdorferi that are

highly similar to the E. coli fruA gene encoding the fructose

permease IIBC component. The two corresponding pro-

teins exhibit a high level of identity (38% identities for a

total length of 625 amino acids), but BB0408 is located

on the leading strand, whereas BB0629 is on the lagging

Q 1999 Blackwell Science Ltd, Molecular Microbiology, 32, 11±16

Fig. 2. Plots of the prediction accuracy (y-axis) when varying the location of the origin of replication (x-axis). The position on the x-axis is
expressed as the percentage of total chromosome length. For each species, we plot the accuracy obtained using four sets of variables to
describe genes: blue, relative frequency of the four nucleotides; green, relative frequency of nucleotides at each position within codons; black,
relative frequency of codons; and red, relative frequency of amino acids in the encoded proteins. Black triangles on the x-axis represent
known origins (pointing upwards) and termini (pointing downwards) of replication. White triangles represent origins and termini proposed in
this study.
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Table 1. Most discriminating factors between the leading and lagging strand.

Codon
Bases bases Codons Amino acids

� ÿ � ÿ � ÿ � ÿ

B. subtilis G C G3 C3 GAG GCG GTG GGG GCC CCC ACC TTC V E R D F S L I H T
G1 ACG AAG CCG GAT CTC TCC ATC

GTT GGT GAA CGT
GTA

B. burgdorferi G A T3 A3 GTT AAG GAT GGT ATA AAC CTA ACA V D R I T K N
T C G3 C3 TCT GAG AGT TTG AAA ATC TAC GAA

A1 AGG CTC CAC TTC GAC
C. trachomatis G C G3 C3 GAG TTG GTT GTG CTC ACC CTA TCC V R G T P I L S N

G1 C1 GGG AAG CGT AGT ATC CTT CGC CAA
G2 C2 CGG GGT CAG GAT TTC AAC CAC

AGG GTA
E. coli G C G3 C3 GCG CGT GTG GGG GCC CCC CTC CTA V G T N I H L P

G1
T3

H. influenzae G C T3 C3 GTT GCT CGT GTG ACC GCC CTC CGC V T P N
T G3 GCG CAG GAG GGT CCC GTC CTA AAC

G1 TCT TTG AAG
H. pylori G C G3 C3 GAG AAG GTG TTG CCC CTC TAC ACC V K E R S P T F

C1 AGG GCG TTC GTC ATC CTT
GCC

M. thermoautotrophicum G C G1 C3 GCA GTA ACG CCA GCC CGG AGT ACC V A L Y H Q K W
C2 C1 CCG AGG GAG GCG CCC GGT ATC TTG
G3 TCA AAA TAC
A3

M. tuberculosis G C G3 C3 GTG TTG GGT GCG ACC CCA GCA CCC V T
T T3 A3 GTT GAT CGG GGG CAA GCC ACA GGC

CGT GAG CTC CGC AGC CTA
TAC AAC ATC TCA
CAC CGA

T. pallidum G C G3 C3 GTG TTG CGT GAT ACC CTC CAC ACA V T H
T T3 A3 GTT GCG GGG GGT GAC GCC AAC TCC

G1 CGG CTA TTC CCC TAC
ATC AGC

For each species (rows), the table indicates the most discriminating variables in each of the four sets. In each table entry, the variables are listed
according to decreasing importance, as measured by the amplitude of the corresponding coefficient in the discriminant function (see text). The
listing stops when the coefficients drop to less than one half of the highest one. Columns marked `�' contain the factors selected for in the leading
strand, and columns marked `ÿ' contain the factors selected for in the lagging strand. We indicate in bold the factors that are found universally
across the species (except for codons, for the sake of clarity).

Fig. 3. Evidence of a strong amino acid compositional bias in proteins of B. burgdorferi and C. trachomatis. The percentage of valine (x-axis)
is plotted versus threonine (y-axis) for all proteins of these two species. Green dots correspond to proteins encoded by genes on the leading
strand and red dots to proteins encoded by genes on the lagging strand. A similar plot is obtained using valine versus isoleucine in
B. burgdorferi.
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strand. Examination of the alignment of the two proteins

reveals a very strong mutational polarization, as 19 valine

to isoleucine mutations are observed in the leading to lag-

ging direction compared with only four valine to isoleucine

transitions in the opposite direction.

Besides their fundamental implications for our under-

standing of the replication process, these results clearly

have some practical consequences in the analysis of com-

plete genomes. When looking for putative coding regions

using Markov models (Borodovski et al., 1994), it is crucial

for some species to use a different model for each strand.

At the protein level, these results dramatically highlight the

limitations of the use of a single, symmetrical scoring matrix

such as PAM (Dayhoff et al., 1978). For species such as

B. burgdorferi or C. trachomatis for instance, ignoring the

facts presented here would almost certainly lead to very

misleading conclusions in phylogenetic studies.
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Note added in proof

Recently released complete genome of the bacterium Rickett-
sia prowazekii (Andersson et al. Nature 396: 133±143) reveals
exactly the same biases as those described above. With the
origin of replication located at 0 kb (as suggested in the original
publication), the prediction accuracy, based on the codon bias,
is 87%.
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